
Citation: Luo, L.; Shen, J.; Jin, B.

Construction of Zn0.5Cd0.5S/Bi4O5Br2

Heterojunction for Enhanced

Photocatalytic Degradation of

Tetracycline Hydrochloride. Inorganics

2024, 12, 127. https://doi.org/

10.3390/inorganics12050127

Academic Editor: Antonino Gulino

Received: 23 March 2024

Revised: 16 April 2024

Accepted: 19 April 2024

Published: 24 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

inorganics

Article

Construction of Zn0.5Cd0.5S/Bi4O5Br2 Heterojunction
for Enhanced Photocatalytic Degradation of
Tetracycline Hydrochloride
Lan Luo 1, Juan Shen 1,2,* and Bo Jin 2

1 School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang 621010, China;
taytay1105@163.com

2 State Key Laboratory of Environmental-Friendly Energy Materials, Southwest University of Science and
Technology, Mianyang 621010, China; jinbo0428@163.com

* Correspondence: sj-shenjuan@163.com; Tel./Fax: +86-816-2419201

Abstract: The development of efficient catalysts with visible light response for the removal of pol-
lutants in an aqueous environment has been a hotspot in the field of photocatalysis research. A
Zn0.5Cd0.5S (ZCS) nanoparticle/Bi4O5Br2 ultra-thin nanosheet heterojunction was constructed by
ultrasound-assisted solvothermal method. The morphology, structure, and optoelectronic proper-
ties of the composite were characterized by scanning electron microscopy, X-ray diffraction, X-ray
photoelectron spectroscopy, and UV–vis diffuse reflectance spectra. Under simulated visible light
illumination, the photocatalytic performance was evaluated through degradation of tetracycline
hydrochloride. Results show that the degradation effect by the optimum ZCS/Bi4O5Br2 catalyst is
superior to pure materials with the kinetic constant that is 1.7 and 9.6 times higher than those of
Bi4O5Br2 and ZCS, and also has better stability and reusability. Trapping experiments and electron
paramagnetic resonance tests find that free radicals in the photocatalytic system are superoxide
radicals and holes. This work provides a referable idea for the development of more efficient and
recyclable photocatalysts.
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1. Introduction

Tetracycline hydrochloride (TCH) is widely used in medicine and agriculture as a
broad-spectrum antibiotic. It is stable and difficult to degrade naturally, and its overuse
poses a serious threat to the environment and human beings [1,2]. The increasing amounts
of various types of organic dyes discharged from industrial wastewater also pose a great
challenge for water purification [3]. Conventional treatment technologies have difficulty
removing pollutants in an efficient and environmentally friendly manner. In recent years,
photocatalytic technology has emerged as a potential strategy for degrading hazardous
pollutants [4,5]. Semiconductor photocatalytic materials have a strong redox capacity
and are capable of converting most organic pollutants into H2O, CO2, and other small
inorganic molecules for purifying harmful substances. Therefore, developing a new efficient
photocatalyst is particularly important.

Bismuth oxyhalide BiOX (X = Cl, Br, I) materials have become a research hotspot in
the field of photocatalysis due to their unique layered structure and superior photocatalytic
performance [6]. However, their positive conduction band position (CB) and poor carrier
separation ability limit the practical applications [7]. Density-functional-transfer (DFT)
calculations of BiOBr show that its valence band is hybridized by O 2p and Br 4p orbitals,
and the conduction band consists of Bi 6p orbitals; thus, its energy band position and band
gap width can be changed by adjusting the ratio of Bi, O, and Br [8]. Bi4O5Br2 constructed
by this bismuth-rich strategy retains the 2D layered structure of BiOBr but has a narrower
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band gap, stronger photogenerated carrier separation efficiency, and better photocatalytic
performance [9,10]. However, the photocatalytic role of pure Bi4O5Br2 is limited, with
low visible light utilization efficiency and high complexation rate of a photogenerated
electron–hole pair [11,12]. Therefore, modifications are needed to improve the catalytic
activity, including changing the morphology [13], constructing heterojunctions [14–16],
doping [17,18], and introducing surface defects [19,20]. Selecting ideal semiconductors with
suitable energy band structure to construct heterojunctions with excellent photocatalytic
performance is of great significance. For example, Zhang et al. constructed In2O3/Bi4O5Br2
S-scheme heterojunctions with interfacial oxygen vacancies using a hydrothermal and
chemical precipitation method. The obtained catalyst was capable of degrading tetracycline
efficiently [21]. Qian et al. synthesized a 2D/2D Bi4O5Br2/Bi2WO6 Z-scheme heterojunction
by chemical co-precipitation and hydrothermal method, which was effective for the stable
removal of ciprofloxacin [22]. Therefore, rationally designing heterojunction materials is an
effective strategy for improving the photocatalytic activity of Bi4O5Br2 while preserving
the redox capacity.

In recent years, ZnxCd1−xS solid solution with excellent photocatalytic properties
has been recognized as a promising semiconductor material. One of the highlights is
that its forbidden bandwidth and optical response range can be flexibly tuned by varying
the molar ratio of Zn2+ and Cd2+ [23]. Among the series of zinc cadmium sulfide solid
solutions, ZCS has been the most extensively researched and widely used for photocat-
alytic hydrogen precipitation [24,25], degradation of pollutants [26,27], and carbon dioxide
reduction [28]. However, pure ZCS has some limitations, such as low efficiency of pho-
togenerated electron–hole pair separation and photocorrosion [29]. These defects can be
compensated by constructing heterojunctions with other semiconductors to improve the
photocatalytic activity.

Herein, a series of ZCS/Bi4O5Br2 heterojunctions were constructed by using a facile
ultrasound-assisted solvothermal method. The prepared composite catalysts exhibit the
following properties: (1) The ZCS/Bi4O5Br2 heterojunction forms a built-in electric field
and accelerates the transport of photogenerated carriers at the interface. (2) Bi4O5Br2 serves
as an oxidation semiconductor to capture the holes of ZCS and strengthen the photocat-
alytic stability, thereby slightly mitigating the photocorrosion of ZCS nanoparticles. The
photocatalytic performance of the material was optimized by appropriately adjusting the
ratio of ZCS and Bi4O5Br2, which showed an obvious removal effect for several pollutants
(TCH, OTC, RhB, and MB). The stability and reusability were demonstrated by cycling tests,
and possible TCH degradation pathways and mechanistic predictions were suggested.

2. Results and Discussion
2.1. Material Characterization

The samples were characterized by X-ray diffraction (XRD), as displayed in Figure 1.
The diffraction peaks at 24.23◦, 29.58◦, 31.82◦, and 45.65◦ are observed in pure Bi4O5Br2,
corresponding to the (112), (11-3), (020), and (422) crystal planes of the monoclinic phase
(JCPDS No. 37-0699), respectively [30]. The peaks between cubic CdS and ZnS appearing
at 27.44◦, 45.49◦, and 53.67◦ belong to the (111), (220), and (311) crystallographic planes
of ZCS, respectively, which indicates the successful synthesis of ZCS [31,32]. The main
diffraction peaks of as-prepared ZCS/Bi4O5Br2 composites clearly correspond to Bi4O5Br2
and ZCS without the appearance of other impurity peaks. With the gradual introduction
of ZCS, the peak intensity of ZCS in the composite catalysts was strengthened, while the
crystal surface strength of Bi4O5Br2 was weakened and then increased. This represented
the gradual loading of ZCS to Bi4O5Br2, and the materials were successfully composited.
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The microscopic morphology and structure of ZCS, Bi4O5Br2, and ZCS/Bi4O5Br2 were 
observed by scanning electron microscopy (SEM), transmission electron microscopy 
(TEM), and high-resolution TEM (HRTEM). Figure 2a shows the morphology of ZCS, 
which consists of small, aggregated nano-microspheres. The pure Bi4O5Br2 exhibits irreg-
ular stacked nanosheets with relatively smooth surfaces, as shown in Figure 2b. A scan-
ning image of 1.5-ZCS/Bi4O5Br2 composite (Figure 2c) shows that ZCS nanoparticles are 
uniformly loaded on Bi4O5Br2 sheet structures, and the surfaces become rough. EDS and 
elemental mapping images (Figure 3) confirm the uniformly distributed elements of Zn, 
Cd, S, Bi, Br, and O in 1.5-ZCS/Bi4O5Br2. 
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Figure 3. EDS elemental mappings of 1.5-ZCS/Bi4O5Br2. 

The morphology of nanoparticles and ultra-thin nanosheets was similarly detected 
in TEM images (Figure 4a), with ZCS nanoparticles dispersed on the surface of Bi4O5Br2 
nanosheets. The material was further analyzed by HRTEM (Figure 4b,c), the lattice fringes 
reveal that the lattice spacing of 0.302 nm corresponds to the (11-3) crystal plane of 
Bi4O5Br2, and 0.335 nm matches with the (111) crystal plane of ZCS from the boxed section. 

Figure 1. XRD patterns of (a) ZCS, Bi4O5Br2, and (b) ZCS/Bi4O5Br2 composites.

The microscopic morphology and structure of ZCS, Bi4O5Br2, and ZCS/Bi4O5Br2 were
observed by scanning electron microscopy (SEM), transmission electron microscopy (TEM),
and high-resolution TEM (HRTEM). Figure 2a shows the morphology of ZCS, which con-
sists of small, aggregated nano-microspheres. The pure Bi4O5Br2 exhibits irregular stacked
nanosheets with relatively smooth surfaces, as shown in Figure 2b. A scanning image
of 1.5-ZCS/Bi4O5Br2 composite (Figure 2c) shows that ZCS nanoparticles are uniformly
loaded on Bi4O5Br2 sheet structures, and the surfaces become rough. EDS and elemental
mapping images (Figure 3) confirm the uniformly distributed elements of Zn, Cd, S, Bi, Br,
and O in 1.5-ZCS/Bi4O5Br2.
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Figure 3. EDS elemental mappings of 1.5-ZCS/Bi4O5Br2.

The morphology of nanoparticles and ultra-thin nanosheets was similarly detected
in TEM images (Figure 4a), with ZCS nanoparticles dispersed on the surface of Bi4O5Br2
nanosheets. The material was further analyzed by HRTEM (Figure 4b,c), the lattice fringes
reveal that the lattice spacing of 0.302 nm corresponds to the (11-3) crystal plane of Bi4O5Br2,
and 0.335 nm matches with the (111) crystal plane of ZCS from the boxed section. The
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result is also matched with XRD, further demonstrating the successful synthesis of the
ZCS/Bi4O5Br2 heterojunction interface.
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The elemental compositions and valence states were analyzed using X-ray photoelec-
tron spectroscopy (XPS). The full spectrum of 1.5-ZCS/Bi4O5Br2 shown in Figure 5a reveals
the presence of Bi, O, Br, Zn, Cd, and S. Figure 5b displays that the two characteristic
peaks Zn 2p1/2 and Zn 2p3/2 of the Zn 2p spectrum in 1.5-ZCS/Bi4O5Br2 are attributed to
1044.64 and 1021.61 eV, respectively, proving the presence of Zn2+ [33]. The Cd 3d peaks
in 1.5-ZCS/Bi4O5Br2 at 411.38 and 404.37 eV, belonging to Cd 3d3/2 and Cd 3d5/2 of Cd2+

(Figure 5c), respectively [34]. In the Bi 4f spectrum shown in Figure 5d, Bi 4f5/2 and Bi 4f7/2
are attributed to 163.78 and 158.48 eV, respectively, indicating that Bi element exists in a
+3 valence state [11]. Meanwhile, the S 2p peaks of S2− are observed from the spectrum with
binding energies at 161.82 and 160.98 eV belonging to S 2p1/2 and S 2p3/2, respectively [35].
The result is consistent with the S 2p peaks in pure ZCS. The peaks appearing at 68.80
and 67.80 eV in Figure 5e correspond to Br 3d3/2 and Br 3d5/2, respectively, confirming
the existence of Br− [36]. Additionally, the O 1s peaks (Figure 5f) can be fitted to three
peaks at 532.25, 530.76, and 529.26 eV related to Bi-O bond and surface-adsorbed oxy-
gen [37]. Compared with pure Bi4O5Br2 or ZCS, the binding energies of Bi, Br, and O from
1.5-ZCS/Bi4O5Br2 are slightly negatively shifted possibly due to the escape of electrons,
and the elements involving Zn, Cd, and S are positively shifted due to the increase of the
surrounding electron density, indicating the electronic interaction between Bi4O5Br2 and
ZCS [38].
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The N2 adsorption–desorption isotherms and pore size distributions of the correspond-
ing samples are presented in Figure 6. The curves of Bi4O5Br2 and 1.5-ZCS/Bi4O5Br2 are
clearly consistent with type IV isotherm, indicating the presence of mesoporous structure
of the materials. Evidently, 1.5-ZCS/Bi4O5Br2 (68.7 m2/g, 0.232 cm3/g) has a higher spe-
cific surface area and pore volume than Bi4O5Br2 (24.6 m2/g, 0.167 cm3/g). The result
demonstrates that the introduction of ZCS can significantly increase the specific surface
area of Bi4O5Br2, thus providing more catalytically active sites with enhanced adsorption
capacity and photocatalytic performance.
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2.2. Optoelectronic Properties

The light absorption capacities and energy band structures of ZCS, Bi4O5Br2, and
ZCS/Bi4O5Br2 were revealed by UV–vis diffuse reflectance spectroscopy (DRS). Figure 7a
shows the diffuse reflection spectra of the obtained samples in the region of 200–800 nm.
The absorption edges of ZCS and Bi4O5Br2 are located around 519 and 538 nm, respec-
tively. Compared with pure Bi4O5Br2, the composite photocatalysts exhibit enhanced light
absorption intensity and a significantly red-shifted characteristic of the absorption edges,
indicating that the combination of ZCS and Bi4O5Br2 can expand the absorption range of
sunlight [39]. Results demonstrates that the effective complexation of ZCS with Bi4O5Br2
can improve the absorption capacity and utilization of visible light. The energy bandgap
(Eg) values of Bi4O5Br2 (2.65 eV) and ZCS (2.43 eV) are calculated in Figure 7b according to
the Kubelka–Munk formula [40]:

(αhv) = A
(
hv − Eg

)n/2 (1)

The bandgap value of 1.5-ZCS/Bi4O5Br2 is slightly reduced, which is roughly at
2.38 eV. The narrow band gap made it easier for electrons to jump, and the photocat-
alytic activity was enhanced. The flat band potential positions −0.49 V (vs. Ag/AgCl)
of Bi4O5Br2 and −0.88 V (vs. Ag/AgCl) of ZCS are obtained from the tangent intercepts
of Mott–Schottky curves, respectively (Figure 7c,d). Converted to standard hydrogen
electrode potentials according to the following formula [26]:

ENHE = EAg/AgCl + 0.198 (2)
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The flat band potentials for Bi4O5Br2 and ZCS are −0.29 and −0.68 V (vs. NHE),
respectively. The tangent slopes of M–S curves are both positive, indicating that ZCS and
Bi4O5Br2 are typical n-type semiconductors [41]. For n-type semiconductors, the flat band
is generally 0.1 or 0.2 V higher than the conduction band (CB) potential, so the CB positions
of Bi4O5Br2 and ZCS are −0.49 and −0.88 V (vs. NHE), respectively. Finally, applying the
following equation [42]:

EVB= ECB + Eg (3)

The valence band (VB) potentials of Bi4O5Br2 and ZCS are calculated to be 2.16 and
1.55 V, respectively.
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The separation efficiency of photogenerated carriers in semiconductors was examined
by photoluminescence (PL) spectroscopy. PL spectra of Bi4O5Br2, ZCS, and 1.5-ZCS/Bi4O5Br2
heterojunction measured at the excitation light wavelength of 325 nm are shown in Figure 8a.
The fluorescence intensity of 1.5-ZCS/Bi4O5Br2 is weaker than that of uncompounded
photocatalysts, illustrating that the possibility of its photogenerated carrier recombination
becomes significantly lower [43]. The transfer and separation efficiency of light-induced
carriers were further evaluated by impedance tests. Figure 8b displays the electrical
impedance spectra (EIS) of Bi4O5Br2, ZCS, and 1.5-ZCS/Bi4O5Br2 heterojunction. The
impedance arc radius of 1.5-ZCS/Bi4O5Br2 is obviously smaller than that of ZCS and
Bi4O5Br2, which suggests that the introduction of ZCS can reduce the resistance of the
material. Evidently, ZCS/Bi4O5Br2 composite catalysts showed low charge migration
resistance and fast electron transport.
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2.3. Photocatalytic Performance

The photocatalytic performance of ZCS, Bi4O5Br2, and ZCS/Bi4O5Br2 was evaluated
by degrading TCH. The adsorption–desorption equilibrium experiment was first conducted,
as shown in Figure S1. After stirring in the dark for 30 min, the concentration of TCH
remains essentially constant, indicating that equilibrium had been reached. In Figure 9a,
there is almost no degradation that occurred without the presence of the photocatalyst,
proving that TCH is very stable in the natural environment. The degradation rate by
pure Bi4O5Br2 is 65.8% within 60 min of irradiation, while the degradation rate of ZCS is
14.4%. However, the photocatalytic activity of ZCS/Bi4O5Br2 heterojunctions improved
significantly. Among them, 1.5-ZCS/Bi4O5Br2 shows the highest degradation rate of 84.5%,
which is 1.3 and 5.9 times that of Bi4O5Br2 and ZCS, respectively. In Figure 9b,c, the removal
process of TCH is further analyzed applying the pseudo-first-order kinetic model. It is
calculated that 1.5-ZCS/Bi4O5Br2 (0.02189 min−1) has the highest apparent rate constant,
which is about 1.7 and 9.6 times higher than that of pure Bi4O5Br2 (0.01297 min−1) and ZCS
(0.00229 min−1), respectively. The above findings corroborate that the effective combination
of ZCS and Bi4O5Br2 can improve the photocatalytic degradation performance. From the
UV–vis absorption spectra (Figure 9d), it can be observed that the intensity of the main
characteristic peak of TCH diminishes with time, proving the occurrence of degradation.
The reported photocatalytic materials for degrading TCH are displayed in Table 1, and
it can be concluded from the comparison that ZCS/Bi4O5Br2 catalyst has advantages in
degrading TCH. Further, the suitability of 1.5-ZCS/Bi4O5Br2 for different pollutants was
further investigated. Figure 9e demonstrates that the degradation efficiency of OTC, RhB,
and MB can reach 83.3%, 97.7%, and 97.3%, respectively, implying its potential for the
removal of contaminants.

Table 1. Comparison of degradation rates of TCH by different catalysts.

Catalyst Dosage
(g/L)

Concentration
(mg/L)

Time
(min)

Degradation
Rate (%) Reference

PANI/Bi4O5Br2 0.4 20 240 85.7 [44]
BiOBr@ZnFe-MOF 0.15 5 90 79.2 [45]
Bi4O5I2/Bi4O5Br2 0.4 20 120 90.2 [19]
FeVO4/Bi4O5Br2 0.5 20 150 88 [46]

BiOCl0.9I0.1/β-Bi2O3 0.4 20 120 82.4 [47]
Zn0.5Cd0.5S/Bi4O5Br2 0.4 20 60 84.5 This work
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In practice application, the situation was complex and variable. Thus, the effect of
different conditions on the degradation of ZCS/Bi4O5Br2 heterojunction was explored,
including the initial pH and concentration of TCH solution, as well as the catalyst dosage.
As shown in Figure S2a, 1.5-ZCS/Bi4O5Br2 catalyst has the best photodegradation ability
at a neutral initial pH value, and also maintains favorable TCH removal under different
pH gradients, indicating a wider pH application range. Figure S2b shows the removal
rate of TCH with different catalyst dosages. The dosage increases from 0.2 to 0.5 g/L, and
the degradation rate increases from 78.0% to 86.0%. More pollutants can be adsorbed to
the catalyst surface to participate in the photoreaction, and more reactive sites can be pro-
vided. The differences in TCH removal effects were not significant when 1.5-ZCS/Bi4O5Br2
dosage was 0.4 and 0.5 g/L, respectively. Therefore, 0.4 g/L was the optimal catalyst
dosage. Figure S2c shows the degradation efficiency at different TCH concentrations. The
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concentrations range from 10 to 40 mg/L, and the degradation rates are 87.3%, 84.5%,
80.2%, and 75.5%, respectively. As the pollutant concentration increased, the removal rate
decreased, which was due to the accumulation of substrates and intermediates masking
some active sites on the surface of catalyst. And the active radicals produced by a certain
amount of catalyst were also limited. Considering the practical application and economic
value, 20 mg/L of TCH solution was selected for the following experiments.

The stability and reusability of the photocatalyst are also an important evaluation
index. The solution after each round of degradation was filtered off the supernatant, and
the catalyst was collected by centrifugation, washed, and dried for the next round of
photodegradation experiments. As illustrated in Figure 10a, the photocatalytic activity of
1.5-ZCS/Bi4O5Br2 decreases slightly after five cycles of degradation experiments but is still
superior to that of the pure ZCS and Bi4O5Br2. The result indicates that the catalyst has a
long service life. Peak structures of XRD pattern (Figure 10b) before and after cycling remain
basically the same, which also demonstrates the stability of its crystalline phase structure.
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2.4. Analysis of Possible Degradation Pathways

The intermediate products in the degradation of TCH were identified using LC-MS.
On the basis of the mass spectrometry m/z results (Figure S3), the corresponding interme-
diates and two possible degradation pathways are deduced. The strong peak at m/z = 445
corresponds to the mass-to-charge ratio of TCH. In pathway I, the introduction of a hy-
droxyl group produces the intermediate P1 (m/z = 459), followed by N-demethylation
and hydroxylation occurring with the detection of P2 (m/z = 417). P2 dissociates to P3
(m/z = 274) via ring-opening and reduction reaction. Furthermore, P2 is dehydrated to
produce P4 (m/z = 399) and then degrades to P5 (m/z = 338) by ring-opening, demethy-
lation, and hydroxylation reactions. In pathway II, TCH is degraded to the intermediate
P6 (m/z = 391) via deamination reaction and hydroxylation, and then by a ring-opening
reaction to produce P7 (m/z = 234), which undergoes a dehydration process and other
reactions to produce P8 (m/z = 217). These intermediate substances may be further de-
graded to obtain smaller masses of organic molecules (P9–P11, m/z = 194, 171, and 114),
finally mineralizing to CO2 and H2O. The postulated degradation pathways are shown in
Figure 11.



Inorganics 2024, 12, 127 10 of 16

Inorganics 2024, 12, x FOR PEER REVIEW 9 of 16 
 

 

The stability and reusability of the photocatalyst are also an important evaluation 
index. The solution after each round of degradation was filtered off the supernatant, and 
the catalyst was collected by centrifugation, washed, and dried for the next round of pho-
todegradation experiments. As illustrated in Figure 10a, the photocatalytic activity of 1.5-
ZCS/Bi4O5Br2 decreases slightly after five cycles of degradation experiments but is still 
superior to that of the pure ZCS and Bi4O5Br2. The result indicates that the catalyst has a 
long service life. Peak structures of XRD pattern (Figure 10b) before and after cycling re-
main basically the same, which also demonstrates the stability of its crystalline phase 
structure. 

 
Figure 10. (a) Cycling experiments of 1.5-ZCS/Bi4O5Br2, (b) XRD plots before and after cycling. 

2.4. Analysis of Possible Degradation Pathways 
The intermediate products in the degradation of TCH were identified using LC-MS. 

On the basis of the mass spectrometry m/z results (Figure S3), the corresponding interme-
diates and two possible degradation pathways are deduced. The strong peak at m/z = 445 
corresponds to the mass-to-charge ratio of TCH. In pathway I, the introduction of a hy-
droxyl group produces the intermediate P1 (m/z = 459), followed by N-demethylation and 
hydroxylation occurring with the detection of P2 (m/z = 417). P2 dissociates to P3 (m/z = 
274) via ring-opening and reduction reaction. Furthermore, P2 is dehydrated to produce 
P4 (m/z = 399) and then degrades to P5 (m/z = 338) by ring-opening, demethylation, and 
hydroxylation reactions. In pathway II, TCH is degraded to the intermediate P6 (m/z = 
391) via deamination reaction and hydroxylation, and then by a ring-opening reaction to 
produce P7 (m/z = 234), which undergoes a dehydration process and other reactions to 
produce P8 (m/z = 217). These intermediate substances may be further degraded to obtain 
smaller masses of organic molecules (P9–P11, m/z = 194, 171, and 114), finally mineralizing 
to CO2 and H2O. The postulated degradation pathways are shown in Figure 11. 

 

Figure 11. Proposed TCH degradation pathways by 1.5-ZCS/Bi4O5Br2.

2.5. Photocatalytic Mechanism

During the photocatalysis process, organic pollutants were degraded through the
generation of active species including ·O2

−, h+, and ·OH by the catalysts. Corresponding
scavengers such as para-benzoquinone (BQ, ·O2

− scavenger), ethylenediaminetetraacetic
acid disodium salt (EDTA-2Na, h+ scavenger), and isopropanol (IPA, ·OH scavenger) were
added during the degradation of TCH to identify the main active substances by trapping
experiments. As depicted in Figure 12a, the degradation rates decrease from 84.5% to 44.5%
(·O2

−), 61.6% (h+), and 83.5% (·OH), indicating that ·O2
− and h+ are the most important

active radicals. The EPR tests further confirmed the production of ·O2
− and h+ in the

photocatalytic system. In Figure 12b, the signal of DMPO-·O2
− could not be recognized

under dark condition for 1.5-ZCS/Bi4O5Br2. The EPR peak intensity increases after 15 min
of light, and the signal is obviously enhanced. The signal generated under dark condition
belongs to the capture agent TEMPO, and the intensity of the EPR peak decreases after
providing light instead, precisely because the generation of h+ neutralizes the signal from
TEMPO, making the signal weaker (Figure 12c).

The CB and VB positions of ZCS are −0.88 and 1.55 V, while Bi4O5Br2 are −0.49
and 2.16 V, respectively. Both semiconductors have more negative potentials and can
produce ·O2

− (O2/·O2
−, −0.33 V vs. NHE) [48]. The redox capacity of Bi4O5Br2 enables

H2O molecules to produce ·OH (H2O/·OH, 1.99 V vs. NHE) [49], but ·OH (OH−/·OH,
2.27 V vs. NHE) derived from OH− cannot be generated [50]. Thus, ·OH had minimal
participation in the degradation of TCH, which matched the trapping experimental results.
Under visible light excitation, photogenerated electrons and holes were produced in the
VB and CB of ZCS and Bi4O5Br2, respectively. If the photocatalytic mechanism followed
the traditional type II heterojunction transfer theory, ·O2

− would not be generated due to
the more positive CB of ZCS than ·O2

− (O2/·O2
−), and the VB of Bi4O5Br2 would be more

negative than ·OH (·OH/H2O) or ·OH (·OH/OH−) and unable to produce ·OH, which
was contrary to the trapping experiments. Combining the above analyses, the transfer
mechanism could be hypothesized in Figure 13. When the two semiconductors contacted
closely, the electrons of ZCS spontaneously flowed to Bi4O5Br2 until the Fermi energy
levels reached equilibrium. Similarly, electron consumption accelerates the transfer of
photogenerated holes in the VB of Bi4O5Br2 to that of ZCS with a higher potential. At
the heterojunction interface, Bi4O5Br2 was negatively charged and ZCS was positively
charged, thus forming an internal electric field. The recombination of electrons in the CB of
Bi4O5Br2 and holes in the VB of ZCS under Coulomb force and photoexcitation promoted
photogenerated charge separation. Therefore, the soluble oxygen could be reduced to ·O2

−

with the presence of photogenerated electrons in the CB of ZCS, and the remaining highly
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oxidized h+ in the VB of Bi4O5Br2 was directly involved in the degradation of pollutants.
The whole process is summarized as follows:

ZCS/Bi4O5Br2 + hv → ZCS/Bi4O5Br2
(
e−, h+) (4)

e−
(
Bi4O5Br2)+h+(ZCS) → Recombination (5)

e−
(
ZCS)+O2 → ·O−

2 (6)

h+(Bi4O5Br2)+H2O → ·OH+h+ (7)

·O−
2 + h+ + ·OH + TCH → CO2 + H2O + Small molecules (8)
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3. Experimental Section
3.1. Preparation of Zn0.5Cd0.5S

Zn0.5Cd0.5S was easily prepared by using the solvothermal method. Quantities of
0.3296 g of Zn(CH3COO)2·2H2O and 0.3998 g of Cd(CH3COO)2·2H2O were completely
dissolved by ultrasonication with 40 mL of ethylene glycol solution, then Na2S solution was
added dropwise according to the molar ratio of Zn: Cd: S = 1: 1: 3 and stirred for 4 h. Next,
the mixed solution was poured into a 100 mL Teflon-lined autoclave at 160 ◦C for 4 h. The
sample was washed with ethanol and deionized water repeatedly by centrifugation after
natural cooling and dried under vacuum at 60 ◦C overnight to obtain ZCS nanoparticles.

3.2. Preparation of Bi4O5Br2

Bi4O5Br2 nanosheets were prepared according to a previous report with minor modi-
fications [51]. Specifically, 0.7277 g of Bi(NO3)3·5H2O was added into 15 mL of ethylene
glycol solution, and 0.1786 g of KBr was added into 10 mL of deionized water, dissolved by
sonication for 0.5 h. Thereafter, the KBr solution was slowly dripped into Bi(NO3)3 solution,
and the white colloid appeared gradually. The pH value was adjusted to about 9 by using
dilute ammonia and continued stirring. Finally, the homogeneously mixed solution of
Bi4O5Br2 precursor was kept at 140 ◦C for 12 h. The reaction product was washed and
dried to obtain milky white Bi4O5Br2 powder.

3.3. Preparation of Zn0.5Cd0.5S/Bi4O5Br2

A simple ultrasound-assisted solvothermal method was used to synthesize Zn0.5Cd0.5S/
Bi4O5Br2 composites. A total of 0.1000 g of Bi4O5Br2 was dispersed ultrasonically in 20 mL
of ethanol to form a homogeneous solution. Next, ZCS was added at the mass ratio
X:1 wt.% (X = 0.25, 0.50, 1.0, 1.5, 2.0, which was the mass ratio of ZCS and Bi4O5Br2)
and sonicated for 1 h, followed by stirring for 2 h. The solutions were transferred into a
50 mL Teflon-lined autoclave, and 100 ◦C heat was employed for 10 h. After cooling, the
composites were washed with ethanol and deionized water to obtain the final substance
named X-ZCS/Bi4O5Br2 (X = 0.25, 0.50, 1.0, 1.5, 2.0). The whole preparation process is
displayed in Scheme 1.
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Scheme 1. Schematic illustration of the preparation of ZCS/Bi4O5Br2 composites.

3.4. Characterization

Specific characterizations are detailed in the Supplementary Materials.

3.5. Photocatalytic Performance Measurements

The photocatalytic performance was evaluated by using TCH (20 mg/L), OTC, RhB,
and MB (10 mg/L) as target pollutants, pH = 7 for all contaminant solutions, and a 300 W
xenon lamp as a simulated light source. About 20 mg of catalyst was weighed and dispersed
homogeneously into 50 mL of contaminant solution and stirred under dark condition for
0.5 h to reach adsorption–desorption equilibrium. Then, 4 mL of suspension was extracted
at 15 min intervals after irradiation and centrifuged to test the maximum absorbance at
357 nm of the obtained supernatant with a Shimadzu UV-1900 spectrophotometer. The
degradation rate is calculated via the following equation:

Removal rate% =(1 − Ct/C0) × 100% (9)

where C0 is the initial concentration of the pollutant solution, and Ct is the concentration at
a certain degradation time t (min).

4. Conclusions

In this work, a ZCS/Bi4O5Br2 heterojunction was successfully prepared. The better
degradation properties of optimized ZCS/Bi4O5Br2 were attributed to the formation of an
electric field inside the heterojunction, realizing the fast separation of carriers at the interface
between ZCS and Bi4O5Br2 while also preserving their redox capabilities. Compared with
ZCS (14.3%) and Bi4O5Br2 (65.8%), 1.5-ZCS/Bi4O5Br2 could degrade TCH up to 84.5%
and exhibited excellent stability, as indicated by recycling experiments. Here, ·O2

− and h+

played a dominant role during the elimination process. The suitability for other pollutants’
degradation was validated, and the results showed that it also had a better removal
effect on OTC (83.3%), RhB (97.7%), and MB (97.3%). Therefore, this study provides a
possible strategy for the modification of bismuth-rich materials and the preparation of
efficient photocatalysts.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/inorganics12050127/s1, Figure S1: the adsorption curve of 1.5-ZCS/Bi4O5Br2
under dark; Figure S2: effect of (a) initial pH of TCH solution, (b) catalyst dosage, and (c) pollutant
concentration; Figure S3: LC-MS spectra of TCH degradation process during different irradiation
times: (a) 0 min, (b) 30 min, (c) 60 min. In addition, specific characterization methods are placed in
the supplementary materials.
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