Road Performance and Modification Mechanism of Waste Polyethylene Terephthalate-Modified Asphalt
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Asphalt
2.1.2. Preparation of Waste PET
2.1.3. Preparation of Waste PET-Modified Asphalt
2.2. Methods
2.2.1. Basic Physical Property Test
- (1)
- Penetration test
- (2)
- Ductility test
- (3)
- Softening point test
2.2.2. Frequency Scanning Test
2.2.3. Repeated Creep Recovery Test
2.2.4. Flexural-Creep Stiffness Test
2.2.5. Scanning Electron Microscope (SEM) Test
2.2.6. X-Ray Diffraction (XRD) Test
2.2.7. Fourier Transform Infrared Spectroscopy (FTIR) Test
2.2.8. Differential Scanning Calorimetry (DSC) Test
3. Results and Discussion
3.1. Basic Physical Properties
3.2. Frequency Sweep Test
3.2.1. Establishment of Fractional Derivative Model
3.2.2. Frequency Scanning Analysis Based on Fractional Derivative Model
3.3. Repeated Creep Recovery Performance
3.4. BBR Test
3.5. Modification Mechanism of Waste PET-Modified Asphalt
3.5.1. SEM
3.5.2. XRD
3.5.3. FTIR
3.5.4. DSC
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ilyas, M.; Ahmad, W.; Khan, H.; Yousaf, S.; Khan, K.; Nazir, S. Plastic waste as a significant threat to environment—A systematic literature review. Rev. Environ. Health 2018, 33, 383–406. [Google Scholar] [CrossRef]
- Pan, D.; Su, F.; Liu, C.; Guo, Z. Research progress for plastic waste management and manufacture of value-added products. Adv. Compos. Hybrid. Mater. 2020, 3, 443–461. [Google Scholar] [CrossRef]
- Fayshal, M.A. Current practices of plastic waste management, environmental impacts, and potential alternatives for reducing pollution and improving management. Heliyon 2024, 23, e40838. [Google Scholar] [CrossRef]
- Santos, G.; Esmizadeh, E.; Riahinezhad, M. Recycling construction, renovation, and demolition plastic waste: Review of the status quo, challenges and opportunities. J. Polym. Environ. 2024, 32, 479–509. [Google Scholar] [CrossRef]
- Rafey, A.; Siddiqui, F.Z. A review of Plastic Waste Management in India–challenges and opportunities. Int. J. Environ. Anal. Chem. 2021, 103, 3971–3987. [Google Scholar] [CrossRef]
- Dauvergne, P. Why is the global governance of plastic failing the oceans? NATO Adv. Sci. Inst. Ser. 2018, 51, 22–31. [Google Scholar] [CrossRef]
- Lin, C.; Nakamura, S. Approaches to solving China’s marine plastic pollution and CO2 emission problems. Econ. Syst. Res. 2019, 31, 143–157. [Google Scholar] [CrossRef]
- Shu, X.; Huang, B.S. Recycling of waste tire rubber in asphalt and Portland cement concrete: An overview. Constr. Build. Mater. 2014, 67, 217–224. [Google Scholar] [CrossRef]
- Victory, W. A review on the utilization of waste material in asphalt pavements. Environ. Sci. Pollut. Res. 2022, 29, 27279–27282. [Google Scholar] [CrossRef]
- Chen, Y.; Awasthi, A.K.; Wei, F.; Tan, Q.; Li, J. Single-use plastics: Production, usage, disposal, and adverse impacts. Total Environ. 2021, 752, 141772. [Google Scholar] [CrossRef]
- Tournier, V.; Topham, C.M.; Gilles, A.; David, B.; Folgoas, C.; Moya-Leclair, E.; Kamionka, E.; Desrousseaux, M.L.; Texier, H.; Gavalda, S.; et al. An engineered PET depolymerase to break down and recycle plastic bottles. Nature 2020, 580, 216–219. [Google Scholar] [CrossRef]
- Richard, C.T.; Ylvaolsen; Richard, P.M.; Anthony, D.; Steven, J.R.; Anthony, W.G.J.; Mcgonigle, D.; Russell, A.E. Lost at sea: Where is all the plastic? Science 2004, 304, 838. [Google Scholar] [CrossRef] [PubMed]
- Jambeck, J.R.; Geyer, R.; Wilcox, C.; Theodore, R.S.; Perryman, M.; Andrady, A.; Narayan, R.; Law, K.L. Plastic waste inputs from land into the ocean. Science 2015, 347, 768–771. [Google Scholar] [CrossRef] [PubMed]
- Benyathiar, P.; Kumar, P.; Carpenter, G.; Brace, J.; Mishra, D.K. Polyethylene terephthalate (PET) bottle-to-bottle recycling for the beverage industry: A review. Polymers 2022, 14, 2366. [Google Scholar] [CrossRef]
- Airey, G.D.; Mohammed, M.H.; Fichter, C. Rheological characteristics of synthetic road binders. Fuel 2008, 87, 1763–1775. [Google Scholar] [CrossRef]
- Zhao, X.Y.; Shen, A.Q.; Ma, B.F. Temperature adaptability of asphalt pavement to high temperatures and significant temperature differences. Adv. Mater. Sci. Eng. 2018, 1, 9436321. [Google Scholar] [CrossRef]
- Mirzaaghaeian, E.; Modarres, A. Rheological properties of bituminous mastics containing chemical warm additive at medium temperatures and its relationship to warm mix asphalt fatigue behavior. Constr. Build. Mater. 2019, 225, 44–54. [Google Scholar] [CrossRef]
- Lesueur, D.; Petit, J.; Ritter, H.J. The mechanisms of hydrated lime modification of asphalt mixtures: A state-of-the-art review. Road Mater. Pavement Des. 2016, 14, 1–16. [Google Scholar] [CrossRef]
- Airey, G.D. Rheological properties of styrene butadiene styrene polymer modified road bitumens. Fuel 2003, 82, 1709–1719. [Google Scholar] [CrossRef]
- Raul, V.; Hussain, B. Critical factors affecting thermal cracking of asphalt pavements: Towards a comprehensive specification. Road Mater. Pavement 2013, 14, 187–200. [Google Scholar] [CrossRef]
- Ahmadinia, E.; Zargar, M.; Karim, M.R.; Abdelaziz, M.; Ahmadinia, M. Performance evaluation of utilization of waste polyethylene terephthalate (PET) in stone mastic asphalt. Constr. Build. Mater. 2012, 36, 984–989. [Google Scholar] [CrossRef]
- Ghabchi, R.; Dharmarathna, C.P.; Mihandoust, M. Feasibility of using micronized recycled polyethylene terephthalate (PET) as an asphalt binder additive: A laboratory study. Constr. Build. Mater. 2021, 292, 123377. [Google Scholar] [CrossRef]
- Oreto, C.; Russo, F.; Veropalumbo, R.; Viscione, N.; Biancardo, S.A.; Acqua, G.D. Life cycle assessment of sustainable asphalt pavement solutions involving recycled aggregates and polymers. Materials 2021, 14, 3867. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Zhang, Z.P.; Yu, X.H.; Kan, S.Y.; Luo, Y.; Han, K.B.; Liang, Y.Z.; Gao, J.P. Preparation of polyol from waste polyethylene terephthalate (PET) and its application to polyurethane (PU) modified asphalt. Constr. Build. Mater. 2024, 427, 136286. [Google Scholar] [CrossRef]
- Yu, C.H.; Hu, K.; Chen, Y.J.; Zhang, W.G.; Chen, Y.; Chang, R. Compatibility and high temperature performance of recycled polyethylene modified asphalt using molecular simulations. Mol. Simulat. 2021, 47, 1037–1049. [Google Scholar] [CrossRef]
- Mashaan, N.S.; Chegenizadeh, A.; Nikraz, H.; Rezagholilou, A. Investigating the engineering properties of asphalt binder modified with waste plastic polymer. Ain Shams Eng. J. 2021, 12, 1569–1574. [Google Scholar] [CrossRef]
- Wu, C.W.; Jing, F.; Yang, H.C.; Li, C.X.; Xi, Z.H.; Cai, J.; Wang, Q.J.; Xie, H.F. Epoxy asphalt binder reinforced with waste polyethylene terephthalate (PET) for improving toughness. Int. J. Pavement Eng. 2024, 25, 2400547. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, S.Y.; Zhang, Z.P.; Yu, L.; Mao, Z.Y.; Kan, S.Y.; Yu, X.H.; Wang, J.J. Anti-ageing performance and mechanisms of the modified asphalt with chemically recycled products from waste polyethylene terephthalate (PET). J. Environ. Chem. Eng. 2024, 12, 114891. [Google Scholar] [CrossRef]
- Mohanta, C.S.; Sreeram, A.; Yadav, V.; Padhan, R.K.; Raman, N.S.; Badoni, R.P. Synergic effect of waste PET and sebacic acid on the rheology of crumb rubber modified bitumen. Int. J. Pavement Eng. 2021, 22, 1143–1154. [Google Scholar] [CrossRef]
- Aldagari, S.; Kabir, S.F.; Fini, E.H. Investigating aging properties of bitumen modified with polyethylene-terephthalate waste plastic. Resour. Conserv. Recy 2021, 173, 105687. [Google Scholar] [CrossRef]
- Sajed, B.; Jamal, R.; Mahmoud, A.; Ali, M. Mechanical performance of asphalt mixture containing eco-friendly additive by recycling PET. Case Stud. Constr. Mat. 2024, 20, e02740. [Google Scholar] [CrossRef]
- Odubela, C.A.; Yaacob, H.; Warid, M.N.; Karim, K.J.; Kamaruddin, N.H.; Al-Saffar, Z.H.; Rahim, M.I. Rheological and chemical properties of reclaimed asphalt pavement using polyethylene terephthalate (PET) additive as a modifier. Environ. Sci. Pollut. Res. 2025, 32, 8025–8034. [Google Scholar] [CrossRef] [PubMed]
- Arshadi, M.; Hasan, T.; Saeed, Z. Laboratory investigation on the properties of asphalt concrete containing reclaimed asphalt pavement (RAP) and waste polyethylene terephthalate (PET). Int. J. Pavement Eng. 2024, 25, 2371438. [Google Scholar] [CrossRef]
- Bagley, R.L. Power law and fractional calculus model of viscoelasticity. AIAA J. 1989, 27, 1412–1417. [Google Scholar] [CrossRef]
- Lai, J.X.; Mao, S.; Qiu, J.L.; Fan, H.B.; Zhang, Q.; Hu, Z.N.; Chen, J.X. Investigation progresses and applications of fractional derivative model in geotechnical engineering. Math. Probl. Eng. 2016, 1, 9183296. [Google Scholar] [CrossRef]
- Celauro, C.; Fecarotti, C.; Pirrotta, A.; Collop, A.C. Experimental validation of a fractional approach for creep/recovery testing of asphalt mixtures. Constr. Build. Mater. 2012, 36, 458–466. [Google Scholar] [CrossRef]
- Li, R.; Yue, J.; Feng, S.; Luo, H.; Wang, T. Improved fractional order derivative empirical power function model for describing the creep of asphalt mortar. J. Build. Mater. 2015, 18, 237–242. (In Chinese) [Google Scholar]
- Assel, J.; Marat, K.; Lyazat, A.; Akpan, K.; Lailya, Z. Performance optimization approach of polymer-modified asphalt mixtures with PET and PE waste. Polymers 2024, 16, 3308. [Google Scholar] [CrossRef]
- Teyba, W.M.; Sanjaya, S.; Tewodros, G. Effect of pet size, content, and mixing process on the rheological characteristics of flexible pavement. Materials 2022, 15, 3565. [Google Scholar] [CrossRef]
- Chen, G.F.; Ma, J.Y.; Xu, X.; Pu, T.H.; He, Y.M.; Zhang, Q. Performance evaluation of using waste polyethylene terephthalate (PET) derived additives for asphalt binder modification. Waste Biomass Valor. 2025, 16, 601–611. [Google Scholar] [CrossRef]
- Celauro, C.; Di Paola, M.; Lo Presti, D.; Pirrotta, A. Modeling of the viscoelastic behavior of paving bitumen fractional derivatives. Mecc. Dei Mater. Delle Strutt. 2009, 1, 38–51. (accessed on 5 March 2025.). [Google Scholar]
- Rabindra, K.P.; Zhen, L.; Anand, S.; Xiong, X. Compound modification of asphalt with styrene-butadiene-styrene and waste polyethylene terephthalate functionalized additives. J. Clean. Prod. 2020, 277, 124286. [Google Scholar] [CrossRef]
- Vydra, M.; Kováčik, J. The use of image analysis in improving knowledge and skills on the example of teaching the biology of algae and fungi. Educ. Inf. Technol. 2025, 30, 4825–4841. [Google Scholar] [CrossRef]
- Tomasz, M.M.; Krzysztof Adam, O.; Marcin, P. Research on the development of a way to modify asphalt mixtures with PET recyclates. Materials 2023, 16, 6258. [Google Scholar] [CrossRef]
Parameter Indicators | Unit | Test Specification (JTGE20-2011) | Value | Requirements (JTGF40-2004) |
---|---|---|---|---|
Penetration | 0.1 mm | T 0604-2011 | 78.9 | 60~80 |
Ductility | mm | T 0605-2011 | 103 | ≥100 |
Softening point | °C | T 0606-2011 | 51.0 | ≥43 |
PET Content (%) | Penetration (0.1 mm) | SD 1 | Ductility (mm) | SD | Softening Point (°C) | SD |
---|---|---|---|---|---|---|
0 | 78.9 | 2.5 | 156.2 | 8 | 50.8 | 0.8 |
3 | 16.5 | 2.6 | 57.1 | 8.2 | 58.7 | 0.9 |
6 | 11.3 | 3 | 5.1 | 5.6 | 78.9 | 1.2 |
9 | 16.4 | 2.4 | 2.1 | 6.3 | 70.3 | 1.1 |
12 | 22.5 | 1.7 | 1.4 | 4.7 | 56.8 | 1.3 |
Content (%) | 52 °C | SD 1 | 58 °C | SD | 64 °C | SD | 70 °C | SD |
---|---|---|---|---|---|---|---|---|
0 | 7.4121 × 10−4 | 2 × 10−4 | 0.00204 | 3.5 × 10−4 | 0.00243 | 3.5 × 10−4 | 0.00952 | 0.0025 |
3 | 1.0471 × 10−4 | 2 × 10−5 | 1.575 × 10−4 | 4 × 10−5 | 3.672 × 10−4 | 7 × 10−5 | 9.219 × 10−4 | 2.5 × 10−4 |
6 | 1.12 × 10−5 | 2 × 10−6 | 2.74 × 10−5 | 5 × 10−6 | 9.15 × 10−5 | 2.5 × 10−5 | 2.303 × 10−4 | 6 × 10−5 |
9 | 2.18 × 10−5 | 5 × 10−6 | 6.67 × 10−5 | 1 × 10−5 | 1.144 × 10−4 | 3 × 10−5 | 3.437 × 10−4 | 1 × 10−4 |
12 | 2.852 × 10−5 | 5 × 10−6 | 8.08 × 10−5 | 1.5 × 10−5 | 2.32 × 10−4 | 3.5 × 10−5 | 5.943 × 10−4 | 1 × 10−4 |
Content (%) | 52 °C | SD 1 | 58 °C | SD | 64 °C | SD | 70 °C | SD |
---|---|---|---|---|---|---|---|---|
0 | 0.91523 | 0.01 | 0.93227 | 0.015 | 0.94986 | 0.01 | 0.96057 | 0.01 |
3 | 0.78967 | 0.012 | 0.79624 | 0.01 | 0.8218 | 0.013 | 0.85286 | 0.012 |
6 | 0.64506 | 0.013 | 0.68779 | 0.013 | 0.73598 | 0.01 | 0.77857 | 0.015 |
9 | 0.68381 | 0.015 | 0.73105 | 0.01 | 0.74004 | 0.012 | 0.80031 | 0.01 |
12 | 0.65186 | 0.01 | 0.73725 | 0.012 | 0.78399 | 0.015 | 0.84148 | 0.013 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, R.; Wang, M.; Tan, D.; Sun, Y.; Li, L.; Yuan, Y.; Mu, F. Road Performance and Modification Mechanism of Waste Polyethylene Terephthalate-Modified Asphalt. Coatings 2025, 15, 902. https://doi.org/10.3390/coatings15080902
Li R, Wang M, Tan D, Sun Y, Li L, Yuan Y, Mu F. Road Performance and Modification Mechanism of Waste Polyethylene Terephthalate-Modified Asphalt. Coatings. 2025; 15(8):902. https://doi.org/10.3390/coatings15080902
Chicago/Turabian StyleLi, Ruiduo, Menghao Wang, Dingbin Tan, Yuzhou Sun, Liqin Li, Yanzhao Yuan, and Fengzhan Mu. 2025. "Road Performance and Modification Mechanism of Waste Polyethylene Terephthalate-Modified Asphalt" Coatings 15, no. 8: 902. https://doi.org/10.3390/coatings15080902
APA StyleLi, R., Wang, M., Tan, D., Sun, Y., Li, L., Yuan, Y., & Mu, F. (2025). Road Performance and Modification Mechanism of Waste Polyethylene Terephthalate-Modified Asphalt. Coatings, 15(8), 902. https://doi.org/10.3390/coatings15080902