Neoproterozoic Subduction Zone Fluids and Sediment Melt-Metasomatized Mantle Magmatism on the Northern Yangtze Block: Constraints from the Ca. 880 Ma Taoyuan Syenogranite
Abstract
1. Introduction
2. Geological Background
3. Petrography
4. Analytical Methods
5. Results
5.1. LA-ICP-MS Zircon U–Pb Geochronology
5.2. Hf Isotope Characteristics
5.3. Geochemistry of Major Trace Elements in Whole Rocks
6. Discussion
6.1. Classification
6.2. Source Nature
6.3. Origin of Taoyuan Syenogranite
6.3.1. Alteration, Crustal Contamination, and Fractional Crystallization
6.3.2. Mantle Metasomatism by Subduction-Derived Fluids and Sediment Melts
6.4. Tectonic Implications
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, Z.X.; Li, X.H.; Kinny, P.D.; Wang, J. The Breakup of Rodinia: Did It Start with a Mantle Plume beneath South China? Earth Planet. Sci. Lett. 1999, 173, 171–181. [Google Scholar] [CrossRef]
- Li, Z.X.; Bogdanova, S.V.; Collins, A.S.; Davidson, A.; De Waele, B.; Ernst, R.E.; Fitzsimons, I.C.W.; Fuck, R.A.; Gladkochub, D.P.; Jacobs, J.; et al. Assembly, Configuration, and Break-up History of Rodinia: A Synthesis. Precambrian Res. 2008, 160, 179–210. [Google Scholar] [CrossRef]
- Li, X.H.; Li, Z.X.; Zhou, H.W.; Liu, Y.; Kinny, P.D. U–Pb Zircon Geochronology, Geochemistry and Nd Isotopic Study of Neoproterozoic Bimodal Volcanic Rocks in the Kangdian Rift of South China: Implications for the Initial Rifting of Rodinia. Precambrian Res. 2002, 113, 135–154. [Google Scholar] [CrossRef]
- Dong, Y.; Liu, X.; Santosh, M.; Chen, Q.; Zhang, X.; Li, W.; He, D.; Zhang, G. Neoproterozoic Accretionary Tectonics along the Northwestern Margin of the Yangtze Block, China: Constraints from Zircon U–Pb Geochronology and Geochemistry. Precambrian Res. 2012, 196–197, 247–274. [Google Scholar] [CrossRef]
- Dong, Y.P.; Sun, S.S.; Yang, Z.; Liu, X.M.; Zhang, F.F.; Li, W.; Cheng, B.; He, D.F.; Zhang, G.W. Neoproterozoic Subduction-Accretionary Tectonics of the South Qinling Belt, China. Precambrian Res. 2017, 293, 73–90. [Google Scholar] [CrossRef]
- Shu, L.Y. An analysis of principal features of tectonic evolution in south China block. Geol. Bull. China 2012, 31, 1035–1053. [Google Scholar]
- Zhao, J.H.; Li, Q.W.; Liu, H.; Wang, W. Neoproterozoic Magmatism in the Western and Northern Margins of the Yangtze Block (South China) Controlled by Slab Subduction and Subduction-Transform-Edge-Propagator. Earth Sci. Rev. 2018, 187, 1–18. [Google Scholar] [CrossRef]
- Yao, J.L.; Cawood, P.A.; Shu, L.S.; Zhao, G.C. Jiangnan Orogen, South China: A ~970–820 ma Rodinia Margin Accretionary Belt. Earth Sci. Rev. 2019, 196, 102872. [Google Scholar] [CrossRef]
- Cawood, P.A.; Wang, W.; Zhao, T.Y.; Xu, Y.J.; Mulder, J.A.; Pisarevsky, S.A.; Zhang, L.M.; Gan, C.S.; He, H.Y.; Liu, H.; et al. Deconstructing South China and Consequences for Reconstructing Nuna and Rodinia. Earth Sci. Rev. 2020, 204, 103169. [Google Scholar] [CrossRef]
- Li, X.H.; Li, Z.-X.; Ge, W.; Zhou, H.; Li, W.; Liu, Y.; Wingate, M.T.D. Neoproterozoic Granitoids in South China: Crustal Melting above a Mantle Plume at ca. 825 Ma? Precambrian Res. 2003, 122, 45–83. [Google Scholar] [CrossRef]
- Zhou, M.F.; Yan, D.P.; Kennedy, A.K.; Li, Y.Q.; Ding, J. SHRIMP U–Pb Zircon Geochronological and Geochemical Evidence for Neoproterozoic Arc-Magmatism along the Western Margin of the Yangtze Block, South China. Earth Planet. Sci. Lett. 2002, 196, 51–67. [Google Scholar] [CrossRef]
- Zhou, M.F.; Ma, Y.X.; Yan, D.P.; Xia, X.P.; Zhao, J.P.; Sun, M. The Yanbian Terrane (Southern Sichuan Province, SW China): A Neoproterozoic Arc Assemblage in the Western Margin of the Yangtze Block. Precambrian Res. 2006, 144, 19–38. [Google Scholar] [CrossRef]
- Dong, Y.P.; Liu, X.M.; Santosh, M.; Zhang, X.; Chen, Q.; Yang, C.; Yang, Z. Neoproterozoic Subduction Tectonics of the Northwestern Yangtze Block in South China: Constrains from Zircon U–Pb Geochronology and Geochemistry of Mafic Intrusions in the Hannan Massif. Precambrian Res. 2011, 189, 66–90. [Google Scholar] [CrossRef]
- Zheng, Y.F.; Zhang, S.B.; Zhao, Z.F.; Wu, Y.B.; Li, X.H.; Li, Z.X.; Wu, F.Y. Contrasting Zircon Hf and O Isotopes in the Two Episodes of Neoproterozoic Granitoids in South China: Implications for Growth and Reworking of Continental Crust. Lithos 2007, 96, 127–150. [Google Scholar] [CrossRef]
- Zheng, Y.F.; Wu, R.X.; Wu, Y.B.; Zhang, S.B.; Yuan, H.L.; Wu, F.-Y. Rift Melting of Juvenile Arc-Derived Crust: Geochemical Evidence from Neoproterozoic Volcanic and Granitic Rocks in the Jiangnan Orogen, South China. Precambrian Res. 2008, 163, 351–383. [Google Scholar] [CrossRef]
- Zhou, J.L.; Li, X.H.; Tang, G.Q.; Gao, B.-Y.; Bao, Z.-A.; Ling, X.X.; Wu, L.G.; Lu, K.; Zhu, Y.S.; Liao, X. 890 ma Magmatism in the Northwest Yangtze Block, South China: SIMS U-Pb Dating, in-Situ Hf-O Isotopes, and Tectonic Implications. J. Asian Earth Sci. 2018, 151, 101–111. [Google Scholar] [CrossRef]
- Luo, B.J.; Liu, R.; Zhang, H.F.; Zhao, J.L.; Yang, H.; Xu, W.C.; Guo, L.; Zhang, L.Q.; Tao, L.; Pan, F.B.; et al. Neoproterozoic Continental Back-Arc Rift Development in the Northwestern Yangtze Block: Evidence from the Hannan Intrusive Magmatism. Gondwana Res. 2018, 59, 27–42. [Google Scholar] [CrossRef]
- Berkana, W.; Wu, H.; Ling, W.L.; Kusky, T.; Ding, X.Y. Neoproterozoic Metavolcanic Suites in the Micangshan Terrane and Their Implications for the Tectonic Evolution of the NW Yangtze Block, South China. Precambrian Res. 2022, 368, 106476. [Google Scholar] [CrossRef]
- Gan, B.P.; Lai, S.C.; Qin, J.F.; Zhu, R.Z.; Zhao, S.W.; Li, T. Neoproterozoic Alkaline Intrusive Complex in the Northwestern Yangtze Block, Micang Mountains Region, South China: Petrogenesis and Tectonic Significance. Int. Geol. Rev. 2017, 59, 311–332. [Google Scholar] [CrossRef]
- Hui, B.; Dong, Y.P.; Liu, G.; Zhao, H.Y.Z.; Sun, S.S.; Zhang, F.F. Origin of mafic intrusions in the Micangshan Massif, Central China: Implications for the Neoproterozoic tectonic evolution of the northwestern Yangtze Block. J. Asian Earth Sci. 2020, 190, 104132. [Google Scholar] [CrossRef]
- Ao, W.H. Petrography, Geochemistry, Zircon Geochronology and Geological Implications of Neoproterozoic Granites in Dahanshan Region, Northern Margin of Yangtze Plate. Master’s Thesis, Northwest University, Kirkland, WA, USA, 2015. (In Chinese with English Abstract). [Google Scholar]
- Deng, Q.; Wang, J.; Wang, Z.J.; Jiang, X.S.; Du, Q.D.; Wu, H.; Yang, F.; Cui, X.Z. Zircon U–Pb ages for tuffs from the Dashigou and Sanlangpu Formations of the Xixiang Group in the northern margin of the Yangtze Block and their geological significance. J. Jilin Univ. (Earth Sci. Ed.) 2013, 43, 797–819, (In Chinese with English Abstract). [Google Scholar]
- Gan, B.P. Neoproterozoic Alkaline Complex in the Northern Yangtze Block, Micangshan Mountains Area: Geological Significances and Geological Implications. Master’s Thesis, Northwest University, Kirkland, WA, USA, 2015. (In Chinese with English Abstract). [Google Scholar]
- Geng, Y.Y. SHRIMP U–Pb Zircon Geochronology and Geochemistry Study of Neoproterozoic Granites in the Northern Margin of Yangtze Continental. Master’s Thesis, China University of Geoscience, Beijing, China, 2010. (In Chinese with English Abstract). [Google Scholar]
- Li, T. The Study of Neoproterozoic Tectonic-Magmatic Events in the Northern Margin of the Yangtze Continental. Master’s Thesis, Chang’an University, Xi’an, China, 2010. (In Chinese with English Abstract). [Google Scholar]
- Ling, W.L.; Gao, S.; Zhang, B.; Li, H.M.; Liu, Y.; Cheng, J.P. Neoproterozoic Tectonic Evolution of the Northwestern Yangtze Craton, South China: Implications for Amalgamation and Break-up of the Rodinia Supercontinent. Precambrian Res. 2003, 122, 111–140. [Google Scholar] [CrossRef]
- Ling, W.L.; Gao, S.; Cheng, J.P.; Jiang, L.S.; Yuan, H.L.; Hu, Z.C. Neoproterozoic magmatic events within the yangtze continental interior and along its northern margin and their tectonic implication: Constraint from the ELA-ICPMS U-pb geochronology of zircons from the huangling and hannan complexes. Acta Petrol. Sin. 2006, 22, 387–396. [Google Scholar]
- Liu, R.; Zhang, B.R.; Zhang, H.F.; Yuan, H.L. U-Pb zircon age, geochemical and SrNd-Hf isotopic compositions of neoproterozoic granitoids in northwestern margin of Yangtze block (South China): Implications for neoproterozoic tectonic evolution. J. Earth Sci. 2009, 20, 659–680. [Google Scholar] [CrossRef]
- Wang, M.X.; Nebel, O.; Wang, C.Y. The Flaw in the Crustal “Zircon Archive”: Mixed Hf Isotope Signatures Record Progressive Contamination of Late-Stage Liquid in Mafic-Ultramafic Layered Intrusions. J. Petrol. 2016, 57, 27–52. [Google Scholar] [CrossRef]
- Xia, L.Q.; Xia, Z.C.; Ma, Z.P.; Xu, X.Y.; Li, X.M. Petrogenesis of volcanic rocks from Xixiang Group in middle part of South Qinling Mountains. Northwest. Geol. 2009, 42, 1–37, (In Chinese with English Abstract). [Google Scholar]
- Zhao, J.H.; Zhou, M.F. Neoproterozoic adakitic plutons in the northern margin of the Yangtze Block, China: Partial melting of a thickened lower crust and implications for secular crustal evolution. Lithos 2008, 104, 231–248. [Google Scholar] [CrossRef]
- Zhao, J.H.; Zhou, M.F. Melting of newly formed mafic crust for the formation of Neoproterozoic I-type granite in the Hannan region, South China. J. Geol. 2009, 117, 54–70. [Google Scholar] [CrossRef]
- Zhao, J.H.; Zhou, M.F. Secular evolution of the Neoproterozoic lithospheric mantle underneath the northern margin of the Yangtze Block, South China. Lithos 2009, 107, 152–168. [Google Scholar] [CrossRef]
- Zhao, F.Q.; Zhao, W.P.; Zuo, Y.C.; Li, Z.H.; Xue, K.Q. U-Pb geochronology of Neoproterozoic magmatic rocks in Hanzhong, southern Shaanxi, China. Geol. Bull. China 2006, 25, 383–388, (In Chinese with English Abstract). [Google Scholar]
- Zhao, J.H.; Zhou, M.F.; Zheng, J.P.; Fang, S.M. Neoproterozoic crustal growth and reworking of the Northwestern Yangtze Block: Constraints from the Xixiang dioritic intrusion, South China. Lithos 2010, 120, 439–452. [Google Scholar] [CrossRef]
- Zhou, M.F.; Kennedy, A.K.; Sun, M.; Malpas, J.; Lesher, C.M. Neoproterozoic arcrelated mafic intrusions along the northern margin of South China: Implications for the accretion of Rodinia. J. Geol. 2002, 110, 611–618. [Google Scholar] [CrossRef]
- Zhu, X.; Long, X.P.; Yang, X.X.; Wang, J.Y. The formation temperature of Neoproterozoic magmatic intrusions in the Hannan area and its geological significance. Chin. J. Geol. 2018, 53, 1000–1026, (In Chinese with English Abstract). [Google Scholar]
- Gao, S.; Ling, W.L.; Qiu, Y.; Lian, Z.; Hartmann, G.; Simon, K. Contrasting Geochemical and Sm-Nd Isotopic Compositions of Archean Metasediments from the Kongling High-Grade Terrain of the Yangtze Craton: Evidence for Cratonic Evolution and Redistribution of REE during Crustal Anatexis. Geochim. Cosmochim. Acta 1999, 63, 2071–2088. [Google Scholar] [CrossRef]
- Wu, Y.B.; Gao, S.; Zhang, H.F.; Zheng, J.P.; Liu, X.C.; Wang, H.; Gong, H.J.; Zhou, L.; Yuan, H.Q. Geochemistry and Zircon U–Pb Geochronology of Paleoproterozoic Arc Related Granitoid in the Northwestern Yangtze Block and Its Geological Implications. Precambrian Res. 2012, 200–203, 26–37. [Google Scholar] [CrossRef]
- Deng, Q.; Wang, Z.J.; Ren, G.M.; Cui, X.Z. Discovery of the Baiyu ~1.79 Ga a-Type Granite in the Beiba Area of the Northwestern Margin of Yangtze Block: Constraints on Tectonic Evolution of South China. Acta Geol. Sin. 2017, 91, 1454–1466. [Google Scholar]
- Deng, Q.; Wang, Z.J.; Ren, G.M.; Cui, X.Z. Identification of the ~2.09 Ga and ~1.76 Ga Granitoids in the Northwestern Yangtze Block: Records of the Assembly and Break-Up of Columbia Supercontinent. Earth Sci. 2020, 45, 3295–3312. [Google Scholar]
- Deng, Q.; Ren, G.M.; Wang, Z.J.; Ning, K.B.; Cui, X.Z. Depositional age, provenance and tectonic significance of the Huodiya Group in the Wangcang area, northwestern margin of the Yangtze Block: Constraints from detrital zircon U-Pb geochronology. Acta Sedimentol. Sin. 2024, 42, 1948–1957. [Google Scholar]
- Wei, G.A.; Zhou, G.F.; Pan, W.Q. Geochronology, Geochemistry and Tectonic Significance of Potash Feldspar in Guangwushan area, northern margin of Yangtze plate. J. Mineral. Petrol. 2019, 39, 14–24. [Google Scholar]
- Ao, W.H.; Zhao, Y.; Zhang, Y.K.; Zhai, M.G.; Zhang, H.; Zhang, R.; Wang, Q.; Sun, Y. The Neoproterozoic Magmatism in the Northern Margin of the Yangtze Block: Insights from Neoproterozoic (950–706 Ma) Gabbroic-Granitoid Rocks of the Hannan Complex. Precambrian Res. 2019, 333, 105442. [Google Scholar] [CrossRef]
- Li, F.L.; Li, Y.L.; Zhou, G.H.; Xu, S.Y.; Li, Z.G.; Zhou, H.W. LA-ICP-MS zircon U-pb dating of schist from the Dalangshan group in Suizhou city, Hubei province, and its implications. Acta Petrol. Mineral. 2010, 29, 488–496. [Google Scholar]
- Zong, K.Q.; Klemd, R.; Yuan, Y.; He, Z.Y.; Guo, J.L.; Shi, X.L.; Liu, Y.S.; Hu, Z.C.; Zhang, Z.M. The Assembly of Rodinia: The Correlation of Early Neoproterozoic (ca. 900 Ma) High-Grade Metamorphism and Continental Arc Formation in the Southern Beishan Orogen, Southern Central Asian Orogenic Belt (CAOB). Precambrian Res. 2017, 290, 32–48. [Google Scholar] [CrossRef]
- Wiedenbeck, M.; Alle, P.; Corfu, F.; Griffin, W.L.; Meier, M.; Oberli, F.; Von Quadt, A.; Roddick, J.C.; Spiegel, W. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostand. Newsl. 1995, 19, 1–23. [Google Scholar] [CrossRef]
- Pearce, N.J.; Perkins, W.T.; Westgate, J.A.; Gorton, M.P.; Jackson, S.E.; Neal, C.R.; Chenery, S.P. A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostand. Geoanal. Res. 1997, 21, 115–144. [Google Scholar] [CrossRef]
- Liu, Y.S.; Gao, S.; Cheng, J.P.; Jiang, L.S.; Yuan, H.L.; Hu, Z. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons of Mantle Xenoliths. J. Petrol. 2010, 51, 537–571. [Google Scholar] [CrossRef]
- Ludwig, K.R. ISOPLOT 3.00: A Geochronological Toolkit for Microsoft Excel; Berkeley Geochronology Center: Berkeley, CA, USA, 2003. [Google Scholar]
- Hu, Z.C.; Zhang, W.; Liu, Y.S.; Gao, S.; Li, M. “Wave” Signal-Smoothing and Mercury-Removing Device for Laser Ablation Quadrupole and Multiple Collector ICPMS Analysis: Application to Lead Isotope Analysis. Anal. Chem. 2015, 87, 1152–1157. [Google Scholar] [CrossRef]
- Liu, Y.S.; Hu, Z.C.; Gao, S.; Günther, D.; Xu, J.; Gao, C.G.; Chen, H.H. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chem. Geol. 2008, 257, 34–43. [Google Scholar] [CrossRef]
- Jonathan Patchett, P. Hafnium Isotope Results from Mid-Ocean Ridges and Kerguelen. Lithos 1983, 16, 47–51. [Google Scholar] [CrossRef]
- Maniar, P.D.; Piccoli, P.M. Tectonic Discrimination of Granitoids. Geol. Soc. Am. Bull. 1989, 101, 635–643. [Google Scholar] [CrossRef]
- Rollinson, H. Using Geochemical Data: Evaluation, Presentation, Interpretation; Longman Scientific and Technical: London, UK, 1993. [Google Scholar]
- Defant, M.J.; Drummond, M.S. Derivation of Some Modern Arc Magmas by Melting of Young Subducted Lithosphere. Nature 1990, 347, 662–665. [Google Scholar] [CrossRef]
- Castillo, P.R.; Janney, P.E.; Solidum, R.U. Petrology and Geochemistry of Camiguin Island, Southern Philippines: Insights to the Source of Adakites and Other Lavas in a Complex Arc Setting. Contrib. Mineral. Petrol. 1999, 134, 33–51. [Google Scholar] [CrossRef]
- Castillo, P.R. An Overview of Adakite Petrogenesis. Chin. Sci. Bull. 2006, 51, 257–268. [Google Scholar] [CrossRef]
- Castillo, P.R. Adakite Petrogenesis. Lithos 2012, 134–135, 304–316. [Google Scholar] [CrossRef]
- Macpherson, C.G.; Dreher, S.T.; Thirlwall, M.F. Adakites without Slab Melting: High Pressure Differentiation of Island Arc Magma, Mindanao, the Philippines. Earth Planet. Sci. Lett. 2006, 243, 581–593. [Google Scholar] [CrossRef]
- Kolb, M.; Von Quadt, A.; Peytcheva, I.; Heinrich, C.A.; Fowler, S.J.; Cvetkovic, V. Adakite-like and Normal Arc Magmas: Distinct Fractionation Paths in the East Serbian Segment of the Balkan–Carpathian Arc. J. Petrol. 2013, 54, 421–451. [Google Scholar] [CrossRef]
- Sun, S.S.; McDonough, W.F. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. ResearchGate 1989, 42, 313–345. [Google Scholar] [CrossRef]
- Chappell, B.W. Aluminium Saturation in I- and S-Type Granites and the Characterization of Fractionated Haplogranites—ScienceDirect. Lithos 1999, 46, 535–551. [Google Scholar] [CrossRef]
- Whalen, J.B.; Currie, K.L.; Chappell, B.W. A-Type Granites: Geochemical Characteristics and Discrimination. Contrib. Mineral. Petrol. 1987, 95, 420–436. [Google Scholar] [CrossRef]
- Bernard, B. A-Type Granites and Related Rocks: Evolution of a Concept, Problems and Prospects. Lithos 1987, 97, 1–29. [Google Scholar]
- King, P.L.; Chappell, B.W.; Allen, C.M.; White, A.J.R. Are A-Type Granites the High-Temperature Felsic Granites? Evidence from fractionated granites of the Wangrah Suite. Aust. J. Earth Sci. 2001, 48, 501–504. [Google Scholar] [CrossRef]
- Watson, E.B.; Harrison, T.M. Zircon Saturation Revisited: Temperature and Composition Effects in a Variety of Crustal Magma Types. Earth Planet. Sci. Lett. 1983, 64, 295–304. [Google Scholar] [CrossRef]
- Liu, C.S.; Chen, X.M.; Chen, P.R.; Wang, R.C.; Hu, H. Subdivision, discrimination Criteria and Genesis for a Type Rock Suites. Geol. J. China Univ. 2003, 9, 573. [Google Scholar]
- Hine, R.; Williams, I.S.; Chappell, B.W.; White, A.J.R. Contrasts between I- and S-type Granitoids of the Kosciusko Batholith. J. Geol. Soc. Aust. 1978, 25, 219–234. [Google Scholar] [CrossRef]
- Zen, E.A. Aluminium Enrichment in Silicate Melts by Fractional Crystallization: Some Mineralogic and Petrographic Constraints. J. Petrol. 1986, 27, 1095–1117. [Google Scholar] [CrossRef]
- Zhao, B.; Deng, Y.; Zhou, T.; Yuan, F.; Zhang, D.; Li, P.; Zhang, R. Petrogenesis of the Wusan Pluton in West Junggar: Evidence from Geochronology, Petrology and Geochemistry. Acta Geol. Sin. 2016, 90, 950–970. [Google Scholar]
- Hofmann, A.W. Chemical Differentiation of the Earth: The Relationship between Mantle, Continental Crust, and Oceanic Crust. Earth Planet. Sci. Lett. 1988, 90, 297–314. [Google Scholar] [CrossRef]
- Green, T.H. Significance of Nb/Ta as an Indicator of Geochemical Processes in the Crust-Mantle System. Chem. Geol. 1995, 120, 347–359. [Google Scholar] [CrossRef]
- Taylor, S.; McLennan, S. The Continental Crust: Its Composition and Evolution; Department of Geosciences Faculty Publications; Blackwell Scientific Publications: Oxford, UK, 1985. [Google Scholar]
- Stacey, J.S.; Kramers, J.D. Approximation of Terrestrial Lead Isotope Evolution by a Two-Stage Model. Earth Planet. Sci. Lett. 1975, 26, 207–221. [Google Scholar] [CrossRef]
- Griffin, W.L.; Pearson, N.J.; Belousova, E.; Jackson, S.E.; van Achterbergh, E.; O’Reilly, S.Y.; Shee, S.R. The Hf Isotope Composition of Cratonic Mantle: LAM-MC-ICPMS Analysis of Zircon Megacrysts in Kimberlites. Geochim. Cosmochim. Acta 2000, 64, 133–147. [Google Scholar] [CrossRef]
- Rapp, R.P.; Watson, E.B. Dehydration melting of metabasalt at 8–32 kbar: Implications for continental growth and crust-mantle recycling. J. Petrol. 1995, 36, 891–931. [Google Scholar] [CrossRef]
- Dupuy, C.; Liotard, J.M.; Dostal, J. Zr/Hf Fractionation in Intraplate Basaltic Rocks: Carbonate Metasomatism in the Mantle Source. Geochim. Cosmochim. Acta 1992, 56, 2417–2423. [Google Scholar] [CrossRef]
- Smith, E.I.; Sánchez, A.; Walker, J.D.; Wang, K. Geochemistry of Mafic Magmas in the Hurricane Volcanic Field, Utah: Implications for Small- and Large-scale Chemical Variability of the Lithospheric Mantle. J. Geol. 1999, 107, 433–448. [Google Scholar] [CrossRef]
- Yan, M.; Liu, S.W.; Li, Q.G.; Yang, P.T.; Wang, W.; Guo, R.R.; Bai, X.; Deng, Z.B. LAICPMS zircon U-Pb chronology and Lu-Hf isotopic features of the Mihunzhen pluton in the South Qinling tectonic belt. Acta Petrol. Sin. 2014, 30, 390–400, (In Chinese with English Abstract). [Google Scholar]
- Xu, Y.; Yang, K.G.; Polat, A.; Yang, Z.N. The ∼860 Ma mafic dikes and granitoids from the northern margin of the Yangtze Block, China: A record of oceanic subduction in the early Neoproterozoic. Precambrian Res. 2016, 275, 310–331. [Google Scholar] [CrossRef]
- Wu, P.; Zhang, S.B.; Zheng, Y.F.; Fu, B.; Liang, T. Amalgamation of South China into Rodinia during the Grenvillian Accretionary Orogeny: Geochemical Evidence from Early Neoproterozoic Igneous Rocks in the Northern Margin of the South China Block. Precambrian Res. 2019, 321, 221–243. [Google Scholar] [CrossRef]
- Wu, P.; Zhang, S.B.; Li, Z.X.; Wu, Y.B.; Zheng, Y.-F. Secular Change in the Nature of Mantle and Tectonic Evolution of Northwestern Margin of the Yangtze Block during Neoproterozoic: Constraints from the Mafic Intrusions and Associated Granitoids of the Hannan and Xiaomoling Complexes. Precambrian Res. 2023, 393, 107094. [Google Scholar] [CrossRef]
- Wang, R.; Xu, Z.; Santosh, M.; Zeng, B. Mid-Neoproterozoic magmatism in the northern margin of the Yangtze Block, South China: Implications for transition from subduction to post-collision. Precambrian Res. 2021, 354, 106073. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, X.-L.; Li, J.-Y.; Li, R.-C.; Du, D.-H.; Jiang, C.-H.; Li, L.-S.; Ding, N. From arc accretion to within-plate extension: Geochronology and geochemistry of the Neoproterozoic magmatism on the northern margin of the Yangtze Block. Precambrian Res. 2023, 395, 107133. [Google Scholar] [CrossRef]
- Rapp, R.P.; Shimizu, N.; Norman, M.D.; Applegate, G.S. Reaction between Slab-Derived Melts and Peridotite in the Mantle Wedge: Experimental Constraints at 3.8 GPa. Chem. Geol. 1999, 160, 335–356. [Google Scholar] [CrossRef]
- Stern, C.R.; Kilian, R. Role of the Subducted Slab, Mantle Wedge and Continental Crust in the Generation of Adakites from the Andean Austral Volcanic Zone. Contrib. Mineral. Petrol. 1996, 123, 263–281. [Google Scholar] [CrossRef]
- Smithies, R.H.; Champion, D.C. The Archaean high-Mg diorite suite: Links totonalite–trondhjemite–granodiorite magmatism and implications for Early Archaean crustal growth. J. Petrol. 2000, 41, 1653–1671. [Google Scholar] [CrossRef]
- Hui, B.; Dong, Y.P.; Zhang, F.F.; Sun, S.S.; He, S. Petrogenesis and Tectonic Implications of the Neoproterozoic Mafic Intrusions in the Bikou Terrane along the Northwestern Margin of the Yangtze Block, South China. Ore Geol. Rev. 2021, 131, 104014. [Google Scholar] [CrossRef]
- Xiao, L.; Zhang, H.F.; Ni, P.Z.; Xiang, H.; Liu, X.M. LA-ICP-MS U–Pb Zircon Geochronology of Early Neoproterozoic Mafic-Intermediat Intrusions from NW Margin of the Yangtze Block, South China: Implication for Tectonic Evolution. Precambrian Res. 2007, 154, 221–235. [Google Scholar] [CrossRef]
- Wang, W.; Liu, S.W.; Feng, Y.G.; Li, Q.G.; Wu, F.H.; Wang, Z.; Wang, R.; Yang, P.T. Chronology, Petrogenesis and Tectonic Setting of the Neoproterozoic Tongchang Dioritic Pluton at the Northwestern Margin of the Yangtze Block: Constraints from Geochemistry and Zircon U–Pb–Hf Isotopic Systematics. Gondwana Res. 2012, 22, 699–716. [Google Scholar] [CrossRef]
- Hu, F.Y.; Liu, S.W.; Santosh, M.; Deng, Z.B.; Wang, W.; Zhang, W.; Yan, M. Chronology and Tectonic Implications of Neopro-terozoic Blocks in the South Qinling Orogenic Belt, Central China. Gondwana Res. 2016, 30, 24–47. [Google Scholar] [CrossRef]
- Belousova, E.A.; Griffin, W.L.; O’REilly, S.Y. Zircon Crystal Morphology, Trace Element Signatures and Hf Isotope Composition as a Tool for Petrogenetic Modelling: Examples from Eastern Australian Granitoids. J. Petrol. 2006, 47, 329–353. [Google Scholar] [CrossRef]
- Kemp, A.I.S.; Hawkesworth, C.J.; Foster, G.L.; Paterson, B.A.; Woodhead, J.D.; Hergt, J.M.; Gray, C.M.; Whitehouse, M.J. Magmatic and Crustal Differentiation History of Granitic Rocks from Hf-O Isotopes in Zircon. Science 2007, 315, 980–983. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.Y.; Yang, Y.-H.; Xie, L.-W.; Yang, J.-H.; Xu, P. Hf Isotopic Compositions of the Standard Zircons and Baddeleyites Used in U–Pb Geochronology. Chem. Geol. 2006, 234, 105–126. [Google Scholar] [CrossRef]
- Vervoort, J.D.; Patchett, P.J.; Blichert-Toft, J.; Albarède, F. Relationships between Lu–Hf and Sm–Nd Isotopic Systems in the Global Sedimentary System. Earth Planet. Sci. Lett. 1999, 168, 79–99. [Google Scholar] [CrossRef]
- Lin, Y.P.; Ci, D.; Zhao, H.F. Zircon U-pb age, geochemistry and geological significances of the biotite monzogranite in lhasa rock mass, tibet. Sediment. Geol. Tethyan Geol. 2020, 40, 56–70. [Google Scholar] [CrossRef]
- Song, D.H.; Wang, Y.; Liu, B. Age, Petrogenesis and Tectonic Implications of Late Mesoproterozoic Yuanmou Granite in the Western Yangtze Block, South China. Sediment. Geol. Tethyan Geol. 2023, 43, 661–673. [Google Scholar]
- Zhang, H.; Lu, S.L.; Gio, W.K. Petrogenesis of Slab-Derived Trondhjemite–Tonalite–Dacite/Adakite Magmas|Earth and Environmental Science Transactions of the Royal Society of Edinburgh|Cambridge Core. Sediment. Geol. Tethyan Geol. 2024, 44, 740–756. [Google Scholar]
- Barnes, S.J.; Naldrett, A.J.; Gorton, M.P. The Origin of the Fractionation of Platinum-Group Elements in Terrestrial Magmas. Chem. Geol. 1985, 53, 303–323. [Google Scholar] [CrossRef]
- Wang, Y.J.; Zhang, A.M.; Fan, W.M.; Zhang, Y.H.; Zhang, Y.Z. Origin of Paleosubduction-Modified Mantle for Silurian Gabbro in the Cathaysia Block: Geochronological and Geochemical Evidence. Lithos 2013, 160–161, 37–54. [Google Scholar] [CrossRef]
- Rolland, Y.; Galoyan, G.; Bosch, D.; Sosson, M.; Corsini, M.; Fornari, M.; Verati, C. Jurassic Back-Arc and Cretaceous Hot-Spot Series in the Armenian Ophiolites—Implications for the Obduction Process. Lithos 2009, 112, 163–187. [Google Scholar] [CrossRef]
- Cai, Y.F.; Wang, Y.J.; Cawood, P.A.; Zhang, Y.Z.; Zhang, A. Neoproterozoic Crustal Growth of the Southern Yangtze Block: Geochemical and Zircon U–Pb Geochronological and Lu-Hf Isotopic Evidence of Neoproterozoic Diorite from the Ailaoshan Zone. Precambrian Res. 2015, 266, 137–149. [Google Scholar] [CrossRef]
- Rudnick, R.L.; Gao, S. Composition of the Continental Crust. In The Crust; Rudnick, R.L., Ed.; Elsevier-Pergamon: Oxford, UK, 2003. [Google Scholar]
- Müntener, O.; Kelemen, P.B.; Grove, T.L. The Role of H2O during Crystallization of Primitive Arc Magmas under Uppermost Mantle Conditions and Genesis of Igneous Pyroxenites: An Experimental Study. Contrib. Mineral. Petrol. 2001, 141, 643–658. [Google Scholar] [CrossRef]
- Hanson, G.N. The Application of Trace Elements to the Petrogenesis of Igneous Rocks of Granitic Composition. Earth Planet. Sci. Lett. 1978, 38, 26–43. [Google Scholar] [CrossRef]
- Wilson, M. Igneous Petrogenesis a Global Tectonic Approach; Unwin Hyman: London, UK, 1989. [Google Scholar]
- Chen, X.; Wang, D.; Wang, X.L.; Gao, J.F.; Shu, X.J.; Zhou, J.-C.; Qi, L. Neoproterozoic Chromite-Bearing High-Mg Diorites in the Western Part of the Jiangnan Orogen, Southern China: Geochemistry, Petrogenesis and Tectonic Implications. Lithos 2014, 200–201, 35–48. [Google Scholar] [CrossRef]
- Van de Flierdt, T.; Hoernes, S.; Jung, S.; Masberg, P.; Hoffer, E.; Schaltegger, U.; Friedrichsen, H. Lower Crustal Melting and the Role of Open-System Processes in the Genesis of Syn-Orogenic Quartz Diorite–Granite–Leucogranite Associations: Constraints from Sr–Nd–O Isotopes from the Bandombaai Complex, Namibia. Lithos 2003, 67, 205–226. [Google Scholar] [CrossRef]
- Jung, S.; Hoernes, S.; Mezger, K. Synorogenic Melting of Mafic Lower Crust: Constraints from Geochronology, Petrology and Sr, Nd, Pb and O Isotope Geochemistry of Quartz Diorites (Damara Orogen, Namibia). Contrib. Mineral. Petrol. 2002, 143, 551–566. [Google Scholar] [CrossRef]
- Karsli, O.; Dokuz, A.; Kandemir, R. Zircon Lu-Hf Isotope Systematics and U–Pb Geochronology, Whole-Rock Sr-Nd Isotopes and Geochemistry of the Early Jurassic Gokcedere Pluton, Sakarya Zone-NE Turkey: A Magmatic Response to Roll-Back of the Paleo-Tethyan Oceanic Lithosphere. Contrib. Mineral. Petrol. 2017, 172, 31. [Google Scholar] [CrossRef]
- Zhang, B.; Guo, F.; Zhang, X.B.; Wu, Y.M.; Wang, G.; Zhao, L. Early Cretaceous Subduction of Paleo-Pacific Ocean in the Coastal Region of SE China: Petrological and Geochemical Constraints from the Mafic Intrusions. Lithos 2019, 334–335, 8–24. [Google Scholar] [CrossRef]
- Du, L.; Guo, J.; Nutman, A.P.; Wyman, D.; Geng, Y.; Yang, C.; Liu, F.; Ren, L.; Zhou, X. Implications for Rodinia Reconstructions for the Initiation of Neoproterozoic Subduction at ~860 Ma on the Western Margin of the Yangtze Block: Evidence from the Guandaoshan Pluton. Lithos 2014, 196–197, 67–82. [Google Scholar] [CrossRef]
- Eiler, J.M.; Crawford, A.; Elliott, T.; Farley, K.A.; Valley, J.W.; Stolper, E.M. Oxygen Isotope Geochemistry of Oceanic-Arc Lavas. J. Petrol. 2000, 41, 229–256. [Google Scholar] [CrossRef]
- Eiler, J.M.; Carr, M.J.; Reagan, M.; Stolper, E. Oxygen Isotope Constraints on the Sources of Central American Arc Lavas. Geochem. Geophys. Geosystems 2005, 6, 2004GC000804. [Google Scholar] [CrossRef]
- Guo, F.; Li, H.X.; Fan, W.M.; Li, J.Y.; Zhao, L.; Huang, M.W.; Xu, W.L. Early Jurassic Subduction of the Paleo-Pacific Ocean in NE China: Petrologic and Geochemical Evidence from the Tumen Mafic Intrusive Complex. Lithos 2015, 224–225, 46–60. [Google Scholar] [CrossRef]
- Hanyu, T.; Tatsumi, Y.; Nakai, S. A Contribution of Slab-Melts to the Formation of High-Mg Andesite Magmas; Hf Isotopic Evidence from SW Japan. Geophys. Res. Lett. 2002, 29, 8-1–8-4. [Google Scholar] [CrossRef]
- Hanyu, T.; Tatsumi, Y.; Nakai, S.; Chang, Q.; Miyazaki, T.; Sato, K.; Tani, K.; Shibata, T.; Yoshida, T. Contribution of Slab Melting and Slab Dehydration to Magmatism in the NE Japan Arc for the Last 25 Myr: Constraints from Geochemistry. Geochem. Geophys. Geosystems 2006, 7, 2005GC001220. [Google Scholar] [CrossRef]
- Shimoda, G.; Tatsumi, Y.; Morishita, Y. Behavior of Subducting Sediments beneath an Arc under a High Geothermal Gradient: Constraints from the Miocene SW Japan Arc. Geochem. J. 2003, 37, 607–612. [Google Scholar] [CrossRef]
- Tatsumi, Y.; Nakashima, T.; Tamura, Y. The Petrology and Geochemistry of Calc-Alkaline Andesites on Shodo-Shima Island, SW Japan. J. Petrol. 2002, 43, 3–16. [Google Scholar] [CrossRef]
- Elliott, T.; Plank, T.; Zindler, A.; White, W.; Bourdon, B. Element Transport from Slab to Volcanic Front at the Mariana Arc. J. Geophys. Res. Solid Earth 1997, 102, 14991–15019. [Google Scholar] [CrossRef]
- Kepezhinskas, P.; McDermott, F.; Defant, M.J.; Hochstaedter, A.; Drummond, M.S.; Hawkesworth, C.J.; Koloskov, A.; Maury, R.C.; Bellon, H. Trace Element Characteristics of Lavas from Destructive Plate Boundaries. Geochim. Cosmochim. Acta 1997, 61, 577–600. [Google Scholar] [CrossRef]
- Spandler, C.; Mavrogenes, J.; Hermann, J. Experimental Constraints on Element Mobility from Subducted Sediments Using High-P Synthetic Fluid/Melt Inclusions. Chem. Geol. 2007, 239, 228–249. [Google Scholar] [CrossRef]
- Grove, T.; Parman, S.; Bowring, S.; Price, R.; Baker, M. The Role of an H2O-Rich Fluid Component in the Generation of Primitive Basaltic Andesites and Andesites from the Mt. Shasta Region, N California. Contrib. Mineral. Petrol. 2002, 142, 375–396. [Google Scholar] [CrossRef]
- Crawford, A.V. Boninites and Related Rocks, 1st ed.; Allen & Unwin Australia: Crows Nest, Australia, 1989. [Google Scholar]
- Zhu, Y.; Lai, S.C.; Qin, J.F.; Zhu, R.Z.; Zhang, F.Y.; Zhang, Z.Z.; Zhao, S. Neoproterozoic Peraluminous Granites in the Western Margin of the Yangtze Block, South China: Implications for the Reworking of Mature Continental Crust. Precambrian Res. 2019, 333, 105443. [Google Scholar] [CrossRef]
- Zeng, X.W.; Wang, M.; Fan, J.J.; Li, C.; Xie, C.M.; Liu, Y.M.; Zhang, T.Y. Geochemistry and Geochronology of Gabbros from the Asa Ophiolite, Tibet: Implications for the Early Cretaceous Evolution of the Meso-Tethys Ocean. Lithos 2018, 320–321, 192–206. [Google Scholar] [CrossRef]
- Xu, W.C.; Zhang, H.F.; Luo, B.; Guo, L.; Yang, H. Adakite-like Geochemical Signature Produced by Amphibole-Dominated Fractionation of Arc Magmas: An Example from the Late Cretaceous Magmatism in Gangdese Belt, South Tibet. Lithos 2015, 232, 197–210. [Google Scholar] [CrossRef]
- Lai, S.C.; Zhang, G.W. Petrology and Geochemistry Features of theMetamorphic Volcanic Rocks in Mianxian Lueyang Suture Zone, South Qinling. Acta Petrol. Sin. 1997, 13, 563–573. [Google Scholar]
- Condie, K.C. Earth as an Evolving Planetary System; Elsevier: Amsterdam, The Netherlands; Academic Press: Cambridge, MA, USA, 2011. [Google Scholar]
- Bryan, S.E.; Ferrari, L. Large Igneous Provinces and Silicic Large Igneous Provinces: Progress in Our Understanding over the Last 25 Years. Geol. Soc. Am. Bull. 2013, 125, 1053–1078. [Google Scholar] [CrossRef]
- Saito, S.; Tani, K. Transformation of Juvenile Izu–Bonin–Mariana Oceanic Arc into Mature Continental Crust: An Example from the Neogene Izu Collision Zone Granitoid Plutons, Central Japan. Lithos 2017, 277, 228–240. [Google Scholar] [CrossRef]
- Hervé, F.; Pankhurst, R.J.; Fanning, C.M.; Calderón, M.; Yaxley, G.M. The South Patagonian Batholith: 150 My of Granite Magmatism on a Plate Margin. Lithos 2007, 97, 373–394. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Li, Y.; Liu, H.; Wang, P.; Zhang, S.; Chen, F. Neoproterozoic Subduction Zone Fluids and Sediment Melt-Metasomatized Mantle Magmatism on the Northern Yangtze Block: Constraints from the Ca. 880 Ma Taoyuan Syenogranite. Minerals 2025, 15, 730. https://doi.org/10.3390/min15070730
Liu S, Li Y, Liu H, Wang P, Zhang S, Chen F. Neoproterozoic Subduction Zone Fluids and Sediment Melt-Metasomatized Mantle Magmatism on the Northern Yangtze Block: Constraints from the Ca. 880 Ma Taoyuan Syenogranite. Minerals. 2025; 15(7):730. https://doi.org/10.3390/min15070730
Chicago/Turabian StyleLiu, Shilei, Yiduo Li, Han Liu, Peng Wang, Shizhen Zhang, and Fenglin Chen. 2025. "Neoproterozoic Subduction Zone Fluids and Sediment Melt-Metasomatized Mantle Magmatism on the Northern Yangtze Block: Constraints from the Ca. 880 Ma Taoyuan Syenogranite" Minerals 15, no. 7: 730. https://doi.org/10.3390/min15070730
APA StyleLiu, S., Li, Y., Liu, H., Wang, P., Zhang, S., & Chen, F. (2025). Neoproterozoic Subduction Zone Fluids and Sediment Melt-Metasomatized Mantle Magmatism on the Northern Yangtze Block: Constraints from the Ca. 880 Ma Taoyuan Syenogranite. Minerals, 15(7), 730. https://doi.org/10.3390/min15070730