Rapid Microwave-Assisted Synthesis of N/TiO2/rGO Nanoparticles for the Photocatalytic Degradation of Pharmaceuticals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Reduction in Graphene Oxide (rGO)
2.3. N/TiO2/rGO Microwave-Assisted Synthesis
2.4. Characterization of Photocatalysts
2.5. Adsorption, Photolytic and Photocatalytic Experiments
3. Results & Discussion
3.1. Reduction in Graphene Oxide
3.2. Characterization of Microwave-Assisted Synthesized N/TiO2/rGO Nanocomposites
3.3. Photocatalytic Performance of Microwave-Assisted Synthesized N/TiO2/rGO Nanocomposites
Lamp | Material | Removal by Adsorption | Removal Efficiency (%) | Model | |||
---|---|---|---|---|---|---|---|
Pseudo-First Order | Pseudo-Second Order | ||||||
(%) | ɳ | k1 | R2 | k2 | R2 | ||
UVA | N/TiO2 | 32.44 | 98.02 | 0.0432 | 0.8635 | 0.5881 | 0.9975 |
TiO2 P25 | 19.87 | 99.58 | 0.0589 | 0.8508 | 1.9217 | 0.9937 | |
N/TiO2/rGO 0.25 wt.% | 33.47 | 98.81 | 0.0489 | 0.8801 | 0.9388 | 0.9910 | |
N/TiO2/rGO 1 wt.% | 30.87 | 97.95 | 0.0425 | 0.8710 | 0.5652 | 0.9976 | |
N/TiO2/rGO 3 wt.% | 32.15 | 98.21 | 0.0433 | 0.8782 | 0.6245 | 0.9928 | |
N/TiO2/rGO 5 wt.% | 35.15 | 97.04 | 0.0379 | 0.9114 | 0.3992 | 0.9763 | |
N/TiO2/rGO 10 wt.% | 36.40 | 98.01 | 0.0407 | 0.8985 | 0.5093 | 0.9844 | |
Photolysis | * | 78.92 | 0.0154 | 0.9404 | 0.0028 | 0.9953 | |
SLS | N/TiO2 | 36.32 | 98.77 | 0.0477 | 0.8843 | 0.9768 | 0.9869 |
TiO2 P25 | 12.04 | 99.26 | 0.0558 | 0.8122 | 1.2612 | 0.9839 | |
N/TiO2/rGO 0.25 wt.% | 29.75 | 99.90 | 0.0531 | 0.8645 | 1.2462 | 0.9866 | |
N/TiO2/rGO 1 wt.% | 33.96 | 99.42 | 0.0468 | 0.8773 | 0.8664 | 0.9873 | |
N/TiO2/rGO 3 wt.% | 35.12 | 99.82 | 0.0446 | 0.8869 | 0.7629 | 0.9861 | |
N/TiO2/rGO 5 wt.% | 33.59 | 97.88 | 0.0410 | 0.8879 | 0.4908 | 0.9921 | |
N/TiO2/rGO 10 wt.% | 37.70 | 98.34 | 0.0404 | 0.8870 | 0.5094 | 0.9771 | |
Photolysis | * | 95.10 | 0.0304 | 0.9279 | 0.0140 | 0.9922 | |
CVL | N/TiO2 | 31.20 | 58.36 | 0.0046 | 0.9832 | 0.0079 | 0.9949 |
TiO2 P25 | * | * | * | * | * | * | |
N/TiO2/rGO 0.25 wt.% | 30.21 | 52.69 | 0.0035 | 0.995 | 0.0052 | 0.9991 | |
N/TiO2/rGO 1 wt.% | 32.15 | 52.10 | 0.003 | 0.9983 | 0.0050 | 0.9995 | |
N/TiO2/rGO 3 wt% | 32.54 | 50.07 | 0.0027 | 0.9937 | 0.0044 | 0.9977 | |
N/TiO2/rGO 5 wt.% | 35.27 | 45.20 | 0.0015 | 0.9897 | 0.0021 | 0.9898 | |
N/TiO2/rGO 10 wt.% | 31.70 | 44.17 | 0.0019 | 0.9860 | 0.0026 | 0.9904 | |
Photolysis | * | * | * | * | * | * |
Pollutant | Lamp | Removal Efficiency (%) | Model | |||
---|---|---|---|---|---|---|
Pseudo-First Order | Pseudo-Second Order | |||||
ɳ | k1 | R2 | k2 | R2 | ||
CIP | UVA | 98.81 | 0.0489 | 0.8801 | 0.9388 | 0.9910 |
SLS | 99.90 | 0.0531 | 0.8645 | 1.2462 | 0.9866 | |
CVL | 52.69 | 0.0035 | 0.9950 | 0.0052 | 0.9991 | |
BVL | 98.51 | 0.0425 | 0.8228 | 0.4585 | 0.9936 | |
DCF | UVA | 98.29 | 0.0403 | 0.9632 | 1.3493 | 0.9516 |
SLS | 98.68 | 0.0430 | 0.9669 | 1.7313 | 0.9349 | |
CVL | * | * | * | * | * | |
BVL | 91.08 | 0.0276 | 0.9490 | 0.7612 | 0.6573 | |
SA | UVA | 99.46 | 0.0344 | 0.9333 | 1.1296 | 0.9725 |
SLS | 99.28 | 0.0432 | 0.9404 | 2.4893 | 0.9589 | |
CVL | 34.24 | 0.0016 | 0.9700 | 0.0084 | 0.9748 | |
BVL | 96.15 | 0.0304 | 0.9313 | 0.7479 | 0.9839 |
Pollutant | Lamp | Removal Efficiency (%) | Model | |||
---|---|---|---|---|---|---|
Pseudo-First Order | Pseudo-Second Order | |||||
ɳ | k1 | R2 | k2 | R2 | ||
CIP | UVA | 78.92 | 0.0154 | 0.9402 | 0.0028 | 0.9953 |
SLS | 95.10 | 0.0304 | 0.9279 | 0.0140 | 0.9922 | |
BVL | 31.41 | 0.0035 | 0.9167 | 0.0004 | 0.9367 | |
DCF | SLS | 80.99 | 0.0146 | 0.9964 | 0.0032 | 0.9784 |
3.4. Photocatalytic Mechanisms
3.5. Irradiation Intensity Effect
4. Conclusions
- A successful reduction in GO to rGO was achieved under mild conditions and using non-hazardous chemicals (125 °C and 45 min in the microwave oven, using ascorbic acid as a reducing agent).
- The synthesis of N/TiO2/rGO photocatalysts was successfully achieved under mild conditions (200 °C, 10 min) by microwave-assisted synthesis, where the anatase phase was obtained without further calcination, which is usually required in conventional synthesis methods.
- The optimal rGO content in N/TiO2/rGO nanocomposite was 0.25 wt.%; an excess of rGO reduces the photocatalytic activity due to a shielding effect for light absorption and recombination center effect.
- For OMP removal (ciprofloxacin, diclofenac, and salicylic acid), a synergistic effect of adsorption and photocatalysis was observed, where the degradation rate is affected by the radiation source, irradiation intensity, and type of OMP.
- The photocatalytic mechanism is defined mainly by the type of pollutant, while the irradiation source has a minor, if any, effect on the mechanism.
- Photolytic processes are significantly influenced by the irradiation intensity, indicating that the photolysis will probably not occur under some irradiation values.
- Under similar values to natural global solar irradiation, the photocatalytic process is still efficient in the removal of evaluated pollutants.
- Although the introduction of rGO in specific amounts showed enhanced photocatalytic activity under solar irradiation compared to N/TiO2 material and efficient OMP removal under natural solar conditions, there are several areas that need to be addressed to improve the practical applications of nanocomposites photocatalysts, such as degree of rGO reduction, efficient rGO dispersion, photocatalyst immobilization and reactor design.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Morin-Crini, N.; Lichtfouse, E.; Liu, G.; Balaram, V.; Ribeiro, A.R.L.; Lu, Z.; Stock, F.; Carmona, E.; Teixeira, M.R.; Picos-Corrales, L.A.; et al. Emerging Contaminants: Analysis, Aquatic Compartments and Water Pollution. In Emerging Contaminants Vol. 1: Occurrence and Impact; Morin-Crini, N., Lichtfouse, E., Crini, G., Eds.; Springer International Publishing: Cham, Switzerland, 2021; Volume 1, pp. 1–111. ISBN 978-3-030-69079-3. [Google Scholar]
- Khurana, P.; Pulicharla, R.; Kaur Brar, S. Antibiotic-metal complexes in wastewaters: Fate and treatment trajectory. Environ. Int. 2021, 157, 106863. [Google Scholar] [CrossRef] [PubMed]
- Krzeminski, P.; Tomei, M.C.; Karaolia, P.; Langenhoff, A.; Almeida, C.M.R.; Felis, E.; Gritten, F.; Andersen, H.R.; Fernandes, T.; Manaia, C.M.; et al. Performance of secondary wastewater treatment methods for the removal of contaminants of emerging concern implicated in crop uptake and antibiotic resistance spread: A review. Sci. Total Environ. 2019, 648, 1052–1081. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilkinson, J.; Hooda, P.S.; Barker, J.; Barton, S.; Swinden, J. Occurrence, fate and transformation of emerging contaminants in water: An overarching review of the field. Environ. Pollut. 2017, 231, 954–970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ebele, A.J.; Abou-Elwafa Abdallah, M.; Harrad, S. Pharmaceuticals and personal care products (PPCPs) in the freshwater aquatic environment. Emerg. Contam. 2017, 3, 1–16. [Google Scholar] [CrossRef]
- Morin-Crini, N.; Lichtfouse, E.; Fourmentin, M.; Ribeiro, A.R.L.; Noutsopoulos, C.; Mapelli, F.; Fenyvesi, É.; Vieira, M.G.A.; Picos-Corrales, L.A.; Moreno-Piraján, J.C.; et al. Remediation of Emerging Contaminants; Morin-Crini, N., Lichtfouse, E., Crini, G., Eds.; Springer: Cham, Switzerland, 2021; pp. 1–106. [Google Scholar] [CrossRef]
- Liang, S.; Maceiko, S.M.; Takeguchi, W.A.; Yates, R.S. Bench-scale ozonation for removing constituents of emerging concern. J. Am. Water Works Assoc. 2014, 106, 89–90. [Google Scholar] [CrossRef]
- Lofrano, G.; Faiella, M.; Carotenuto, M.; Murgolo, S.; Mascolo, G.; Pucci, L.; Rizzo, L. Thirty contaminants of emerging concern identified in secondary treated hospital wastewater and their removal by solar Fenton (like) and sulphate radicals-based advanced oxidation processes. J. Environ. Chem. Eng. 2021, 9, 106614. [Google Scholar] [CrossRef]
- Arfanis, M.K.; Adamou, P.; Moustakas, N.G.; Triantis, T.M.; Kontos, A.G.; Falaras, P. Photocatalytic degradation of salicylic acid and caffeine emerging contaminants using titania nanotubes. Chem. Eng. J. 2017, 310, 525–536. [Google Scholar] [CrossRef]
- McMichael, S.; Fernández-Ibáñez, P.; Byrne, J.A. A review of photoelectrocatalytic reactors for water and wastewater treatment. Water 2021, 13, 1198. [Google Scholar] [CrossRef]
- Serna-Galvis, E.A.; Lee, J.; Hernández, F.; Botero-Coy, A.M.; Torres-Palma, R.A. Sonochemical Advanced Oxidation Processes for the Removal of Pharmaceuticals in Wastewater Effluents. In Handbook of Environmental Chemistry; Springer Science and Business Media Deutschland GmbH: Berlin/Heidelberg, Germany, 2021; Volume 108, pp. 349–381. [Google Scholar] [CrossRef]
- Ma, D.; Yi, H.; Lai, C.; Liu, X.; Huo, X.; An, Z.; Li, L.; Fu, Y.; Li, B.; Zhang, M.; et al. Critical review of advanced oxidation processes in organic wastewater treatment. Chemosphere 2021, 275, 130104. [Google Scholar] [CrossRef]
- Gomes, J.; Lincho, J.; Domingues, E.; Quinta-Ferreira, R.; Martins, R. N–TiO2 Photocatalysts: A Review of Their Characteristics and Capacity for Emerging Contaminants Removal. Water 2019, 11, 373. [Google Scholar] [CrossRef] [Green Version]
- Shayegan, Z.; Lee, C.S.; Haghighat, F. TiO2 photocatalyst for removal of volatile organic compounds in gas phase–A review. Chem. Eng. J. 2018, 334, 2408–2439. [Google Scholar] [CrossRef] [Green Version]
- Nasirian, M.; Mehrvar, M. Photocatalytic degradation of aqueous Methyl Orange using nitrogen-doped TiO2 photocatalyst prepared by novel method of ultraviolet-assisted thermal synthesis. Desalin. Water Treat. 2019, 137, 371–380. [Google Scholar] [CrossRef]
- Fagan, R.; McCormack, D.E.; Dionysiou, D.D.; Pillai, S.C. A review of solar and visible light active TiO2 photocatalysis for treating bacteria, cyanotoxins and contaminants of emerging concern. Mater. Sci. Semicond. Process. 2016, 42, 2–14. [Google Scholar] [CrossRef] [Green Version]
- Natarajan, T.S.; Mozhiarasi, V.; Tayade, R.J. Nitrogen Doped Titanium Dioxide (N-TiO2): Synopsis of Synthesis Methodologies, Doping Mechanisms, Property Evaluation and Visible Light Photocatalytic Applications. Photochem 2021, 1, 24. [Google Scholar] [CrossRef]
- Ding, W.; Li, W. A first principles study of the energetics and core level shifts of anion-doped TiO2 photocatalysts. Chin. J. Catal. 2014, 36, 181–187. [Google Scholar] [CrossRef]
- Sanchez Tobon, C.; Ljubas, D.; Mandić, V.; Panžić, I.; Matijašić, G.; Ćurković, L. Microwave-Assisted Synthesis of N/TiO2 Nanoparticles for Photocatalysis under Different Irradiation Spectra. Nanomaterials 2022, 12, 1473. [Google Scholar] [CrossRef]
- Singh, R.K.; Kumar, R.; Singh, D.P. Graphene oxide: Strategies for synthesis, reduction and frontier applications. RSC Adv. 2016, 6, 64993–65011. [Google Scholar] [CrossRef]
- Alam, S.N.; Sharma, N.; Kumar, L. Synthesis of Graphene Oxide (GO) by Modified Hummers Method and Its Thermal Reduction to Obtain Reduced Graphene Oxide (rGO). Graphene 2017, 6, 1–18. [Google Scholar] [CrossRef]
- Tang, B.; Chen, H.; Peng, H.; Wang, Z.; Huang, W. Graphene modified TiO2 composite photocatalysts: Mechanism, progress and perspective. Nanomaterials 2018, 8, 105. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Wang, X.; Zhang, M.; Fang, L.; Jin, L.; Gao, J.; Zhang, Y.; Yang, B.; He, G.; Sun, Z. TiO2 nanorod array film decorated with rGO nanosheets for enhancing photocatalytic and photoelectrochemical properties. J. Alloys Compd. 2019, 770, 243–251. [Google Scholar] [CrossRef]
- El-Shafai, N.M.; El-Khouly, M.E.; El-Kemary, M.; Ramadan, M.S.; Derbalah, A.S.; Masoud, M.S. Fabrication and characterization of graphene oxide–titanium dioxide nanocomposite for degradation of some toxic insecticides. J. Ind. Eng. Chem. 2019, 69, 315–323. [Google Scholar] [CrossRef]
- Catauro, M.; Tranquillo, E.; Dal Poggetto, G.; Pasquali, M.; Dell’Era, A.; Ciprioti, S.V. Influence of the heat treatment on the particles size and on the crystalline phase of TiO2 synthesized by the sol-gel method. Materials 2018, 11, 2364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kadam, A.N.; Dhabbe, R.S.; Kokate, M.R.; Gaikwad, Y.B.; Garadkar, K.M. Preparation of N doped TiO2 via microwave-assisted method and its photocatalytic activity for degradation of Malathion. Spectrochim. Acta-Part A Mol. Biomol. Spectrosc. 2014, 133, 669–676. [Google Scholar] [CrossRef] [PubMed]
- Blanco-Vega, M.P.; Guzmán-Mar, J.L.; Villanueva-Rodríguez, M.; Maya-Treviño, L.; Garza-Tovar, L.L.; Hernández-Ramírez, A.; Hinojosa-Reyes, L. Photocatalytic elimination of bisphenol A under visible light using Ni-doped TiO2 synthesized by microwave assisted sol-gel method. Mater. Sci. Semicond. Process. 2017, 71, 275–282. [Google Scholar] [CrossRef]
- Gabelica, I.; Ćurković, L.; Mandić, V.; Panžić, I.; Ljubas, D.; Zadro, K. Rapid microwave-assisted synthesis of Fe3O4/SiO2/TiO2 core-2-layer-shell nanocomposite for photocatalytic degradation of ciprofloxacin. Catalysts 2021, 11, 1136. [Google Scholar] [CrossRef]
- Commission Implementing Decision (EU). 2015/495 of 20 March 2015 Establishing a Watch List of Substances for Union-Wide Monitoring in the Field of Water Policy Pursuant to Directive 2008/105/EC; European Parliament Council: Brussels, Belgium, 2015; pp. 40–42. [Google Scholar]
- Commission Implementing Decision (EU). 2018/840 of 5 June 2018 Establishing a Watch List of Substances for Union-Wide Monitoring in the Field of Water Policy Pursuant to Directive 2008/105/EC; European Parliament Council: Brussels, Belgium, 2018; pp. 9–12. [Google Scholar]
- Baptista-Pires, L.; de la Escosura-Muñiz, A.; Balsells, M.; Zuaznabar-Gardona, J.C.; Merkoçi, A. Production and printing of graphene oxide foam ink for electrocatalytic applications. Electrochem. Commun. 2019, 98, 6–9. [Google Scholar] [CrossRef]
- Coros, M.; Pogacean, F.; Turza, A.; Dan, M.; Berghian-Grosan, C.; Pana, I.O.; Pruneanu, S. Green synthesis, characterization and potential application of reduced graphene oxide. Phys. E Low-Dimens. Syst. Nanostruct. 2020, 119, 113971. [Google Scholar] [CrossRef]
- Low, F.W.; Lai, C.W.; Abd Hamid, S.B. Easy preparation of ultrathin reduced graphene oxide sheets at a high stirring speed. Ceram. Int. 2015, 41, 5798–5806. [Google Scholar] [CrossRef]
- Rani, V.; Das, R.K.; Golder, A.K. Fabrication of reduced graphene oxide-graphite paste electrode for H2O2 formation and its implication for ciprofloxacin degradation. Surf. Interfaces 2017, 7, 99–105. [Google Scholar] [CrossRef]
- Baraket, M.; Walton, S.G.; Wei, Z.; Lock, E.H.; Robinson, J.T.; Sheehan, P. Reduction of graphene oxide by electron beam generated plasmas produced in methane/argon mixtures. Carbon N. Y. 2010, 48, 3382–3390. [Google Scholar] [CrossRef]
- Singh, I.; Birajdar, B. Synthesis, characterization and photocatalytic activity of mesoporous Na-doped TiO2 nano-powder prepared via a solvent-controlled non-aqueous sol-gel route. RSC Adv. 2017, 7, 54053–54062. [Google Scholar] [CrossRef] [Green Version]
- Cychosz, K.A.; Thommes, M. Progress in the Physisorption Characterization of Nanoporous Gas Storage Materials. Engineering 2018, 4, 559–566. [Google Scholar] [CrossRef]
- Chung, K.H.; Kim, B.J.; Park, Y.K.; Kim, S.C.; Jung, S.C. Photocatalytic properties of amorphous n-doped TiO2 photocatalyst under visible light irradiation. Catalysts 2021, 11, 10. [Google Scholar] [CrossRef]
- Brindha, A.; Sivakumar, T. Visible active N, S co-doped TiO2/graphene photocatalysts for the degradation of hazardous dyes. J. Photochem. Photobiol. A Chem. 2017, 340, 146–156. [Google Scholar] [CrossRef]
- Factorovich, M.; Guz, L.; Candal, R. N-TiO2: Chemical synthesis and photocatalysis. Adv. Phys. Chem. 2011, 2011, 1204. [Google Scholar] [CrossRef] [Green Version]
- Sharavath, V.; Sarkar, S.; Ghosh, S. One-pot hydrothermal synthesis of TiO2/graphene nanocomposite with simultaneous nitrogen-doping for energy storage application. J. Electroanal. Chem. 2018, 829, 208–216. [Google Scholar] [CrossRef]
- Appavu, B.; Kannan, K.; Thiripuranthagan, S. Enhanced visible light photocatalytic activities of template free mesoporous nitrogen doped reduced graphene oxide/titania composite catalysts. J. Ind. Eng. Chem. 2016, 36, 184–193. [Google Scholar] [CrossRef]
- Kocijan, M.; Ćurković, L.; Radošević, T.; Podlogar, M. Enhanced photocatalytic activity of hybrid rGO@TiO2/CN nanocomposite for organic pollutant degradation under solar light irradiation. Catalysts 2021, 11, 23. [Google Scholar] [CrossRef]
- Tian, H.; Wan, C.; Xue, X.; Hu, X.; Wang, X. Effective electron transfer pathway of the ternary TiO2/RGO/Ag nanocomposite with enhanced photocatalytic activity under visible light. Catalysts 2017, 7, 156. [Google Scholar] [CrossRef]
- Li, W.; Yang, X.; Fu, H.; An, X.; Zhao, H. Synthesis of TiO2-Reduced Graphene Oxide Nanocomposites Offering Highly Enhanced Photocatalytic Activity. J. Nanosci. Nanotechnol. 2019, 19, 7089–7096. [Google Scholar] [CrossRef]
- Wen, X.; Zhao, S.; Asuha, S. Preparation of nitrogen-doped mesoporous TiO2/rGO composites and its application to visible light-assisted photocatalytic degradation. J. Nanomater. 2019, 2019, 7107. [Google Scholar] [CrossRef] [Green Version]
- Nolan, N.T.; Synnott, D.W.; Seery, M.K.; Hinder, S.J.; Van Wassenhoven, A.; Pillai, S.C. Effect of N-doping on the photocatalytic activity of sol-gel TiO2. J. Hazard. Mater. 2012, 211–212, 88–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asahi, R.; Morikawa, T.; Irie, H.; Ohwaki, T. Nitrogen-Doped Titanium Dioxide as Visible-Light-Sensitive Photocatalyst: Designs, Developments, and Prospects. Chem. Rev. 2014, 114, 9824–9852. [Google Scholar] [CrossRef] [PubMed]
- Kuo, C.L.; Chen, W.G.; Chen, T.Y. The electronic structure changes and the origin of the enhanced optical properties in N-doped anatase TiO2-A theoretical revisit. J. Appl. Phys. 2014, 116, 4444. [Google Scholar] [CrossRef]
- Khaki, M.R.D.; Shafeeyan, M.S.; Raman, A.A.A.; Daud, W.M.A.W. Application of doped photocatalysts for organic pollutant degradation-A review. J. Environ. Manag. 2017, 198, 78–94. [Google Scholar] [CrossRef]
- Yadav, H.M.; Kim, J.S. Solvothermal synthesis of anatase TiO2-graphene oxide nanocomposites and their photocatalytic performance. J. Alloys Compd. 2016, 688, 123–129. [Google Scholar] [CrossRef]
- Suave, J.; Amorim, S.M.; Ângelo, J.; Andrade, L.; Mendes, A.; Moreira, R.F.P.M. TiO2/reduced graphene oxide composites for photocatalytic degradation in aqueous and gaseous medium. J. Photochem. Photobiol. A Chem. 2017, 348, 326–336. [Google Scholar] [CrossRef]
- Tang, R.; Jiang, Q.; Liu, Y. Preparation and Study on Photocatalytic Activity of N-doped TiO2 Decorated N-doped graphene. Procedia Eng. 2017, 205, 573–580. [Google Scholar] [CrossRef]
- Ananpattarachai, J.; Kajitvichyanukul, P.; Seraphin, S. Visible light absorption ability and photocatalytic oxidation activity of various interstitial N-doped TiO2 prepared from different nitrogen dopants. J. Hazard. Mater. 2009, 168, 253–261. [Google Scholar] [CrossRef] [PubMed]
- World Bank Group. Global Solar Atlas. Available online: https://globalsolaratlas.info/detail?c=42.642041,16.062012,6&m=site&s=45.79817,15.952148 (accessed on 1 August 2022).
Material | SBET, m2∙g−1 | Vpore, cm3∙g−1 | Average Pore Diameter, nm |
---|---|---|---|
TiO2 P25 | 48 | 0.196 | 13.7 |
rGO | 192 | 0.323 | 6.5 |
N/TiO2 | 139 | 0.297 | 8.0 |
N/TiO2/rGO 0.25 wt.% | 176 | 0.309 | 6.7 |
N/TiO2/rGO 1 wt.% | 171 | 0.303 | 6.7 |
N/TiO2/rGO 3 wt.% | 170 | 0.297 | 6.7 |
N/TiO2/rGO 5 wt.% | 176 | 0.303 | 6.6 |
N/TiO2/rGO 10 wt.% | 177 | 0.297 | 6.4 |
Material | Elemental Composition, wt.% | |||
---|---|---|---|---|
Ti | O | C | N | |
N/TiO2 | 72.0 | 21.0 | – | 7.0 |
N/TiO2/rGO 0.25 wt.% | 83.7 | 15.3 | 1.0 | – |
N/TiO2/rGO 1 wt.% | 83.1 | 15.2 | 1.7 | – |
N/TiO2/rGO 3 wt.% | 85.0 | 12.3 | 2.7 | – |
N/TiO2/rGO 5 wt.% | 85.1 | 12.2 | 2.7 | – |
N/TiO2/rGO 10 wt.% | 86.3 | 11.9 | 1.8 | – |
Material | Elemental Composition, wt.% | |||
---|---|---|---|---|
Ti | O | C | N | |
N/TiO2 | 21.5 | 66.5 | 11.5 | 0.5 |
N/TiO2/rGO 0.25 wt.% | 23.2 | 56.8 | 18.9 | 1.1 |
Lamp_Distance | Same Distance to the Reactor | ||
UV-A Irradiation (W∙m−2) | Total Irradiation (W∙m−2) | UV-A/T Ratio (%) | |
UVA_20 cm | 98.5 | 118.6 | 83.05 |
SLS_20 cm | 59.2 | 1266.6 | 4.67 |
CVL_20 cm | 0 | 241.1 | 0 |
BVL_20 cm | 3.6 | 176.6 | 2.04 |
Lamp_Distance | Same Global Irradiation | ||
UV-A Irradiation (W∙m−2) | Total Irradiation (W∙m−2) | UV-A/T Ratio (%) | |
UVA_50 cm | 18.1 | 20.4 | 88.73 |
SLS_60 cm | 15.2 | 291.7 | 5.21 |
CVL_15 cm | 0 | 288.9 | 0 |
BVL_15 cm | 5.8 | 289.1 | 2.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanchez Tobon, C.; Panžić, I.; Bafti, A.; Matijašić, G.; Ljubas, D.; Ćurković, L. Rapid Microwave-Assisted Synthesis of N/TiO2/rGO Nanoparticles for the Photocatalytic Degradation of Pharmaceuticals. Nanomaterials 2022, 12, 3975. https://doi.org/10.3390/nano12223975
Sanchez Tobon C, Panžić I, Bafti A, Matijašić G, Ljubas D, Ćurković L. Rapid Microwave-Assisted Synthesis of N/TiO2/rGO Nanoparticles for the Photocatalytic Degradation of Pharmaceuticals. Nanomaterials. 2022; 12(22):3975. https://doi.org/10.3390/nano12223975
Chicago/Turabian StyleSanchez Tobon, Camilo, Ivana Panžić, Arijeta Bafti, Gordana Matijašić, Davor Ljubas, and Lidija Ćurković. 2022. "Rapid Microwave-Assisted Synthesis of N/TiO2/rGO Nanoparticles for the Photocatalytic Degradation of Pharmaceuticals" Nanomaterials 12, no. 22: 3975. https://doi.org/10.3390/nano12223975