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Abstract: Photocatalysis is a promising technology for the degradation of recalcitrant organic pollu-
tants in water. In this study, superparamagnetic zinc ferrite nanoparticles (ZnFe2O4) were synthesized
and characterized using scanning electron microscopy, X-ray diffraction, energy dispersive X-ray
and Fourier transform infrared spectroscopy. The synthesized nanoparticles (NPs) of ZnFe2O4 were
observed to have a photosensitive nature and showed characteristic visible-light-induced activation
that was used for the photocatalytic degradation of a textile dye, Remazol brilliant violet 5R (RBV-5R).
The effect of different operational parameters such as pH, H2O2, catalyst dosage, concentration of
RBV-5R and the reusability of ZnFe2O4 as well as scavengers were investigated under visible irradia-
tion. The almost complete degradation (99.9%) of RBV-5R was observed at pH 10, 0.1 g of ZnFe2O4

and 6 mM of H2O2 in 30 min. The photocatalytic degradation of RBV-5R followed pseudo-first-order
kinetics. The mineralization was calculated from total organic carbon (TOC) that was represented by
82% TOC removal in 30 min. The results revealed that visible-light-induced ZnFe2O4 photocatalysis
may be a promising technology for the elimination of toxic organic dyes, such as RBV-5R, from
water resources.

Keywords: visible light-assisted photocatalysis; zinc ferrite (ZnFe2O4) nanoparticles; Remazol
brilliant violet 5R; water treatment; advanced oxidation processes

1. Introduction

Water is essential for life on Earth, but the tremendous problems it involves in terms
of cleanliness, conservation, and shortage worry researchers [1]. Water scarcity is expected
to be one of the biggest problems in the coming years. Water scarcity is a problem in many
nations, and it becomes worse every year. One of the main causes of water pollution that
leads to its scarcity is the industrial discharge of wastewater and effluents into pure water
bodies. Since life is impossible without water, reusing water through wastewater treatment
is one of the main goals in the fight to conquer and control the problems with water quality

Catalysts 2023, 13, 1061. https://doi.org/10.3390/catal13071061 https://www.mdpi.com/journal/catalysts

https://doi.org/10.3390/catal13071061
https://doi.org/10.3390/catal13071061
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/catalysts
https://www.mdpi.com
https://orcid.org/0009-0001-9714-8823
https://orcid.org/0000-0001-7790-7506
https://orcid.org/0000-0001-5196-3331
https://orcid.org/0000-0002-2882-8761
https://orcid.org/0000-0003-2868-0434
https://orcid.org/0000-0003-0010-657X
https://doi.org/10.3390/catal13071061
https://www.mdpi.com/journal/catalysts
https://www.mdpi.com/article/10.3390/catal13071061?type=check_update&version=3


Catalysts 2023, 13, 1061 2 of 19

and drinking water for human survival. The last few revolutionary decades in textile
industries have resulted in the usage of tons of synthetic dyes [2]. According to estimates,
the dye industries annually poison over 11 million tons of water, which accounts for close
to 20% of all water pollution worldwide. Dyes are the most persistent contaminant in water
because to their complex aromatic structure, resistance to degradation, high molecular
weight, carcinogenic and mutagenic nature, propensity to screen sunlight, and stability [3].
The textile, paint, cotton, cosmetic, plastic, pharmaceutic, and food industries all use
synthetic dyes in significant quantities. Untreated wastewater discharged into the nearby
aquatic environment that contains dye presents a serious environmental risk. In addition to
changing the color of water bodies, these dying effluents also release poisonous by-products
that are harmful to many living things and can cause cancer and mutagenesis [4,5]. Sunlight
cannot reach the aqueous system because of the cancer-causing pigments in water. The
outcome is a slowdown in photosynthesis and harm to aquatic life [6]. Therefore, as a result
of pollution brought on by industry, urbanization, and population growth, clean water is
becoming scarce, and more and more expensive everywhere [7].

Numerous common procedures, such as coagulation, membranes, activated carbon,
adsorption, sodium hypochlorite, filtration, microbial degradation, and electrochemical
destruction, are used to remove undesired contaminants from wastewater [8–12]. The
difficult formation of sludge, high chemical and operational expenses, and the propensity
for pollutants to move from one step to another are among the primary downsides of each of
these methods. Advanced oxidation techniques, particularly heterogeneous semiconductor-
based photocatalysis, have emerged as highly promising and offer a significant potential for
the degradation of numerous contaminants in wastewater over the past few decades [13–18].
Researchers used different photocatalysts such as Fe2O3 coated on TiO2 [19], maghemite
nanoparticles [20], phyco-synthesized ZnO [21], CeO2/TiO2/SiO2 nanocatalysts, silver
quantum dots immobilized on an exfoliated graphitic carbon nitride nanostructure [22],
Ni-impregnated ZnO nanoparticles [23], Fe-doped titanic catalysts [24], Cu-ZnO [25], Ni-
doped ZnO [26,27] and iodine-doped iron tungstate [28] for the degradation of various
pollutants. The photocatalytic effectiveness of the catalysts for the degradation of pollutants
under visible light is improved by the addition of various transition metals to produce
composites based on binary and ternary metal oxides and heterojunctions [29]. Zinc
ferrite nanoparticles are among them and are considered to be one of the most promising
photocatalysts due to their fascinating physiochemical properties, better charge carrier
separation features, and high efficiency for degradation in the visible light. When combined
with hydrogen peroxide, zinc ferrite nanoparticles have a synergistic impact and produce
a large number of free radicals that are necessary for the destruction of contaminants,
i.e., RH (Equations (1)–(4)). The optical, structural, and photocatalytic properties of zinc
ferrite nanoparticles are enhanced by the Zn ions. By acting as a charge trap, Fe3+ ions in
zinc ferrite lower the rate of electron-hole recombination. The high activation efficiency
and biocompatibility of Fe3+ ions provide the justification for its increased photocatalytic
degradation impact on pollutants. Zinc ferrite functions as a potent photocatalyst due to
the presence of Fe3+ ions and a narrow energy-band gap. It also has exceptional optical
and magnetic properties. Its high surface area and small particle size contribute to its high
reactivity. Consequently, several recent research initiatives have focused on the production
of zinc ferrite. Several methods have been used for the synthesis of zinc ferrite, including
hydrothermal [30] and solvothermal processes [31], sol-gel [32], co-precipitation [33] and
combustion synthesis [34]. Due to its simple, quick synthesis reaction and inexpensive
raw material, the combustion synthesis procedure was selected among the others for the
production of zinc ferrite.

RH + H2O2 → R+ + HO• + H2O (1)

RH + HO• → R• + H2O (2)
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R• + Fe3+ → R+ + Fe2+ (3)

Fe2+ + H2O2 → Fe3+ + HO• + OH− (4)

Zinc ferrite nanoparticles were selected for this study because of their higher potential
to generate free radicals. After they were synthesized and characterized, it was found that
they have a band gap in the visible region. In order to demonstrate their photocatalytic
property, zinc ferrite nanoparticles’ effect on the degradation of Remazol brilliant violet-5R
was investigated. The azo dye Remazol brilliant violet-5R (RBV-5R), a member of the
group of dyes used in the textile industry, was selected for photocatalytic degradation
under visible light because it is extremely mutagenic, carcinogenic, hinders the growth
of aquatic life, and is damaging to the environment [35,36]. The following factors were
considered: pH, hydrogen peroxide, catalyst weight, and scavengers. Precise kinetic model
representations were used to determine the degradation mechanism.

2. Results and Discussion
2.1. Characterization

SEM analysis was carried out to examine the morphology of the synthesized ZnFe2O4
sample. Figure 1 displays the SEM images at various magnifications. Three different
types of surfaces, including granular or sphere-shaped, agglomerated, and a plan surface
underlying the granular particles, have been observed in the sample. This could be as
a result of ZnO, Fe2O3, and ZnFe2O4 being present, respectively. As was already noted,
during the combustion process, low-temperature combustion leads to the synthesis of pure
zinc ferrite as well as some phases of ZnO and Fe2O3 [37]. Agglomeration might be a
result of the existence of ferrite nanoparticles that group together because of their magnetic
characteristics and high surface energies [38]. It is also possible that the radiation-based
preparation of ZnFe2O4 contributed to the surface roughness and clusters of spherical
nanoparticles [37,39].

The XRD analysis was also carried out for prepared ZnFe2O4. The Scherer equation
was used to calculate the height, area of the peaks and their respective thicknesses. The
peaks observed at a specific value of 2θ ranged from 24.3◦ to 77.88◦. The height of the peaks
was observed in the range of 4.08 to 87.36. The thickness of ZnFe2O4 nanoparticles was in
the range of 1.8 to 9.3 nm, and, by applying Bragg’s law, the value of ‘d’ was determined.
The particle-to-particle distance ranged from 0.178 to 0.731 nm (Figure 2 and Table 1).
The peaks at 35◦, 37◦, 42◦, 53◦, 57◦, 62◦, 70◦, 72◦ and 74◦ values of 2θ corresponded to
ZnFe2O4 while peaks at 33◦, 48◦, 68◦and 69◦ corresponded to ZnO and peak at 35◦ and 54◦

values of 2θ are due to Fe2O3. The ZnFe2O4 nanoparticles are according to the ICDD card
no. 01-089-1012. ZnO and Fe2O3 are also present in the mixture. It was also reported by
Oliveira et al. [40] that the combustion process at a low temperature results in the formation
of pure zinc ferrite along with some phases of ZnO and Fe2O3, which is also confirmed
from XRD analysis of the synthesized zinc ferrite catalyst in this study.

Figure 3 represents the FTIR spectrum of ZnFe2O4 within the range from 500 to
4000 cm−1. Vibrational bands are observed at approximately 3200 and 3500 cm−1, which
refer to the presence of adsorbed water molecules and the OH functional group [41]. Bands
at 3900 and 1600 cm−1 refer to the H-O-H stretching vibration of adsorbed water molecules.
Small peaks at 2900 and 1300 cm−1 may be assigned to the stretching vibration of the C-H
bond. The peak near 1100 cm−1 corresponds to the CO2. The absorption peak present
in the range of 600 to 1000 cm−1 refers to metal–oxygen ion vibrations located in the
different phases. The small peak present in the range of 600 to 700 cm−1 attributes to
the expansion of the Zn-O bond, and peak below 650 cm−1 may be assigned to the Fe-O
intrinsic stretching vibration.
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Figure 2. XRD pattern of the synthesized zinc ferrite powder. 
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Table 1. X-ray diffraction data for ZnFe2O4.

2θ Height from
Base

Width (at
Half Height) Area Thickness

(nm)
d

Bragg’s Law

24.3 21.12 2.04923 45.76 3.916229 0.731977
26.99 4.08 0.8568 3.72 9.316631 0.660182
33.32 54.36 1.7135 99.16 4.589759 0.537373
35.95 87.36 2.1886 203.55 3.567794 0.49922
41.04 14.07 1.3422 9.85 5.728124 0.439501
47.65 38.223 3.56426 145.39 2.106921 0.38139
49.54 8.52 0.91466 8.29 8.149375 0.367706
51.57 7.22 0.84212 6.4759 8.777626 0.354165
53.99 30.34 1.55204 30.34 4.712999 0.339405
56.75 16.56 1.1772 20.75 6.135667 0.324173
59.61 6.65 1.1871 8.41 6.000593 0.309949
62.9 36.32 1.8565 71.79 3.772282 0.295273
66.35 3.99 0.83156 3.53 8.262954 0.281543
68.21 78.8 2.75204 273.21 2.469925 0.274758
69.54 5.68 0.62235 3.76 6.609569 0.178017
72.94 24.44 3.4749 90.4 1.899799 0.259185
75.65 6.71 0.79902 5.71 8.115423 0.251218
77.88 8.78 1.8761 17.55 3.403443 0.245121
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Figure 4. EDX spectrum of zinc ferrite catalyst.

2.2. Effect of Solution pHs

The degradation of RBV-5R was studied under acidic, neutral, and basic pH. The pH
of the solution was varied from 2 to 10 using buffer as mentioned in materials and methods
section. The percent degradation of RBV-5R as a function of pH is mentioned in Figure 5a.
The pH study did not involve hydrogen peroxide. A 100 mg L−1 dye solution (50 mL),
prepared in the selected buffer of known pH, was loaded with 0.1 g of the synthesized
ZnFe2O4 and irradiated in the visible light as mentioned in the procedure in Section 3.4.
It has been observed that both acidic and basic pH show high degradation of the dye as
compared to neutral pH that was good over pH 4 where there is no significant degradation
(Figure 5a,b). Equations (5)–(12) represent the reactions that may occur in the reaction
vessel [42]. The maximum degradation of RBV-5R was 26.4% at pH 2 and it was 34% at
pH 10. In acidic medium, the formation of hydroxyl radicals helps to the degradation
of the dye according to Equations (5)–(9). According to Equation (9), the neutralization
of the hydroxide ion causes the generation of the hydroxyl radical to be enhanced and
expedited in extremely acidic media. However, it declines linearly even though pH 4
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has the slowest rate of degradation and no discernible degradation of RBV-5R is seen
after 60 min (Figure 5b). This might be as a result of the use of buffer solution, which
contains different anions, as well as the positively charged surface of the catalyst, which
might have prevented the dye from degrading by preventing the production of hydrogen
peroxide, which would have produced a hydroxyl radical [43,44]. RBV-5R is an anionic
dye, and as the pH rises above 4 up to the basic range, the protons produced in the reaction
medium scavenge the production of hydroxyl ions, which speeds up the production of
hydroxyl radical, and as a result the rapid degradation of the dye occurs in accordance
with Equations (4) and (9)–(11) [45]. The linear correlation of the percent degradation of
the dye as a function of pH is shown in Figure 5b. Furthermore, it was established that 6
was the point of zero charge. The ZnFe2O4 photocatalyst is supposed to have a positively
charged surface at acidic pH levels, although a range of conjugate bases may diminish the
catalyst’s effectiveness in degrading RBV-5R. As a result, compared to non-buffer systems,
the photocatalyst demonstrated a reduced performance in buffered solutions. This may
also be supported by the buffer system’s lower degradation percentage of the dye at pH 7
in comparison to that seen in the test in Section 3.4. Equation (10) may be the only source
of hydroxyl production in the buffer system at pH 7, and it causes degradation at a lower
rate and percentage in 60 min. The use of the synthesized photocatalyst might be helpful in
industrial wastewater treatment because it performs well under acidic and basic conditions.

ZnFe2O4 + hν→ ZnFe2O4(h+
VB + e−CB) (5)

ZnFe2O4 + 2e−CB → Zn2+ + 2Fe3+ + 2O2
− (6)

e−CB + O2 → O2
− (7)

O2
− + e−CB + 2H+ → H2O2 (8)

e−CB + H2O2 → HO• + OH− (9)

h+
VB + H2O→ HO• + H+ (10)

Dye + HO• → Degradation products (11)

Dye + h+
VB → Oxidation products (12)

2.3. Effects of Catalyst Loading

The visible-light-induced catalytic degradation of RBV-5R was examined using differ-
ent ZnFe2O4 dosages under optimum pH and oxidant condition. The catalyst dose was
varied between 0.05 and 0.5 g, and the degradation was monitored for 30 min at pH 10,
6 mM H2O2 and 50 mL of 100 mg L−1 RBV-5R. It was determined that 30 min was the
appropriate amount of time for degradation in the following study because no additional
degradation was visible beyond 30 min up to 120 min. As the photocatalyst weight grew
from 0.05 to 0.1 g, the degradation rate increased. At 0.1 g of ZnFe2O4 photocatalyst, RBV-
5R shows the maximum degradation at a time interval of 30 min. The findings demonstrate
that the degradation rate increased as the photocatalyst dose increased from 0.05 to 0.1 g,
reaching its maximum producing 100% degradation in 30 min (Figure 6). The availability
of more active sites on the catalyst surface and the penetration of visible light into the
solution, which alter the light scattering and screening effect, are the reasons why the
degradation rate accelerates with an increase in the catalyst load [46]. The overlap of the
photocatalyst’s surface and agglomeration may be the reason why a further increase (0.2
to 0.5 g) in catalyst dosage results in a decrease in the degradation rate (Figure 6). The
high particle concentration in the reaction vessel may also contribute to decreased light
penetration, which in turn affects photocatalysis efficiency.
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Figure 6. Effect of catalyst loading on the photocatalytic degradation of 100 mg L−1 (50 mL) RBV-5R
at pH 10 in the presence of 6 mM H2O2 in 30 min.

2.4. Effects of the Concentration of H2O2

The effect of H2O2 on the degradation of 100 mg L−1 (50 mL) RBV-5R was examined
at an optimum pH of 10, 0.1 g of ZnFe2O4, and 30 min. The initial H2O2 concentration was
varied from 2 to 10 mM. At 6 mM H2O2, the RBV-5R showed a 99% degradation (Figure 7).
The addition of H2O2 increased the concentration of hydroxyl radicals, which caused
the highest degradation [46]. However, the effectiveness of dye degradation showed
no discernible results at higher H2O2 concentrations. This is due to the fact that, as
Equations (13)–(18) demonstrate, hydroxyl radicals recombine and are scavenged [47]. The
TOC analysis was also performed, and was found to be 82% after the degradation of the dye.

Fe3+ + H2O2 → Fe2+ + HO2
• + H+ (13)

Fe3+ + HO2
• → Fe2+ + H+ + O2 (14)

Fe2+ + HO• → Fe3+ + OH− (15)

HO• + H2O2 → HO2
• + H2O (16)

Fe2+ + HO2
• → Fe3+ + HO2

− (17)

HO• + HO• →H2O2 (18)

2.5. Effect of Initial Dye Concentration

The influence of initial dye concentration on the percent degradation of RBV-5R was
investigated using 20, 40, 60, 80, and 100 mg L−1 of the dye. At room temperature, 0.1 g
of ZnFe2O4 photocatalyst was added to the reaction mixture containing 6 mM H2O2 and
pH 10. Figure 8 shows that the dye’s degradation was inversely related to its initial
concentration. At 100 mg L−1 of RBV-5R, there was a prominent reduction in the percent
degradation as the degradation rate decreased with increasing initial dye concentration
(Figure 8). A higher initial concentration of RBV-5R leads to a lower rate of degradation
since the catalyst absorbs less light due to its low absorption rate. In larger concentrations,
the dye absorbs light more thoroughly. The catalyst’s ability to be illuminated as a result is
harmed, which lowers the yield of free radicals [46].
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Figure 7. Effect of oxidant (H2O2) concentration on the photocatalytic degradation of 100 mg L−1

RBV-5R at pH 10 loaded with 0.1 g ZnFe2O4.
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Figure 8. Effect of initial dye concentration on the photocatalytic degradation of RBV-5R at 0.1 g of
ZnFe2O4, pH 10, 6 mM H2O2 and 30 min time frame.

2.6. Catalyst Reusability

To study the effectiveness and stability of the ZnFe2O4 photocatalyst, reusability
analysis was carried out under optimized conditions. After each successive run, the
ZnFe2O4 photocatalyst was filtered and washed with distilled water and organic solvents
(methanol and ethanol) three times. The dried photocatalyst was collected, reweighed and
reused for the second time using optimized conditions of pH and H2O2 and 100 ppm of
RBV-5R. The catalyst’s reusability was checked for three runs. The degradation for the
RBV-5R in the reusability test was 99, 98 and 97%, respectively (Figure 9a,b). The decrease
in the degradation may be due to weight loss in the filtration and washing of the catalyst.
As illustrated in Figure 9a, the degradation process for each run is distinct as a function of
time. When comparing maximum degradation over a shorter time, third usage exceeds
second use, which outperforms first use. This can be as a result of surface modifications
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that take place after each run. The kinetic order of RBV-5R degradation after each run,
however, is different as seen in Figure 9c–e. This could be the case since the catalyst surface
may function differently but still effectively following thorough washing for reusability.
This results in the first run showing a first order (Figure 9c), the second run showing a third
order (Figure 9d), and the third run showing a zero order (Figure 9c).

Catalysts 2023, 13, 1061 12 of 20 
 

 

 

Figure 9. Catalyst reusability runs for the degradation of RBV-5R dye. (a) Percent degradation of 

RBV-5R as a function of time. (b) Plot of ZnFe2O4 photocatalyst’s reusability for three runs. (c) Plot 

of first order kinetics for first run. (d) Plot that shows third order kinetics for second reusability run. 

(e) Plot that indicates zero-order kinetics for third run. 

0

20

40

60

80

100

0 10 20 30 40 50 60

D
e

g
ra

d
a

ti
o

n
 (
%

)

Time (min)

First run

Second run

Third run

(a)

0

20

40

60

80

100

First run Second run Third run
D

e
g

ra
d

a
ti

o
n

 (
%

)

Photocatalyst's reusability

(b)

y = 0.051x + 2.345
R² = 0.962

0

1

2

3

4

5

0 10 20 30 40 50

ln
(P

e
rc

e
n

t 
d

e
g

rd
a

ti
o

n
)

Time (min)

(c)

y = 3.68x + 16.7
R² = 0.941

0

20

40

60

80

100

0 5 10 15 20 25

P
e

rc
e

n
t 
d

e
g

ra
d

ti
o

n

Time (min)

(e)

y = -2.42  10–4x + 5.27  10–3

R² = 0.970

0

0.001

0.002

0.003

0.004

0.005

0.006

0 5 10 15 20 25

1
/(

P
e

rc
e

n
t 

d
e

g
ra

d
ti

o
n

)2

Time (min)

(d)

Figure 9. Catalyst reusability runs for the degradation of RBV-5R dye. (a) Percent degradation of
RBV-5R as a function of time. (b) Plot of ZnFe2O4 photocatalyst’s reusability for three runs. (c) Plot
of first order kinetics for first run. (d) Plot that shows third order kinetics for second reusability run.
(e) Plot that indicates zero-order kinetics for third run.

After each successive run, the leaching of Fe was also checked using AAS (atomic ab-
sorption spectroscopy), and it was found to be very negligible, i.e., 0.28 mg L−1, which was
lower than the permissible limit of European Union directives, i.e., 2.0 mg L−1. Considering
the commercial applications of the synthesized ZnFe2O4 photocatalyst, the effect of catalyst
settling time was also investigated and was found to be 2 min for 5 g of photocatalyst for
settling down.
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While keeping in mind how the suggested approach will be used on commercial
samples, the impacts of scavengers were also examined. Scavengers were administered at
different concentrations, such as 0.05, 0.1 and 0.15 mM, and the percentage of degradation
was calculated. NaCl shows a small reduction in degradation when compared to MgCl2
(Figure 10). These anions slow down the rate of degradation, maybe as a result of their
interactions with the photocatalyst’s surface, which simultaneously inhibits the generation
of free radicals [40] (Oliveira et al., 2020). Magnesium chloride inhibits photocatalytic
degradation more than sodium chloride does because it contains two anions.
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Figure 10. Effect of scavengers on the photocatalytic degradation of RBV-5R by ZnFe2O4.

2.7. Kinetic Models

The order of reaction was determined by implementing the pseudo-first-order (PFO) and
pseudo-second-order (PSO) kinetic models (Figure 11a,b). The following (Equations (19) and (20)
represent the linear form of the PFO and PSO kinetic models, respectively, with the R2 value
for PFO = 0.961 indicating that degradation of RBV-5R followed pseudo-first-order kinetics.
The results further reveal that the rate of visible-light-induced degradation using the
ZnFe2O4 photocatalyst is dependent on the concentration of RBV-5R as other parameters
were in excess [48]. The observed pseudo-first-order rate constant (kobs) was determined to
be 0.23 min−1.

lnCt = lnCi − kobst (19)

1
Ct

=
1
Ci

+ kobst (20)

2.8. Photocatalytic Degradation Mechanism of RBV-5R and Comparison with Other Methods

When ZnFe2O4 is illuminated to the visible light under optimized conditions, the
electrons present in the valence band jump to the conduction band, leaving holes behind in
the valence band. In this way, an electron-hole pair is generated, and this generated e−/h+

pair reacts with water molecules and atmospheric oxygen to produce free radicals. The free
hydroxyl radicals and hydrogen peroxide react with Fe(III) present in the photocatalyst
ZnFe2O4, and subsequently initiate a Fenton-like reaction. Those free radicals are highly
reactive species that react with the dye molecules and derivatives of RBV-5R. The generation
of Fe(II) on the surface of the photocatalyst speeds up the degradation by producing more
radicals. During the degradation process, many unstable intermediates such as 2-amino-5-
dimethylamino-benzene sulfonic acid anion, dimethyl-(4-nitro-phenyl)-amine, 4-amino-
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benzenesulfonic acid and 4-nitro-benzenesulfonic acid are formed [49], which are attacked
by free radicals, and the degradation products are usually CO2, H2O and mineral acids
(Figure 12). The plausible degradation mechanism is given in Figure 13. The proposed
degradation method was compared with other methods using different photocatalysts,
and the comparative analysis is shown in Table 2. The proposed work was found to be
more effective.
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Table 2. Comparison of the proposed method with other methods used for the degradation
of RBV-5R.

Method Source of EMR Catalyst Time % Degradation References

Biological
degradation

Trichoderma
species

Trichoderma
koningiopsis 12 days 73% [50]

Biological
degradation Bacteria Potential bacterial

strain GSM 38 h 70% [51]

Photocatalysis Blue light-emitting
diode (LED) Fe-doped titania 120 min 100% [24]

Photocatalysis UV lamp Zinc oxide 90 min 100% [52]

Photocatalytic 100 W tungsten
lamp Zinc ferrite 30 min 99% Present work

3. Materials and Methods
3.1. Materials

All the used reagents were of analytical grade. Without additional purification, the
reagents Zn(NO3)2·6H2O (zinc nitrate hexahydrate), Fe(NO3)3·9H2O (iron nitrate non-
ahydrate), and CO(NH2)2 (urea) (99.5%, Synth) were purchased from Sigma-Aldrich and
used directly in the synthesis. RBV-5R was imported from Boss Chemical Industry Co.,
Ltd., Jinan, China. Britton–Robinson buffer of Darmstadt was used to adjust pH. All the
experiments were performed in triplicate and the results are the average of those trials.

3.2. Instruments

The absorbance measurements were carried out by the Double-Beam Hitachi U-
2900/U-2910 model UV/Visible Spectrophotometer by using matched 1 cm quartz cells
and at a maximum wavelength of RBV-5R (560 nm). A tungsten filament lamp of 100 W
was used as a source of visible light for the photocatalytic degradation of RBV-5R.

The surface morphology of ZnFe2O4 was analyzed by a JSM5910 (JEOL, Tokyo, Japan)
scanning electron microscope (SEM). The samples were coated using a thin layer of alu-
minum stub for SEM analysis using double-adhesive carbon tape. For the determination of
total organic compounds (TOC), the TOC-VCPH analyzer (Shimadzu Co., Nagoya, Japan)
was used for the measurement. For stirring, the XMTD-702 model magnetic stirrer was used.
The XRD pattern for the sample was analyzed using an X-ray diffractometer (DRON-8).
FTIR analysis was performed on a Shimadzu IRTracer-100. A pH meter (Model-Hanna
Edge. III. 2020) was used for pH measurements.

3.3. Synthesis of Superparamagnetic Zinc Ferrite Nanoparticles

Visible-light-induced superparamagnetic zinc ferrite nanoparticles were prepared us-
ing a combustion process in a solution [53]. A weight of 12.31 g of zinc nitrate hexahydrate,
33.44 g of iron nitrate nonahydrate and 15.57 g of CO(NH2)2 (as fuel) were used in the
solution combustion process to produce ZnFe2O4. The molar ratio of Zn and Fe in the
synthesis of zinc ferrite nanoparticles is 1:2 [40]. At 70 ◦C, the reagents were mixed in
40 mL of distilled water and stirred to mix them thoroughly. The solution was then placed
in a muffle furnace and heated to 500 ◦C for 10 min. The precipitates were powdered
and calcined in a furnace at a temperature of 500 ◦C for two h. The prepared ZnFe2O4
nanoparticles were first characterized and then used as a visible light-induced photocatalyst
to degrade the selected dye.

3.4. Photocatalytic Study

Starting with a test for potential adsorption–desorption, 0.1 g of zinc ferrite was added
to the solution of RBV-5R, 100 ppm/100 mL, and the mixture was stirred in the dark
for 30 min. The dye’s absorbance was ineffectively changed in 30 min, indicating that
adsorption–desorption is ineffective in this situation. To determine how well ZnFe2O4
works as a photocatalyst, a preliminary test was carried out. For this reason, three tests



Catalysts 2023, 13, 1061 16 of 19

totaling 60 min each were carried out in the dark, under UV light, and under visible light.
For the photocatalytic test, a known amount, 0.1 g of ZnFe2O4 sample, was added to
100 mL of RBV-5R solution with the selected initial concentration, i.e., 100 ppm (mg L−1).
RBV-5R was removed by 8% in the dark in 60 min, but it was removed by 19% in the same
amount of time when exposed to UV light. This difference may be caused by RBV-5R’s
adsorption on the photocatalyst surface in the dark and zinc ferrite’s poor photosensitivity
when exposed to UV light, respectively. The degradation rose to 26% in 60 min when
the solution was exposed to visible light, proving that ZnFe2O4 is a visible light-induced
photocatalytic material [40]. As a result, the catalytic effect of ZnFe2O4 was studied under
visible light irradiation by a 100 W lamp for the degradation of RBV-5R textile dye in an
aqueous solution for 60 min. RBV-5R textile dye was selected as a pollutant.

For a typical photocatalytic test, a known amount, 0.1 g of ZnFe2O4 sample was added
to 50 mL of RBV-5R solution with the selected initial concentration, i.e., 100 ppm (mg L−1)
and then exposed to visible light. The pH of the solution was adjusted by Britton–Robinson
buffer in the range of pH 2 to 10 for revealing the pH effect. In the subsequent experiments,
a 50 mL solution of RBV-5R (selected concentration) was loaded with zinc ferrite at the
optimal pH, catalyst dose, and oxidizing agent. This solution was then exposed to visible
light to check for degradation. Every 10 min, a 5 mL aliquot was taken and diluted to a
volume of 25 mL. The degree of decolorization of the RBV-5R dye solution was assessed by
measuring the absorbance at the maximum wavelength with a UV/Vis spectrophotometer.
Equation (21) was used to calculate the % degradation of RBV-5R, and Equation (22) was
used to calculate the contents of total organic compounds (TOC) in the selected samples
before and after photocatalytic degradation [43].

%Degradtion =
Ci − C f

Ci
× 100 (21)

TOC =
TOCCO − TOCCf

TOCCO
× 100 (22)

where, Ci and TOCCO are the initial concentrations, and C f and TOCCf represent the
final concentrations in mg L−1 of dye after irradiation. Optimum conditions for the
photocatalytic degradation of RBV-5R were determined by studying various factors such
as pH, oxidant, catalyst dose, the dye’s initial concentration and the catalyst’s reusability.
All the experiments were performed at room temperature, i.e., 27 ± 2 ◦C [40].

4. Conclusions

In this study, visible-light-activated superparamagnetic zinc ferrite nanoparticles
(ZnFe2O4) were synthesized by a simple combustion process and were tested for the
degradation of a model organic dye, i.e., Remazol brilliant violet 5R (RBV-5R) in water.
The degradation of RBV-5R was higher under acidic and basic conditions while lower at a
neutral pH in buffer system. The visible-light-activated ZnFe2O4 photocatalysis resulted
in 100% degradation of RBV-5R and 82% total organic carbon removal in 30 min in the
presence of hydrogen peroxide. The synthesized photocatalyst showed good reusability
efficiency for three consecutive runs such as 99, 98 and 97%, respectively. The kinetic study
revealed that the degradation of RBV-5R in water by ZnFe2O4 photocatalysis followed
pseudo-first-order kinetics. From the results, it was concluded that visible-light-induced
ZnFe2O4 photocatalysis was a promising technology for eliminating toxic organic dyes,
such as RBV-5R, from the water environment.
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