Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (97)

Search Parameters:
Keywords = viscoelastic-plastic model

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 8186 KB  
Article
Calculation of Surrounding Rock Pressure Design Value and the Stability of Support Structure for High-Stress Soft Rock Tunnel
by Mingyi Wang, Yongqiang Zhou, Yongliang Cheng, Xiaodong Fu, Chen Xu and Jiaming Wu
Buildings 2025, 15(22), 4187; https://doi.org/10.3390/buildings15224187 - 19 Nov 2025
Viewed by 276
Abstract
With the comprehensive implementation of the “Belt and Road” initiative and the Western Development Strategy, the scale of tunnel construction has been continuously expanding, with many tunnels being built in high ground stress and fractured soft rock strata. The design, construction, and operation [...] Read more.
With the comprehensive implementation of the “Belt and Road” initiative and the Western Development Strategy, the scale of tunnel construction has been continuously expanding, with many tunnels being built in high ground stress and fractured soft rock strata. The design, construction, and operation of tunnels all rely on the surrounding rock pressure as a fundamental basis. Therefore, determining the surrounding rock pressure is essential for ensuring the safe construction of tunnels. However, due to the complexity of geological conditions, differences in construction methods, variations in support parameters, and time–space effects, it is challenging to accurately determine the surrounding rock pressure. This paper proposes a design approach using the surrounding rock pressure design value as the “support force” for the tunnel, starting with the reserved deformation of soft rock tunnels. Based on the calculation principle of the surrounding rock pressure design value, a relationship curve between the support force and the maximum deformation of surrounding rock in high ground stress soft rock tunnels is developed. By combining the surrounding rock deformation grade with the tunnel’s reserved deformation index, a calculation method for the surrounding rock pressure design value for high ground stress soft rock tunnels is proposed. The method is verified by the measured surrounding rock pressure data from the Mao County Tunnel of the Chengdu–Lanzhou Railway. Furthermore, the study integrates the creep characteristics and strain softening properties of soft rock to implement a secondary development of the viscoelastic–plastic strain softening mechanical model. Based on a custom-developed creep model and the calculation method for the surrounding rock pressure design value, the relationship among time, support force, and surrounding rock deformation is comprehensively considered. A calculation method for the surrounding rock pressure design value, accounting for time effects, is proposed. Based on this method, a time-history curve of the surrounding rock pressure design value is obtained and used as the input load. The safety factor time evolution of the rock-anchor bearing arch, spray layer, and secondary lining is derived using the load-structure method, and the overall safety factor time evolution of the tunnel support structure is evaluated. The overall stability of the support structure is assessed, and numerical simulations are compared with field measurements based on the mechanical behavior evolution law of the secondary lining of the Chengdu–Lanzhou Railway Mao County Tunnel. The results indicate that the monitoring data of the internal forces of the field support structure is in good agreement with the numerical calculation results, validating the rationality of the proposed calculation method. Full article
Show Figures

Figure 1

27 pages, 36375 KB  
Article
Calibration Framework for Modeling Nonlinear Viscoelastic–Plastic Behavior of Bioresorbable Polymers in Finite Element Analysis for Stent Applications
by Nicklas Fiedler, Thomas Kleine, Stefan Oschatz, Selina Schultz, Niels Grabow and Kerstin Lebahn
Polymers 2025, 17(21), 2863; https://doi.org/10.3390/polym17212863 - 27 Oct 2025
Viewed by 510
Abstract
Finite element analysis (FEA) is common in biomedical engineering for combining design and material development, with model validation crucial for accurate prediction of material behavior. Simplified geometries are commonly needed in stent development due to high effort in prototype manufacturing. This study outlines [...] Read more.
Finite element analysis (FEA) is common in biomedical engineering for combining design and material development, with model validation crucial for accurate prediction of material behavior. Simplified geometries are commonly needed in stent development due to high effort in prototype manufacturing. This study outlines a methodology for FEA validation related to stent development-related FEA validation using injection-molded planar 2D substructures from a stent design with two types of polymers: poly(l-lactide) (PLLA) and poly(glycolide-co-trimethylene carbonate) (PGA-co-TMC). Specimens underwent quasi-static and cyclic testing, including loading, stress relaxation, unloading, and strain recovery. The material model coefficients for FEA were calibrated for three different constitutive models: linear elastic–plastic (LEP), Parallel Rheological Framework (PRF), and Three-Network (TN) model. The validation of planar stent segment expansion (PSSE) showed strong agreement with the experiments in deformation patterns, with varying force–displacement responses. The PRF and TN models provided better fits for behavioral predictions, with the PRF model being especially favorable for PLLA, while all models exhibited limitations for PGA-co-TMC. This study proposes a robust approach for the material modeling in stent development, enabling efficient material screening and stent design optimization through a simplified 2D validation setup. Material model accuracy depends strongly on calibration–load case congruence, while phenomenological approaches (PRF) show enhanced model robustness against load case variations compared to physically coupled models (TN). Full article
Show Figures

Graphical abstract

19 pages, 1525 KB  
Article
Fractional Modeling of Deep Coal Rock Creep Considering Strong Time-Dependent Behavior
by Shuai Yang, Wenhao Jia, Senlin Xie, Haochen Wang and Lu An
Mathematics 2025, 13(20), 3247; https://doi.org/10.3390/math13203247 - 10 Oct 2025
Cited by 1 | Viewed by 366
Abstract
Deep coal rocks exhibit strong time-dependent behavior, including significant plastic deformation and large tunnel displacements, which complicate tunnel support in deep underground engineering. A fractional creep model considering strong time-dependence was developed based on the classical Nishihara framework to capture this behavior. Additional [...] Read more.
Deep coal rocks exhibit strong time-dependent behavior, including significant plastic deformation and large tunnel displacements, which complicate tunnel support in deep underground engineering. A fractional creep model considering strong time-dependence was developed based on the classical Nishihara framework to capture this behavior. Additional time-dependent strains induced by stress-state variations were considered, with long-term rock strength adopted as the damage stress threshold. The stress difference between nominal and post-damage stress, σD(t), defined as the stress gradient, was applied to a viscoelastic–plastic body containing a fractional Abel dashpot, producing conventional creep strain and strong time-dependent strain. The model was extended from one-dimensional to three-dimensional under triaxial stress conditions. The validity of the model was verified using triaxial creep test data for argillaceous sandstone and coal in deep roadways, and the model parameters were determined. The results demonstrate that the model accurately reproduces the full creep process, particularly the nonlinear accelerated stage influenced by strong time-dependence. Through stress-gradient-induced variations in strong time-dependent strain, the proposed creep model elucidates the progression of deformation in the strong time-dependent stage, offering a theoretical framework for the quantitative assessment of deep rock’s strong time-dependence. Sensitivity analysis identified the stress level, fractional order, and strong time-dependence coefficient α as key factors affecting strong time-dependent creep behavior. These findings indicate that tunnel support structures in deep environments are prone to instability, underscoring the necessity of accounting for strong time-dependence to ensure long-term stability. Full article
Show Figures

Figure 1

25 pages, 4111 KB  
Article
Influence of the Pattern of Coupling of Elements and Antifriction Interlayer Thickness of a Spherical Bearing on Structural Behavior
by Anna A. Kamenskikh, Anastasia P. Bogdanova, Yuriy O. Nosov and Yulia S. Kuznetsova
Designs 2025, 9(5), 117; https://doi.org/10.3390/designs9050117 - 2 Oct 2025
Viewed by 556
Abstract
In this study, the behavior of the spherical bearing component of the L-100 bridge part (AlfaTech LLC, Perm, Russia) is considered within the framework of a finite element model. The influence of the pattern of the coupling of the antifriction interlayer with the [...] Read more.
In this study, the behavior of the spherical bearing component of the L-100 bridge part (AlfaTech LLC, Perm, Russia) is considered within the framework of a finite element model. The influence of the pattern of the coupling of the antifriction interlayer with the lower steel plate on the operation of the part is examined in terms of ideal contact, full adhesion, and frictional contact. The thickness of the antifriction interlayer varied from 4 to 12 mm. The dependencies of the contact parameters and the stress–strain state on the thickness were determined. Structurally modified polytetrafluoroethylene (PTFE) without AR-200 fillers was considered the material of the antifriction interlayer. The gradual refinement of the behavioral model of the antifriction material to account for structural and relaxation transitions was carried based on a wide range of experimental studies. The elastic–plastic and primary viscoelastic models of material behavior were constructed based on a series of homogeneous deformed-state experiments. The viscoelastic model of material behavior was refined using data from dynamic mechanical analysis over a wide temperature range [−40; +80] °C. In the first approximation, a model of the deformation theory of plasticity with linear elastic volumetric compressibility was identified. As a second approximation, a viscoelasticity model for the Maxwell body was constructed using Prony series. It was established that the viscoelastic model of the material allows for obtaining data on the behavior of the part with an error of no more than 15%. The numerical analog of the construction in an axisymmetric formulation can be used for the predictive analysis of the behavior of the bearing, including when changing the geometric configuration. Recommendations for the numerical modeling of the behavior of antifriction layer materials and the coupling pattern of the bearing elements are given in this work. A spherical bearing with an antifriction interlayer made of Arflon series material is considered for the first time. Full article
Show Figures

Figure 1

16 pages, 1712 KB  
Article
Mechanically Activated Transition from Linear Viscoelasticity to Yielding: Correlation-Based Unification
by Maxim S. Arzhakov, Irina G. Panova, Aleksandr A. Kiushov and Aleksandr A. Yaroslavov
Polymers 2025, 17(19), 2665; https://doi.org/10.3390/polym17192665 - 1 Oct 2025
Viewed by 408
Abstract
The mechanically activated transition (MAT) from linear viscoelasticity to yielding is considered an essential part of the operational behavior of ductile materials. The MAT region is restricted by proportional limit at σ0 and ε0 and the yield point at σy [...] Read more.
The mechanically activated transition (MAT) from linear viscoelasticity to yielding is considered an essential part of the operational behavior of ductile materials. The MAT region is restricted by proportional limit at σ0 and ε0 and the yield point at σy and εy, or, in terms of this paper, E0=σ0/ε0 and ε0 and Ey=σy/εy and εy, respectively. This stage precedes yielding and controls the parameters of the yield point. For bulk plastic (co)polymers and cellular polymeric foams, the quantitative correlations between E0, ε0, Ey, and εy were determined. The ratios E0Ey=1.55±0.15 and εyε0=2.1±0.2 were specified as yielding criteria. For all the samples studied, their mechanical response within the MAT region was unified in terms of master curve constructed via re-calculation of the experimental “stress–strain” diagrams in the reduced coordinates lg Elg E0lg E0lg Ey=flg εlg ε0lg εylg ε0, where E=σ/ε and ε are the current modulus and strain, respectively. To generalize these regularities found for bulk plastics and foams, our earlier experimental results concerning the rheology of soil-based pastes and data from the literature concerning the computer simulation of plastic deformation were invoked. Master curves for (1) dispersed pastes, (2) bulk plastics, (3) polymeric foams, and (4) various virtual models were shown to be in satisfactory coincidence. For the materials analyzed, this result was considered as the unification of their mechanical response within the MAT region. An algorithm for the express analysis of the mechanical response of plastic systems within the MAT region is proposed. The limitations and advances of the proposed methodological approach based on correlation studies followed by construction of master curves are outlined. Full article
(This article belongs to the Special Issue Mechanic Properties of Polymer Materials)
Show Figures

Figure 1

23 pages, 2593 KB  
Article
A Nonlinear Visco-Elasto-Plastic Bingham Fatigue Model of Soft Rock Under Cyclic Loading
by Yonghui Li, Yi Liang, Anyuan Sun and Feng Zhu
Mathematics 2025, 13(19), 3138; https://doi.org/10.3390/math13193138 - 1 Oct 2025
Viewed by 371
Abstract
The fatigue constitutive model under cyclic loading is of vital importance for studying the fatigue deformation characteristics of soft rocks. In this paper, based on the classical Bingham model, a modified Bingham fatigue model for describing the fatigue deformation characteristics of soft rocks [...] Read more.
The fatigue constitutive model under cyclic loading is of vital importance for studying the fatigue deformation characteristics of soft rocks. In this paper, based on the classical Bingham model, a modified Bingham fatigue model for describing the fatigue deformation characteristics of soft rocks under cyclic loading was developed. Firstly, the traditional constant-viscosity component was replaced by an improved nonlinear viscoelastic component related to the number of cycles. The elastic component was replaced by an improved nonlinear elastic component that decays as the number of cycle loads increases. Meanwhile, by decomposing the cyclic dynamic loads into static loads and alternating loads, a one-dimensional nonlinear viscoelastic-plastic Bingham fatigue model was developed. Furthermore, a rock fatigue yield criterion was proposed, and by using an associated flow rule compatible with this criterion, the one-dimensional fatigue model was extended to a three-dimensional constitutive formulation under complex stress conditions. Finally, the applicability of the developed Bingham fatigue model was verified through fitting with experimental data, and the parameters of the model were identified. The model fitting results show high consistency with experimental data, with correlation coefficients exceeding 0.978 and 0.989 under low and high dynamic stress conditions, respectively, and root mean square errors (RMSEs) below 0.028. Comparative analysis between theoretical predictions and existing soft rock fatigue test data demonstrates that the developed Bingham fatigue model more effectively captures the complete fatigue deformation process under cyclic loading, including the deceleration, constant velocity, and acceleration phases. With its simplified component configuration and straightforward combination rules, this model provides a valuable reference for studying fatigue deformation characteristics of rock materials under dynamic loading conditions. Full article
Show Figures

Figure 1

25 pages, 5300 KB  
Article
CFD Analysis of Non-Isothermal Viscoelastic Flow of HDPE Melt Through an Extruder Die
by Aung Ko Ko Myint, Nontapat Taithong and Watit Pakdee
Fluids 2025, 10(9), 238; https://doi.org/10.3390/fluids10090238 - 8 Sep 2025
Viewed by 1013
Abstract
The optimization of polymer extrusion processes is crucial for improving product quality and manufacturing efficiency in plastic industries. This study aims to investigate the viscoelastic flow behavior of high-density polyethylene (HDPE) through an extrusion die with an internal mandrel, focusing on the effects [...] Read more.
The optimization of polymer extrusion processes is crucial for improving product quality and manufacturing efficiency in plastic industries. This study aims to investigate the viscoelastic flow behavior of high-density polyethylene (HDPE) through an extrusion die with an internal mandrel, focusing on the effects of die geometry and flow parameters. A two-dimensional (2D) numerical model is developed in COMSOL Multiphysics using the Oldroyd-B constitutive equation, solved using the Galerkin/least-square finite element method. The simulation results indicate that the Weissenberg number (Wi) and die geometry significantly influence the dimensionless drag coefficient (Cd) and viscoelastic stress distribution along the die wall. Furthermore, filleting sharp edges of the die wall surface effectively reduces stress oscillations, enhancing flow uniformity. These findings provide valuable insights for optimizing die design and improving polymer extrusion efficiency. Full article
Show Figures

Figure 1

23 pages, 6310 KB  
Article
Comparative Analysis of the Seismic Performance of Prefabricated and Cast-in-Place Urban Underpasses Using 3D FEM
by Zhiyi Jin, Ning Xu, Kai Zhao and Jin Wu
Buildings 2025, 15(17), 3150; https://doi.org/10.3390/buildings15173150 - 2 Sep 2025
Viewed by 584
Abstract
Prefabricated cut-and-cover construction offers rapid assembly, tighter quality control, and lower environmental impact than conventional cast-in-place methods, yet its seismic performance in shallow, asymmetric, large-span urban underpasses remains insufficiently studied. This study quantifies the response of an asymmetric prefabricated underpass using a 3D [...] Read more.
Prefabricated cut-and-cover construction offers rapid assembly, tighter quality control, and lower environmental impact than conventional cast-in-place methods, yet its seismic performance in shallow, asymmetric, large-span urban underpasses remains insufficiently studied. This study quantifies the response of an asymmetric prefabricated underpass using a 3D finite-element model with viscoelastic boundaries and benchmarks it against a cast-in-place counterpart under three representative ground motions (Wolong, Kobe, and Northridge). Prefabrication reduces ground-surface acceleration amplification by up to 32%, evidencing superior damping capacity; however, deformation demand increases, with a maximum inter-storey drift ratio of 1/489 at the three-lane sidewall under 0.4 g, 36% higher than the cast-in-place case yet below the plastic limit of 1/250. Joint actions satisfy waterproofing and safety requirements (peak opening 1.582 mm, slip 0.403 mm; allowance 2 mm). Taken together, these results clarify a performance that prefabrication mitigates seismic accelerations but heightens inter-storey drift ratios and offer practical guidance to designers and practitioners on scheme selection and admissible drift ratio targets to enhance seismic resilience. Full article
(This article belongs to the Special Issue New Challenges of Underground Structures in Earthquake Engineering)
Show Figures

Figure 1

17 pages, 6127 KB  
Article
Road Performance and Modification Mechanism of Waste Polyethylene Terephthalate-Modified Asphalt
by Ruiduo Li, Menghao Wang, Dingbin Tan, Yuzhou Sun, Liqin Li, Yanzhao Yuan and Fengzhan Mu
Coatings 2025, 15(8), 902; https://doi.org/10.3390/coatings15080902 - 2 Aug 2025
Cited by 2 | Viewed by 815
Abstract
The incorporation of waste polyethylene terephthalate (PET) as a modifier for asphalt presents a promising approach to addressing the environmental pollution associated with waste plastics while simultaneously extending the service life of road surfaces. This study investigates the fundamental physical properties and rheological [...] Read more.
The incorporation of waste polyethylene terephthalate (PET) as a modifier for asphalt presents a promising approach to addressing the environmental pollution associated with waste plastics while simultaneously extending the service life of road surfaces. This study investigates the fundamental physical properties and rheological properties of asphalt modified with waste PET at both high and low temperatures. Utilizing the theory of fractional derivatives, performance evaluation indicators, such as the deformation factor and viscoelasticity factor, have been developed for the assessment of waste PET-modified asphalt. The underlying mechanism of this modification was examined through scanning electron microscopy and Fourier transform infrared spectroscopy. The results indicate that the addition of waste PET enhances the high-temperature stability of the base asphalt but reduces its resistance to cracking at low temperatures. The fractional derivative model effectively describes the dynamic shear rheological properties of waste PET-modified asphalt, achieving a maximum correlation coefficient of 0.99991. Considering the performance of modified asphalt at both high and low temperatures, the optimal concentration of waste PET was determined to be 6%. At this concentration, the minimum creep stiffness of the PET-modified asphalt was approximately 155 MPa at −6 °C. Additionally, the rutting factor of the waste PET-modified asphalt achieved a maximum value of 527.12 KPa at 52 °C. The interaction between waste PET and base asphalt was primarily physical, with mutual adsorption leading to the formation of a spatial network structure that enhanced the deformation resistance of the asphalt. This study provides a theoretical foundation and technical support for the engineering application of waste PET as a modifier in asphalt. Full article
Show Figures

Figure 1

18 pages, 6795 KB  
Article
Strain-Rate-Dependent Tensile Behaviour and Viscoelastic Modelling of Kevlar® 29 Plain-Woven Fabric for Ballistic Applications
by Kun Liu, Ying Feng, Bao Kang, Jie Song, Zhongxin Li, Zhilin Wu and Wei Zhang
Polymers 2025, 17(15), 2097; https://doi.org/10.3390/polym17152097 - 30 Jul 2025
Viewed by 1151
Abstract
Aramid fibre has become a critical material for individual soft body armour due to its lightweight nature and exceptional impact resistance. To investigate its energy absorption mechanism, quasi-static and dynamic tensile experiments were conducted on Kevlar® 29 plain-woven fabric using a universal [...] Read more.
Aramid fibre has become a critical material for individual soft body armour due to its lightweight nature and exceptional impact resistance. To investigate its energy absorption mechanism, quasi-static and dynamic tensile experiments were conducted on Kevlar® 29 plain-woven fabric using a universal material testing machine and a Split Hopkinson Tensile Bar (SHTB) apparatus. Tensile mechanical responses were obtained under various strain rates. Fracture morphology was characterised using scanning electron microscopy (SEM) and ultra-depth three-dimensional microscopy, followed by an analysis of microstructural damage patterns. Considering the strain rate effect, a viscoelastic constitutive model was developed. The results indicate that the tensile mechanical properties of Kevlar® 29 plain-woven fabric are strain-rate dependent. Tensile strength, elastic modulus, and toughness increase with strain rate, whereas fracture strain decreases. Under quasi-static loading, the fracture surface exhibits plastic flow, with slight axial splitting and tapered fibre ends, indicating ductile failure. In contrast, dynamic loading leads to pronounced axial splitting with reduced split depth, simultaneous rupture of fibre skin and core layers, and fibrillation phenomena, suggesting brittle fracture characteristics. The modified three-element viscoelastic constitutive model effectively captures the strain-rate effect and accurately describes the tensile behaviour of the plain-woven fabric across different strain rates. These findings provide valuable data support for research on ballistic mechanisms and the performance optimisation of protective materials. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

33 pages, 4531 KB  
Article
Development of the Theory of Additional Impact on the Deformation Zone from the Side of Rolling Rolls
by Valeriy Chigirinsky, Irina Volokitina, Abdrakhman Naizabekov, Sergey Lezhnev and Sergey Kuzmin
Symmetry 2025, 17(8), 1188; https://doi.org/10.3390/sym17081188 - 25 Jul 2025
Viewed by 363
Abstract
The model explicitly incorporates boundary conditions that account for the complex interplay between sections experiencing varying degrees of reduction. This interaction significantly influences the overall deformation behavior and force loading. The control effect is associated with boundary conditions determined by the unevenness of [...] Read more.
The model explicitly incorporates boundary conditions that account for the complex interplay between sections experiencing varying degrees of reduction. This interaction significantly influences the overall deformation behavior and force loading. The control effect is associated with boundary conditions determined by the unevenness of the compression, which have certain quantitative and qualitative characteristics. These include additional loading, which is less than the main load, which implements the process of plastic deformation, and the ratio of control loads from the entrance and exit of the deformation site. According to this criterion, it follows from experimental data that the controlling effect on the plastic deformation site occurs with a ratio of additional and main loading in the range of 0.2–0.8. The next criterion is the coefficient of support, which determines the area of asymmetry of the force load and is in the range of 2.00–4.155. Furthermore, the criterion of the regulating force ratio at the boundaries of the deformation center forming a longitudinal plastic shear is within the limits of 2.2–2.5 forces and 1.3–1.4 moments of these forces. In this state, stresses and deformations of the plastic medium are able to realize the effects of plastic shaping. The force effect reduces with an increase in the unevenness of the deformation. This is due to a change in height of the longitudinal interaction of the disparate sections of the strip. There is an appearance of a new quality of loading—longitudinal plastic shear along the deformation site. The unbalanced additional force action at the entrance of the deformation source is balanced by the force source of deformation, determined by the appearance of a functional shift in the model of the stress state of the metal. The developed theory, using the generalized method of an argument of functions of a complex variable, allows us to characterize the functional shift in the deformation site using invariant Cauchy–Riemann relations and Laplace differential equations. Furthermore, the model allows for the investigation of material properties such as the yield strength and strain hardening, influencing the size and characteristics of the identified limit state zone. Future research will focus on extending the model to incorporate more complex material behaviors, including viscoelastic effects, and to account for dynamic loading conditions, more accurately reflecting real-world milling processes. The detailed understanding gained from this model offers significant potential for optimizing mill roll designs and processes for enhanced efficiency and reduced energy consumption. Full article
(This article belongs to the Special Issue Symmetry in Finite Element Modeling and Mechanics)
Show Figures

Figure 1

16 pages, 1993 KB  
Article
A Fractional Derivative Insight into Full-Stage Creep Behavior in Deep Coal
by Shuai Yang, Hongchen Song, Hongwei Zhou, Senlin Xie, Lei Zhang and Wentao Zhou
Fractal Fract. 2025, 9(7), 473; https://doi.org/10.3390/fractalfract9070473 - 21 Jul 2025
Cited by 8 | Viewed by 877
Abstract
The time-dependent creep behavior of coal is essential for assessing long-term structural stability and operational safety in deep coal mining. Therefore, this work develops a full-stage creep constitutive model. By integrating fractional calculus theory with statistical damage mechanics, a nonlinear fractional-order (FO) damage [...] Read more.
The time-dependent creep behavior of coal is essential for assessing long-term structural stability and operational safety in deep coal mining. Therefore, this work develops a full-stage creep constitutive model. By integrating fractional calculus theory with statistical damage mechanics, a nonlinear fractional-order (FO) damage creep model is constructed through serial connection of elastic, viscous, viscoelastic, and viscoelastic–plastic components. Based on this model, both one-dimensional and three-dimensional (3D) fractional creep damage constitutive equations are acquired. Model parameters are identified using experimental data from deep coal samples in the mining area. The result curves of the improved model coincide with experimental data points, accurately describing the deceleration creep stage (DCS), steady-state creep stage (SCS), and accelerated creep stage (ACS). Furthermore, a sensitivity analysis elucidates the impact of model parameters on coal creep behavior, thereby confirming the model’s robustness and applicability. Consequently, the proposed model offers a solid theoretical basis for evaluating the sustained stability of deep coal mining and has great application potential in deep underground engineering. Full article
Show Figures

Figure 1

27 pages, 3625 KB  
Article
Effect of Synthetic Wax on the Rheological Properties of Polymer-Modified Bitumen
by Marek Iwański, Małgorzata Cholewińska and Grzegorz Mazurek
Materials 2025, 18(13), 3067; https://doi.org/10.3390/ma18133067 - 27 Jun 2025
Viewed by 640
Abstract
The goal of this study is to evaluate how the inclusion of synthetic wax, added in 0.5% increments from 1.5% to 3.5%, affects the characteristics of PMB 45/80-65 (polymer-modified bitumen) during both short-term (RTFOT) and long-term (PAV) aging processes. Tests were carried out [...] Read more.
The goal of this study is to evaluate how the inclusion of synthetic wax, added in 0.5% increments from 1.5% to 3.5%, affects the characteristics of PMB 45/80-65 (polymer-modified bitumen) during both short-term (RTFOT) and long-term (PAV) aging processes. Tests were carried out to assess the fundamental properties of the binder, leading to the determination of the penetration index (PI) and the plasticity range (PR). The binder’s properties were examined at below-freezing operating temperatures, with creep stiffness measured using a bent beam rheometer (BBR) at −10 °C, −16° C, −22 °C, and −28 °C. The rheological properties of the asphaltenes were evaluated based on both linear and nonlinear viscoelasticity. The experimental study explored temperature effects on the rheological properties of composite materials using a DSR dynamic shear rheometer at 40 °C, 60 °C, and 80 °C over a frequency range of 0.005 to 10 Hz. The main parameters of interest were composite viscosity (η*) and zero shear viscosity (η0). Viscoelastic parameters, including the dynamic modulus (G*) and phase shift angle (δ), were determined, and Black’s curves were used to illustrate the relationship between these parameters, where G*/sinδ was determined. The MSCR test was employed to investigate the impact of bitumen on the asphalt mixture’s resistance to permanent deformation and to assess the degree and efficacy of asphalt modification. The test measured two parameters, irreversible creep compliance (Jnr) and recovery (R), under stress levels of 0.1 kPa (LVE) and 3.2 kPa (N-LVE). The Christensen–Anderson–Marasteanu model was used to describe the bitumen behavior during binder aging, as reflected in the rheological study results. Ultimately, this study revealed that synthetic wax influences the rheological properties of PMB 45/80-65 polymer bitumen. Specifically, it mitigated the stiffness reduction in modified bitumen caused by polymer degradation during aging at an amount less than 2.5% of synthetic wax. Full article
(This article belongs to the Special Issue Advances in Asphalt Materials (Second Volume))
Show Figures

Figure 1

20 pages, 3723 KB  
Article
Effect of Salinity on the Steady-State and Dynamic Rheological Behavior of Illite Clay
by Zhichao Liang, Wenyuan Ren, Sha Li, Aijun Zhang, Wenjing Mi, Yuguo Wang and Bin Dang
Buildings 2025, 15(12), 2067; https://doi.org/10.3390/buildings15122067 - 16 Jun 2025
Viewed by 623
Abstract
The rheological behavior of clay in a water–salt environment determines the long-term deformation and structural stability of building materials and geotechnical engineering. In this study, the effects of salinity on the rheological behavior and microstructure stability of the clay mineral illite were investigated [...] Read more.
The rheological behavior of clay in a water–salt environment determines the long-term deformation and structural stability of building materials and geotechnical engineering. In this study, the effects of salinity on the rheological behavior and microstructure stability of the clay mineral illite were investigated through steady-state and dynamic rheological tests. The results reveal that specimens with different salinities exhibit shear thinning behavior during the steady-state rheological test. When the shear rate is higher than 0.5 s−1, the flow curves are described well by the Herschel–Bulkley model. As the salinity increases from 0 to 1.8 mol/L, the yield stress varies from 1500 to 3500 Pa. With the increase in salinity, the consistency factor of the specimens increases, while the flow coefficient decreases. Under dynamic loading, high-salinity specimens exhibit higher modulus and yield stresses, thereby enhancing the stability of the microstructure. The viscoelastic–plastic constitutive model under dynamic loading has been established, which can effectively describe and calculate the long-term deformation of clay minerals. These research results provide reference and guidance for understanding the rheological behavior of clay. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

18 pages, 3776 KB  
Article
A Viscoelastic-Plastic Creep Model for Initial Damaged Coal Sample Affected by Loading Rate
by Peng Huang, Yimei Wei, Meng Li, Erkan Topal, Xinyong Teng and Wei Wang
Appl. Sci. 2025, 15(10), 5265; https://doi.org/10.3390/app15105265 - 8 May 2025
Cited by 3 | Viewed by 785
Abstract
Underground engineering rock masses are significantly affected by stress redistribution induced by mining or adjacent engineering disturbances, leading to initial damage accumulation in coal-rock masses. Under sustained geostress, these masses exhibit pronounced time-dependent creep behavior, posing serious threats to long-term engineering stability. Dynamic [...] Read more.
Underground engineering rock masses are significantly affected by stress redistribution induced by mining or adjacent engineering disturbances, leading to initial damage accumulation in coal-rock masses. Under sustained geostress, these masses exhibit pronounced time-dependent creep behavior, posing serious threats to long-term engineering stability. Dynamic loading effects triggered by adjacent mining activities (manifested as medium strain-rate loading) further exacerbate damage evolution and significantly influence creep characteristics. In this study, coal samples with identical initial damage were prepared, and graded loading creep tests were conducted at rates of 0.005 mm·s−1 (50 microstrains·s−1), 0.01 mm·s−1 (100 microstrains·s−1), 0.05 mm·s−1 (500 microstrains·s−1), and 0.1 mm·s−1 (1000 microstrains·s−1) to systematically analyze the coupled effects of loading rate on creep behavior. Experimental results demonstrate that increased loading rates markedly shorten creep duration, with damage rates during the acceleration phase showing nonlinear surges (e.g., abrupt instability at 0.1 mm·s−1 (1000 microstrains·s−1)). Based on experimental data, an integer-order viscoelastic-plastic creep model incorporating stress-dependent viscosity coefficients and damage correlation functions was developed, fully characterizing four behaviors stages: instantaneous deformation, deceleration, steady-state, and accelerated creep. Optimized via the Levenberg–Marquardt algorithm, the model achieved correlation coefficients exceeding 0.96, validating its accuracy. This model clarifies the impact mechanisms of loading rates on the long-term mechanical behavior of initially damaged coal samples, providing theoretical support for stability assessment and hazard prevention in underground engineering. Full article
(This article belongs to the Special Issue Technologies and Methods for Exploitation of Geological Resources)
Show Figures

Figure 1

Back to TopTop