Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (32)

Search Parameters:
Keywords = visible light-assisted photocatalysis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 3592 KiB  
Article
Enhancing Optical Properties and Cost-Effectiveness of Sol–Gel TiO2 Nanomaterials Through Experimental Design
by Felipe Anchieta e Silva, Timóteo Adorno de Almeida, Argimiro R. Secchi, José Carlos Pinto and Thenner Silva Rodrigues
Processes 2025, 13(7), 1988; https://doi.org/10.3390/pr13071988 - 24 Jun 2025
Viewed by 506
Abstract
The sol–gel synthesis of titanium dioxide (TiO2) nanostructures is investigated in the present work in order to optimize synthesis parameters and enhance the optical properties and cost-effectiveness of the obtained materials. TiO2 is widely used in photocatalysis, photovoltaics, and environmental [...] Read more.
The sol–gel synthesis of titanium dioxide (TiO2) nanostructures is investigated in the present work in order to optimize synthesis parameters and enhance the optical properties and cost-effectiveness of the obtained materials. TiO2 is widely used in photocatalysis, photovoltaics, and environmental applications due to its high stability, tunable band gap, and strong light absorption. The sol–gel method offers a scalable, cost-effective route for producing nanostructured TiO2, although the precise control over particle morphology remains challenging. For this reason, in the present work, a statistical design of experiments (DOE) approach is employed to systematically refine reaction conditions through the manipulation of precursor concentrations, solvent ratios, and reaction volume. The experimental results obtained indicate that acetic acid is a key catalyst and stabilizing agent, significantly improving nucleation control and particle formation. Moreover, it is also shown that solvent dilution, particularly with acetic acid, leads to the formation of TiO2 nanorods with enhanced optical properties. Additionally, scanning electron micrographs revealed that controlled synthesis conditions can reduce the particle size distribution and improve structural uniformity. Moreover, X-ray diffraction analyses confirmed the formation of a pure anatase crystalline phase, while ultraviolet–visible spectroscopy analyses indicated the existence of an optimal band gap for photocatalytic applications. Finally, the cost analysis showed that acetic acid-assisted synthesis can reduce production costs and simultaneously maintain high optical properties. Therefore, the present study highlights that proper manipulation and control of reaction conditions during sol–gel syntheses can allow the manufacture of high-performance TiO2 nanomaterials for advanced technological applications, also providing a foundation for the development of cost-effective materials. Full article
(This article belongs to the Special Issue Metal Oxides and Their Composites for Photocatalytic Degradation)
Show Figures

Figure 1

10 pages, 2488 KiB  
Article
Photothermal-Assisted Photocatalytic Degradation of Antibiotic by Black g-C3N4 Materials Derived from C/N Precursors and Tetrachlorofluorescein
by Xiyuan Gao, Pengnian Shan, Weilong Shi and Feng Guo
Catalysts 2025, 15(5), 504; https://doi.org/10.3390/catal15050504 - 21 May 2025
Cited by 1 | Viewed by 545
Abstract
The development of photothermal-assisted photocatalytic systems with broad-spectrum solar utilization and high charge separation efficiency remains a critical challenge for antibiotic degradation. Herein, we report novel black g-C3N4 (BCN) materials synthesized via a one-step thermal copolymerization strategy using C/N precursors [...] Read more.
The development of photothermal-assisted photocatalytic systems with broad-spectrum solar utilization and high charge separation efficiency remains a critical challenge for antibiotic degradation. Herein, we report novel black g-C3N4 (BCN) materials synthesized via a one-step thermal copolymerization strategy using C/N precursors and tetrachlorofluorescein. After the introduction of tetrachlorofluorescein, the color of the sample changes, which gives BCN enhanced light absorption and a significant photothermal effect for poorly heating-assisted photocatalysis. The synergistic coupling of photothermal and photocatalytic processes enabled the optimal BCN-U sample to achieve exceptional degradation efficiency (89% within 120 min) for a typical antibiotic (e.g., tetracycline) under an LED lamp as the visible light source, outperforming conventional yellow g-C3N4 (YCN-U) by a factor of 1.37. Mechanistic studies revealed that the photothermal effect facilitates carrier separation via thermal-driven electron excitation while accelerating reactive oxygen species (•OH and •O2) generation. The synergistic interplay between photocatalysis and photothermal effects, which improved mass transfer, ensures robust stability, which provides new insights into designing dual-functional carbon nitride-based materials for sustainable environmental remediation. Full article
(This article belongs to the Special Issue Advances in Photocatalytic Degradation of Pollutants in Wastewater)
Show Figures

Figure 1

15 pages, 14323 KiB  
Article
Synergistic Effect of Sono-Photocatalysis on the Degradation of Rhodamine B Dye Using BiFeO3 Nanoparticles Synthesized via a Modified Combustion Method
by Anel I. Robles-Cortes, Daniel Flores-Ramírez, Lissette Medina-de la Rosa, Denisse F. González-Ramírez, José Ortiz-Landeros and Issis C. Romero-Ibarra
Ceramics 2024, 7(4), 1880-1894; https://doi.org/10.3390/ceramics7040118 - 4 Dec 2024
Cited by 1 | Viewed by 1585
Abstract
Water contamination has become a global concern, and the prevalence of complex substances known as emerging contaminants constitute a risk to human health and the environment. This work focused on an innovative approach of integrating sonolysis and photocatalysis to remove a standard textile [...] Read more.
Water contamination has become a global concern, and the prevalence of complex substances known as emerging contaminants constitute a risk to human health and the environment. This work focused on an innovative approach of integrating sonolysis and photocatalysis to remove a standard textile dye efficiently. A highly photo-active, bismuth ferrite (BiFeO3) nanocatalyst with single particle sizes between 86 and 265 nm was obtained by a novel one-pot combustion method using a deep eutectic solvent as a precursor. The said catalyst was thoroughly characterized and evaluated for photocatalytic and sono-photocatalytic degradation of rhodamine B (RhB). Photocatalytic experiments were conducted under visible light irradiation (450–600 nm). Sono-photocatalytic (SPC) experiments were conducted, focusing on the influence of operational parameters (frequency, power, and pH) on the degradation performance. High-frequency values of 578, 866, and 1138 kHz were explored to promote cavitation dynamics and reactive species generation, improving removal efficiency. Results demonstrated that when sonolysis and photocatalysis were performed separately, the degradation efficiency ranged between 85 and 87%. Remarkably, when the combined SPC degradation was carried out, the RhB removal reached about 99.9% after 70 min. It is discussed that this behavior is due to the increased generation of OH radicals as a product of the cavitation phenomena related to the ultrasound-assisted process. Moreover, it is argued that SPC significantly improves reaction kinetics and mass transfer rates, facilitating catalyst dispersion and contact with the RhB molecules. Finally, the stability of the catalyst was evaluated in five repeated RhB removal cycles, where the activity remained consistently strong. Full article
Show Figures

Graphical abstract

20 pages, 4447 KiB  
Article
Enhanced Visible-Light Photocatalysis Activity of TiO2/Ag Nanocomposites Prepared by the Ultrasound-Assisted Sol–Gel Method: Characterization and Degradation–Mineralization of Cationic and Anionic Dyes
by Noreddine Boudechiche, Nicola Morante, Diana Sannino, Katia Monzillo, Mohamed Trari and Zahra Sadaoui
Catalysts 2024, 14(12), 883; https://doi.org/10.3390/catal14120883 - 3 Dec 2024
Cited by 4 | Viewed by 1815
Abstract
Coupling TiO2 with various elements could enhance its photocatalytic activity. In this study, an innovative ultrasound-assisted sol–gel method was used to synthesize TiO2/Ag(x%) by varying Ag–support mass (x = 9.3, 17.1, and 23.6%), followed by calcination at 450 °C for [...] Read more.
Coupling TiO2 with various elements could enhance its photocatalytic activity. In this study, an innovative ultrasound-assisted sol–gel method was used to synthesize TiO2/Ag(x%) by varying Ag–support mass (x = 9.3, 17.1, and 23.6%), followed by calcination at 450 °C for 30 min. The aim was to demonstrate that Ag compositing improves photoactivity under visible light (>400 nm). The synthesized photocatalysts were assessed for their effectiveness in the degradation and mineralization of Methylene Blue (MB) and Acid Orange 7 (AO7) using visible lamps emitting in the range of 400–800 nm. Characterization of the prepared photocatalysts was performed by using Raman spectroscopy, SEM/EDS, pHpzc, and UV–visible spectroscopy. Raman spectroscopy confirmed the predominance of the anatase phase in all the photocatalysts. The photodegradation efficiencies of the selected dyes, MB and AO7, reached 99% (pH 6) and 95% (pH 3) after 180 min of irradiation, respectively. The best performance for the degradation of the two dyes was observed with TiO2/Ag9.3%, showing optimal kinetics at this doping concentration. The improved photoactivity of the TiO2/Ag composite is due to a decrease in the recombination rate of electron/hole (e/h+) and a decrease in the band gap from 3.13 to 2.49 eV. The mineralization rate of both dyes under visible light is about 9.3%, indicating the presence of refractory by-products that resist complete degradation. Under UVA irradiation, complete mineralization is obtained. This study confirms the potential of TiO2/Ag composite as a high-performance and cost-effective photocatalyst for solar environmental remediation, highlighting the role of silver in extending light absorption into the visible region and improving charge separation. Full article
Show Figures

Figure 1

16 pages, 3519 KiB  
Article
Adsorptive–Photocatalytic Composites of α-Ferrous Oxalate Supported on Activated Carbon for the Removal of Phenol under Visible Irradiation
by Salomé Galeas, Víctor H. Guerrero, Patricia I. Pontón, Carla S. Valdivieso-Ramírez, Paul Vargas-Jentzsch, Paola Zárate and Vincent Goetz
Molecules 2024, 29(15), 3690; https://doi.org/10.3390/molecules29153690 - 4 Aug 2024
Viewed by 1553
Abstract
Adsorptive–photocatalytic composites based on activated carbon (AC) and α-ferrous oxalate dihydrate (α-FOD) were synthesized by an original two-step method and subsequently used for the removal of phenol from aqueous solutions. To obtain the composites, ferrotitaniferous black mineral sands (0.6FeTiO3·0.4Fe2O [...] Read more.
Adsorptive–photocatalytic composites based on activated carbon (AC) and α-ferrous oxalate dihydrate (α-FOD) were synthesized by an original two-step method and subsequently used for the removal of phenol from aqueous solutions. To obtain the composites, ferrotitaniferous black mineral sands (0.6FeTiO3·0.4Fe2O3) were first dissolved in an oxalic acid solution at ambient pressure, and further treated under hydrothermal conditions to precipitate α-FOD on the AC surface. The ratio of oxalic acid to the mineral sand precursor was tuned to obtain composites with 8.3 and 42.7 wt.% of α-FOD on the AC surface. These materials were characterized by X-ray powder diffraction, scanning electron microscopy, and the nitrogen adsorption–desorption method. The phenol removal efficiency of the composites was determined during 24 h of adsorption under dark conditions, followed by 24 h of adsorption–photocatalysis under visible light irradiation. AC/α-FOD composites with 8.3 and 42.7 wt.% of α-FOD adsorbed 60% and 51% of phenol in 24 h and reached a 90% and 96% removal efficiency after 12 h of irradiation, respectively. Given its higher photocatalytic response, the 42.7 wt.% α-FOD composite was also tested during successive cycles of adsorption and adsorption–photocatalysis. This composite exhibited a reasonable level of cyclability (~99% removal after four alternated dark/irradiated cycles of 24 h and ~68% removal after three simultaneous adsorption–photocatalysis cycles of 24 h). The promising performance of the as-prepared composites opens several opportunities for their application in the effective removal of organic micropollutants from water. Full article
(This article belongs to the Special Issue Heterogeneous Catalysis for Sustainability and Carbon-Neutrality)
Show Figures

Graphical abstract

15 pages, 2672 KiB  
Article
Synthesis of CBO (Co3O4-Bi2O3) Heterogeneous Photocatalyst for Degradation of Fipronil and Acetochlor Pesticides in Aqueous Medium
by Muhammad Saeed, Sandeep Panchal, Majed A. Bajaber, Ahlam A. Alalwiat, Ahmed Ezzat Ahmed, Ujala Razzaq, Hafiza Zahra Rab Nawaz and Farhat Hussain
Catalysts 2024, 14(6), 392; https://doi.org/10.3390/catal14060392 - 19 Jun 2024
Cited by 1 | Viewed by 1621
Abstract
The excessive use of pesticides has led to the harmful contamination of water reservoirs. Visible-light-driven photocatalysis is one of the suitable methods for the removal of pesticides from water. Herein, the development of CBO (Co3O4-Bi2O3) [...] Read more.
The excessive use of pesticides has led to the harmful contamination of water reservoirs. Visible-light-driven photocatalysis is one of the suitable methods for the removal of pesticides from water. Herein, the development of CBO (Co3O4-Bi2O3) as a heterogeneous catalyst for the visible light-assisted degradation of Fipronil and Acetochlor pesticides is reported. After synthesis via coprecipitation using cobalt (II) nitrate hexahydrate (Co(NO3)2·6H2O), bismuth (III) nitrate pentahydrate (Bi(NO3)3·5H2O) and sodium hydroxide (NaOH) as precursor materials, the prepared CBO was characterized using advanced techniques including XRD, EDS, TEM, SEM, FTIR, and surface area and pore size analysis. Then, it was employed as a photocatalyst for the degradation of Fipronil and Acetochlor pesticides under visible light irradiation. The complete removal of Fipronil and Acetochlor pesticides was observed over CBO photocatalyst using 50 mL (100 mg/L) of each pesticide separately within 120 min of reaction. The reaction kinetics was investigated using a non-linear method of analysis using the Solver add-in. The prepared CBO exhibited a 2.8-fold and 2-fold catalytic performance in the photodegradation of selected pesticides than Co3O4 and Bi2O3 did, respectively. Full article
(This article belongs to the Special Issue Microporous and Mesoporous Materials for Catalytic Applications)
Show Figures

Graphical abstract

16 pages, 14155 KiB  
Article
Construction of Zn0.5Cd0.5S/Bi4O5Br2 Heterojunction for Enhanced Photocatalytic Degradation of Tetracycline Hydrochloride
by Lan Luo, Juan Shen and Bo Jin
Inorganics 2024, 12(5), 127; https://doi.org/10.3390/inorganics12050127 - 24 Apr 2024
Cited by 3 | Viewed by 1762
Abstract
The development of efficient catalysts with visible light response for the removal of pollutants in an aqueous environment has been a hotspot in the field of photocatalysis research. A Zn0.5Cd0.5S (ZCS) nanoparticle/Bi4O5Br2 ultra-thin nanosheet [...] Read more.
The development of efficient catalysts with visible light response for the removal of pollutants in an aqueous environment has been a hotspot in the field of photocatalysis research. A Zn0.5Cd0.5S (ZCS) nanoparticle/Bi4O5Br2 ultra-thin nanosheet heterojunction was constructed by ultrasound-assisted solvothermal method. The morphology, structure, and optoelectronic properties of the composite were characterized by scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and UV–vis diffuse reflectance spectra. Under simulated visible light illumination, the photocatalytic performance was evaluated through degradation of tetracycline hydrochloride. Results show that the degradation effect by the optimum ZCS/Bi4O5Br2 catalyst is superior to pure materials with the kinetic constant that is 1.7 and 9.6 times higher than those of Bi4O5Br2 and ZCS, and also has better stability and reusability. Trapping experiments and electron paramagnetic resonance tests find that free radicals in the photocatalytic system are superoxide radicals and holes. This work provides a referable idea for the development of more efficient and recyclable photocatalysts. Full article
(This article belongs to the Section Inorganic Materials)
Show Figures

Graphical abstract

14 pages, 4085 KiB  
Article
Optical and Photocatalytic Properties of Cobalt-Doped LuFeO3 Powders Prepared by Oxalic Acid Assistance
by Zhi Wang, Changmin Shi, Pengfei Li, Wenzhu Wang, Wenzhen Xiao, Ting Sun and Jing Zhang
Molecules 2023, 28(15), 5730; https://doi.org/10.3390/molecules28155730 - 28 Jul 2023
Cited by 15 | Viewed by 1750
Abstract
B-site cobalt (Co)-doped rare-earth orthoferrites ReFeO3 have shown considerable enhancement in physical properties compared to their parent counterparts, and Co-doped LuFeO3 has rarely been reported. In this work, LuFe1−xCoxO3 (x = 0, 0.05, 0.1, 0.15) powders [...] Read more.
B-site cobalt (Co)-doped rare-earth orthoferrites ReFeO3 have shown considerable enhancement in physical properties compared to their parent counterparts, and Co-doped LuFeO3 has rarely been reported. In this work, LuFe1−xCoxO3 (x = 0, 0.05, 0.1, 0.15) powders have been successfully prepared by a mechanochemical activation-assisted solid-state reaction (MAS) method at 1100 °C for 2 h. X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy studies demonstrated that a shrinkage in lattice parameters emerges when B-site Fe ions are substituted by Co ions. The morphology and elemental distribution were investigated by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The UV–visible absorbance spectra show that LuFe0.85Co0.15O3 powders have a narrower bandgap (1.75 eV) and higher absorbance than those of LuFeO3 (2.06 eV), obviously improving the light utilization efficiency. Additionally, LuFe0.85Co0.15O3 powders represent a higher photocatalytic capacity than LuFeO3 powders and can almost completely degrade MO in 5.5 h with the assistance of oxalic acid under visible irradiation. We believe that the present study will promote the application of orthorhombic LuFeO3 in photocatalysis. Full article
Show Figures

Figure 1

19 pages, 5393 KiB  
Article
Superparamagnetic Zinc Ferrite Nanoparticles as Visible-Light Active Photocatalyst for Efficient Degradation of Selected Textile Dye in Water
by Rabid Ullah, Fatima Khitab, Hajera Gul, Rozina Khattak, Junaid Ihsan, Mansoor Khan, Abbas Khan, Zane Vincevica-Gaile and Hani Amir Aouissi
Catalysts 2023, 13(7), 1061; https://doi.org/10.3390/catal13071061 - 30 Jun 2023
Cited by 14 | Viewed by 2765
Abstract
Photocatalysis is a promising technology for the degradation of recalcitrant organic pollutants in water. In this study, superparamagnetic zinc ferrite nanoparticles (ZnFe2O4) were synthesized and characterized using scanning electron microscopy, X-ray diffraction, energy dispersive X-ray and Fourier transform infrared [...] Read more.
Photocatalysis is a promising technology for the degradation of recalcitrant organic pollutants in water. In this study, superparamagnetic zinc ferrite nanoparticles (ZnFe2O4) were synthesized and characterized using scanning electron microscopy, X-ray diffraction, energy dispersive X-ray and Fourier transform infrared spectroscopy. The synthesized nanoparticles (NPs) of ZnFe2O4 were observed to have a photosensitive nature and showed characteristic visible-light-induced activation that was used for the photocatalytic degradation of a textile dye, Remazol brilliant violet 5R (RBV-5R). The effect of different operational parameters such as pH, H2O2, catalyst dosage, concentration of RBV-5R and the reusability of ZnFe2O4 as well as scavengers were investigated under visible irradiation. The almost complete degradation (99.9%) of RBV-5R was observed at pH 10, 0.1 g of ZnFe2O4 and 6 mM of H2O2 in 30 min. The photocatalytic degradation of RBV-5R followed pseudo-first-order kinetics. The mineralization was calculated from total organic carbon (TOC) that was represented by 82% TOC removal in 30 min. The results revealed that visible-light-induced ZnFe2O4 photocatalysis may be a promising technology for the elimination of toxic organic dyes, such as RBV-5R, from water resources. Full article
(This article belongs to the Special Issue Catalysis for the Removal of Water Pollutants)
Show Figures

Figure 1

19 pages, 2602 KiB  
Article
Plasmonic Nanodomains Decorated on Two-Dimensional Oxide Semiconductors for Photonic-Assisted CO2 Conversion
by Mohammad Karbalaei Akbari, Nasrin Siraj Lopa, Jihae Park and Serge Zhuiykov
Materials 2023, 16(10), 3675; https://doi.org/10.3390/ma16103675 - 11 May 2023
Cited by 2 | Viewed by 2231
Abstract
Plasmonic nanostructures ensure the reception and harvesting of visible lights for novel photonic applications. In this area, plasmonic crystalline nanodomains decorated on the surface of two-dimensional (2D) semiconductor materials represent a new class of hybrid nanostructures. These plasmonic nanodomains activate supplementary mechanisms at [...] Read more.
Plasmonic nanostructures ensure the reception and harvesting of visible lights for novel photonic applications. In this area, plasmonic crystalline nanodomains decorated on the surface of two-dimensional (2D) semiconductor materials represent a new class of hybrid nanostructures. These plasmonic nanodomains activate supplementary mechanisms at material heterointerfaces, enabling the transfer of photogenerated charge carriers from plasmonic antennae into adjacent 2D semiconductors and therefore activate a wide range of visible-light assisted applications. Here, the controlled growth of crystalline plasmonic nanodomains on 2D Ga2O3 nanosheets was achieved by sonochemical-assisted synthesis. In this technique, Ag and Se nanodomains grew on 2D surface oxide films of gallium-based alloy. The multiple contribution of plasmonic nanodomains enabled the visible-light-assisted hot-electron generation at 2D plasmonic hybrid interfaces, and therefore considerably altered the photonic properties of the 2D Ga2O3 nanosheets. Specifically, the multiple contribution of semiconductor–plasmonic hybrid 2D heterointerfaces enabled efficient CO2 conversion through combined photocatalysis and triboelectric-activated catalysis. The solar-powered acoustic-activated conversion approach of the present study enabled us to achieve the CO2 conversion efficiency of more than 94% in the reaction chambers containing 2D Ga2O3-Ag nanosheets. Full article
(This article belongs to the Special Issue Novel Nanostructured Materials for Optoelectronic Applications)
Show Figures

Figure 1

14 pages, 4417 KiB  
Article
Microemulsion–Assisted Synthesis of Ag2CrO4@MIL–125(Ti)–NH2 Z–Scheme Heterojunction for Visible–Light Photocatalytic Inactivation of Bacteria
by Haoyu Yuan, Chao Zhang, Wenjing Chen, Yuzhou Xia, Lu Chen, Renkun Huang, Ruiru Si and Ruowen Liang
Catalysts 2023, 13(5), 817; https://doi.org/10.3390/catal13050817 - 28 Apr 2023
Cited by 5 | Viewed by 2030
Abstract
Metal–organic frameworks (MOFs) are new porous materials composed of metal centers and organic ligand bridges, which received great attention in the field of photocatalysis. In this work, Ag2CrO4@MIL–125(Ti)–NH2 (denoted as AgCr@M125) Z–scheme heterojunctions were synthesized via a simple [...] Read more.
Metal–organic frameworks (MOFs) are new porous materials composed of metal centers and organic ligand bridges, which received great attention in the field of photocatalysis. In this work, Ag2CrO4@MIL–125(Ti)–NH2 (denoted as AgCr@M125) Z–scheme heterojunctions were synthesized via a simple microemulsion method, by which highly dispersed nano–sized Ag2CrO4 can be anchored uniformly on the surfaces of porous MIL–125(Ti)–NH2 (denoted as M125). Compared with pure M125 and Ag2CrO4, the as–prepared AgCr@M125 hybrids show significant photocatalytic efficiency against inactivated Staphylococcus aureus (S. aureus), reaching over 97% inactivation of the bacteria after 15 min of visible light irradiation. Notably, the photocatalytic activity of the obtained 20%AgCr@M125 is about 1.75 times higher than that of AgCr–M125, which was prepared via a traditional precipitation method. The enhanced photocatalytic antibacterial activity of the AgCr@M125 photocatalytic system is strongly ascribed to a direct Z–scheme mechanism, which can be carefully discussed based on energy band positions and time–dependent electron spin response (ESR) experiments. Our work highlights a simple way to enhance the antibacterial effect by coupling with Ag2CrO4 and M125 via a microemulsion–assisted strategy and affords an ideal example for developing MOFs–based Z–scheme photocatalysts with excellent photoactivity. Full article
Show Figures

Figure 1

15 pages, 4316 KiB  
Article
Enhanced Photo-Assisted Fenton Degradation of Antibiotics over Iron-Doped Bi-Rich Bismuth Oxybromide Photocatalyst
by Fengjiao Zhang, Yanhua Peng, Xiaolong Yang, Zhuo Li and Yan Zhang
Nanomaterials 2023, 13(1), 188; https://doi.org/10.3390/nano13010188 - 31 Dec 2022
Cited by 8 | Viewed by 2664
Abstract
Herein, combining photocatalysis and Fenton oxidation, a photo-assisted Fenton system was conducted using Fe-doped Bi4O5Br2 as a highly efficient photocatalyst to realize the complete degradation of Tetracycline antibiotics under visible light. It has been observed that the optimized [...] Read more.
Herein, combining photocatalysis and Fenton oxidation, a photo-assisted Fenton system was conducted using Fe-doped Bi4O5Br2 as a highly efficient photocatalyst to realize the complete degradation of Tetracycline antibiotics under visible light. It has been observed that the optimized photocatalyst 5%Fe-doped Bi4O5Br2 exhibits a degradation efficiency of 100% for Tetracycline with H2O2 after 3 h visible-light irradiation, while a degradation percentage of 59.8% over the same photocatalyst and 46.6% over pure Bi4O5Br2 were obtained without the addition of H2O2 (non-Fenton process). It is unambiguous that a boost photo-assisted Fenton system for the degradation of Tetracycline has been established. Based on structural analysis, it demonstrated that the Fe atoms in place of the Bi sites may result in the distortion of the local structure, which induced the occurrence of the spontaneous polarization and thus enhanced the built-in electric field. The charge separation efficiency is enhanced, and the recombination of electrons and holes is inhabited so that more charges are generated to reach the surface of the photocatalyst and therefore improve the photocatalytic degradation efficiency. Moreover, more Fe (II) sites formed on the 5%Fe-Bi4O5Br2 photocatalyst and facilitated the activation of H2O2 to form oxidative species, which greatly enhanced the degradation efficiency of Tetracycline. Full article
(This article belongs to the Special Issue Hybrid Nanomaterials Applied to Photocatalysis)
Show Figures

Figure 1

19 pages, 1863 KiB  
Review
Recent Advances in Ternary Metal Oxides Modified by N Atom for Photocatalysis
by Jingwen Wang, Takuya Hasegawa, Yusuke Asakura and Shu Yin
Catalysts 2022, 12(12), 1568; https://doi.org/10.3390/catal12121568 - 2 Dec 2022
Cited by 14 | Viewed by 3474
Abstract
Ternary metal oxides (TMOs) with flexible band structures are of significant potential in the field of photocatalysis. The efficient utilization of renewable and green solar energy is of great importance to developing photocatalysts. To date, a wide range of TMOs systems has been [...] Read more.
Ternary metal oxides (TMOs) with flexible band structures are of significant potential in the field of photocatalysis. The efficient utilization of renewable and green solar energy is of great importance to developing photocatalysts. To date, a wide range of TMOs systems has been developed as photocatalysts for water and air purification, but their practical applications in visible light-assisted chemical reactions are hindered mainly by its poor visible light absorption capacity. Introduction of N atoms into TMOs can narrow the band-gap energy to a lower value, enhance the absorption of visible light and suppress the recombination rate of photogenerated electrons and holes, thus improving the photocatalytic performance. This review summarizes the recent research on N-modified TMOs, including the influence of N doping amounts, N doping sites, and N-induced phase transformation. The introduced N greatly tuned the optical properties, electronic structure, and photocatalytic activity of the TMOs. The optimal N concentration and the influence of N doping sites are investigated. The substitutional N and interstitial N contributed differently to the band gap and electron transport. The introduced N can tune the vacancies in TMOs due to the charge compensation, which is vital for inducing different activity and selectivity. The topochemical ammonolysis process can convert TMOs to oxynitride with visible light absorption. By altering the band structures, these oxynitride materials showed enhanced photocatalytic activity. This review provides an overview of recent advances in N-doped TMOs and oxynitrides derived from TMOs as photocatalysts for environmental applications, as well as some relevant pointers for future burgeoning research development. Full article
(This article belongs to the Special Issue State-of-the-Art Nanostructured Catalysts in Asia)
Show Figures

Graphical abstract

22 pages, 5813 KiB  
Article
Rapid Microwave-Assisted Synthesis of N/TiO2/rGO Nanoparticles for the Photocatalytic Degradation of Pharmaceuticals
by Camilo Sanchez Tobon, Ivana Panžić, Arijeta Bafti, Gordana Matijašić, Davor Ljubas and Lidija Ćurković
Nanomaterials 2022, 12(22), 3975; https://doi.org/10.3390/nano12223975 - 11 Nov 2022
Cited by 15 | Viewed by 2536
Abstract
Nanocomposites comprising nitrogen-doped TiO2 and reduced graphene oxide (N/TiO2/rGO), with different rGO loading qualities, were prepared by a cost-effective microwave-assisted synthesis method. The synthesized materials were broadly characterized by Raman spectroscopy, X-ray diffraction (XRD), infrared spectroscopy (FTIR), photoelectron spectroscopy (XPS), [...] Read more.
Nanocomposites comprising nitrogen-doped TiO2 and reduced graphene oxide (N/TiO2/rGO), with different rGO loading qualities, were prepared by a cost-effective microwave-assisted synthesis method. The synthesized materials were broadly characterized by Raman spectroscopy, X-ray diffraction (XRD), infrared spectroscopy (FTIR), photoelectron spectroscopy (XPS), diffuse reflectance spectroscopy (DRS), electron microscopy (SEM-EDS), and nitrogen adsorption/desorption isotherms. Anatase was the only crystalline phase observed for all synthesized materials. The rGO loading did not affect the morphological properties, but it positively influenced the photocatalytic activity of the nanocomposite materials, especially at low rGO loading. Photocatalysts were evaluated via the degradation of specific organic micropollutant (OMP) pharmaceuticals: ciprofloxacin (CIP), diclofenac (DCF), and salicylic acid (SA), under different radiation sources: ultraviolet A (UVA), solar light simulator (SLS), blue visible light (BVL) and cold visible light (CVL). CIP and SA were removed effectively via the synergy of adsorption and photocatalysis, while DCF degradation was achieved solely by photocatalysis. After implementing scavenger agents, photocatalytic degradation processes mainly depended on the specific pollutant type, while irradiation sources barely defined the photocatalytic mechanism. On the other hand, changes in irradiation intensity significantly influenced the photolysis process, while photocatalysis was slightly affected, indicating that irradiation spectra are more relevant than intensity. Full article
Show Figures

Figure 1

19 pages, 2917 KiB  
Review
Recent Developments in Heterogeneous Photocatalysts with Near-Infrared Response
by Nan Cao, Meilan Xi, Xiaoli Li, Jinfang Zheng, Limei Qian, Yitao Dai, Xizhong Song and Shengliang Hu
Symmetry 2022, 14(10), 2107; https://doi.org/10.3390/sym14102107 - 11 Oct 2022
Cited by 6 | Viewed by 2776
Abstract
Photocatalytic technology has been considered as an efficient protocol to drive chemical reactions in a sustainable and green way. With the assistance of semiconductor-based materials, heterogeneous photocatalysis converts solar energy directly into chemical energy that can be readily stored. It has been employed [...] Read more.
Photocatalytic technology has been considered as an efficient protocol to drive chemical reactions in a sustainable and green way. With the assistance of semiconductor-based materials, heterogeneous photocatalysis converts solar energy directly into chemical energy that can be readily stored. It has been employed in several fields including CO2 reduction, H2O splitting, and organic synthesis. Given that near-infrared (NIR) light occupies 47% of sunlight, photocatalytic systems with a NIR response are gaining more and more attention. To enhance the solar-to-chemical conversion efficiency, precise regulation of the symmetric/asymmetric nanostructures and band structures of NIR-response photocatalysts is indispensable. Under the irradiation of NIR light, the symmetric nano-morphologies (e.g., rod-like core-shell shape), asymmetric electronic structures (e.g., defect levels in band gap) and asymmetric heterojunctions (e.g., PN junctions, semiconductor-metal or semiconductor-dye composites) of designed photocatalytic systems play key roles in promoting the light absorption, the separation of electron/hole pairs, the transport of charge carriers to the surface, or the rate of surface photocatalytic reactions. This review will comprehensively analyze the four main synthesis protocols for the fabrication of NIR-response photocatalysts with improved reaction performance. The design methods involve bandgap engineering for the direct utilization of NIR photoenergy, the up-conversion of NIR light into ultraviolet/visible light, and the photothermal effect by converting NIR photons into local heat. Additionally, challenges and perspectives for the further development of heterogeneous photocatalysts with NIR response are also discussed based on their potential applications. Full article
Show Figures

Figure 1

Back to TopTop