Calibration Framework for Modeling Nonlinear Viscoelastic–Plastic Behavior of Bioresorbable Polymers in Finite Element Analysis for Stent Applications
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Experimental Testing
2.2.1. Uniaxial Tensile Testing
2.2.2. Uniaxial Cyclic Testing
2.2.3. Strain Data Correction
2.2.4. Experimental Planar Stent Segment Expansion
2.3. Material Modeling
2.3.1. Linear Elastic–Plastic Material Model
2.3.2. Three-Network Parallel Rheological Framework Model
2.3.3. Three-Network Model
2.4. Finite Element Analysis
2.4.1. Stress Relaxation Simulation
2.4.2. Simulation of Planar Stent Segment Expansion
3. Results and Discussion
3.1. Uniaxial Tensile Testing
3.2. Uniaxial Cyclic Testing
3.3. Material Modeling
3.4. Stress Relaxation Simulation
3.5. Experimental and Numerical Analyses of Planar Stent Segment Expansion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| C3D8H | 8-node linear brick element, hybrid with constant pressure |
| C3D8I | 8-node linear brick element, incompatible modes |
| CMA-ES | Covariance Matrix Adaption Evolution Strategy |
| FEA | Finite Element Analysis |
| LEP | Linear Elastic–Plastic |
| NEWUOA | New Unconstrained Optimization Algorithm |
| NMAD | Normalized Mean Absolute Difference |
| PGA | Polyglycolide |
| PGA-co-TMC | Poly(glycolide-co-trimethylene carbonate) |
| PLLA | Poly(l-lactide) |
| PRF | Parallel Rheological Framework |
| PSSE | Planar Stent Segment Expansion |
| TMC | Trimethylene Carbonate |
| TN | Three-Network |
| UMAT | User Material |
Appendix A


| Coefficient | PLLA | PGA-co-TMC |
|---|---|---|
| E [MPa] * | 4042.80 | 734.19 |
| ν | 0.3 | 0.3 |
| σY0 [MPa] | 28.00 | 4.54 |
| εP0 | 0 | 0 |
| σY1 [MPa] | 32.90 | 4.64 |
| εP1 | 6.07 × 10−5 | 4.97 × 10−6 |
| σY2 [MPa] | 37.80 | 11.32 |
| εP2 | 1.49 × 10−4 | 0.0028 |
| σY3 [MPa] | 42.69 | 18.00 |
| εP3 | 3.16 × 10−4 | 0.01 |
| σY4 [MPa] | 47.59 | 24.68 |
| εP4 | 5.37 × 10−4 | 0.027 |
| σY5 [MPa] | 52.48 | 31.37 |
| εP5 | 7.97 × 10−4 | 0.06 |
| σY6 [MPa] | 57.38 | 38.05 |
| εP6 | 1.16 × 10−2 | 0.14 |
| σY7 [MPa] | 62.27 | 40.75 |
| εP7 | 2.26 × 10−2 | 0.41 |
| PRF | TN | ||||||
|---|---|---|---|---|---|---|---|
| Coefficient | MCalibration Syntax | Abaqus Syntax | Coefficient | PLLA | PGA-co-TMC | ||
| PLLA | PGA-co-TMC | PLLA | PGA-co-TMC | ||||
| C10 [MPa] | 4.00 | 0.7 | 603.99 | 91.18 | µA [MPa] | 835.99 | 81.97 |
| S1 | 50.00 | 113.23 | 0.33 | 0.87 | [K] | 0 * | 0 * |
| q1 [MPa] | 31.40 | 54.25 | 31.40 | 54.25 | λL | 5.10 * | 9.48 |
| n1 | 9.31 | 6.50 | 9.31 | 6.50 | κ [MPa] | 6918.60 * | 1018.49 * |
| m1 | −0.09 | −0.15 | −0.09 | −0.15 | A [MPa] | 35.21 | 19.65 |
| 1 [s−1] | 1 * | 1.07 | 1 * | 1.07 | a | 0 * | 0 * |
| S2 | 100.00 | 16.02 | 0.66 | 0.12 | mA | 10.51 | 2.51 |
| q2 [MPa] | 35.1747 | 724.97 | 20.00 | 724.97 | n | 0 * | 0 * |
| n2 | 22.23 | 1.98 | 22.23 | 1.98 | µBi [MPa] | 787.21 | 126.46 |
| m2 | −1.85 × 10−5 | −0.5 | −1.85 × 10−5 | −0.5 | µBf [MPa] | 783.46 | 33.21 |
| 2 [s−1] | 1 * | 22.46 | 1 * | 22.46 | β | 0.69 | 30.41 |
| Y0 [MPa] | 27.56 | 5.77 | 27.56 | 5.77 | B [MPa] | 34.43 | 9.39 |
| hard [MPa] | 9.42 | −1.19 | - | - | mB | 21.67 | 21.88 |
| expn | 0.94 | 1.58 | - | - | µC [MPa] | 17.51 | 21.88 |
| - | - | - | - | - | q | 0 * | 0 * |
| - | - | - | - | - | α [1/K] | 0 * | 0 * |
| - | - | - | - | - | θ [K] | 293 * | 293 * |
| 0% | 5% | 15% | Max. Expansion | Acute Strain Recovery | ||
|---|---|---|---|---|---|---|
| PLLA-1 | video frame | ![]() | ![]() | ![]() | ![]() | ![]() |
| contour | ![]() | ![]() | ![]() | ![]() | ![]() | |
| opening area [mm2] | 19.42 | 23.69 | 28.27 | 33.41 | 21.10 | |
| PLLA-2 | video frame | ![]() | ![]() | ![]() | ![]() | ![]() |
| contour | ![]() | ![]() | ![]() | ![]() | ![]() | |
| opening area [mm2] | 16.66 | 20.87 | 25.98 | 29.97 | 18.66 | |
| PLLA-3 | video frame | ![]() | ![]() | ![]() | ![]() | ![]() |
| contour | ![]() | ![]() | ![]() | ![]() | ![]() | |
| opening area [mm2] | 19.28 | 22.97 | 27.42 | 28.99 | 21.59 | |
| FEA | v. Mises stress | ![]() | ![]() | ![]() | ![]() | ![]() |
| opening area [mm2] | 14.53 | 17.78 | 24.41 | 29.73 | 22.73 | |
| 0% | 25% | 65% | Max. Expansion | Acute Strain Recovery | ||
|---|---|---|---|---|---|---|
| PGA-co-TMC-1 | video frame | ![]() | ![]() | ![]() | ![]() | ![]() |
| contour | ![]() | ![]() | ![]() | ![]() | ![]() | |
| opening area [mm2] | 16.91 | 30.03 | 44.68 | 53.94 | 38.92 | |
| PGA-co-TMC-2 | video frame | ![]() | ![]() | ![]() | ![]() | ![]() |
| contour | ![]() | ![]() | ![]() | ![]() | ![]() | |
| opening area [mm2] | 13.27 | 27.03 | 42.45 | 53.85 | 44.66 | |
| PGA-co-TMC-3 | video frame | ![]() | ![]() | ![]() | ![]() | ![]() |
| contour | ![]() | ![]() | ![]() | ![]() | ![]() | |
| opening area [mm2] | 13.47 | 27.39 | 42.94 | 55.22 | 39.80 | |
| FEA | v. Mises stress | ![]() | ![]() | ![]() | ![]() | ![]() |
| opening area [mm2] | 14.53 | 31.79 | 53.26 | 68.84 | 45.56 | |
References
- Bobel, A.C.; Lohfeld, S.; Shirazi, R.N.; McHugh, P.E. Experimental mechanical testing of Poly (l-Lactide) (PLLA) to facilitate pre-degradation characteristics for application in cardiovascular stenting. Polym. Test. 2016, 54, 150–158. [Google Scholar] [CrossRef]
- Bergström, J.S.; Hayman, D. An Overview of Mechanical Properties and Material Modeling of Polylactide (PLA) for Medical Applications. Ann. Biomed. Eng. 2016, 44, 330–340. [Google Scholar] [CrossRef]
- Teo, A.J.T.; Mishra, A.; Park, I.; Kim, Y.-J.; Park, W.-T.; Yoon, Y.-J. Polymeric Biomaterials for Medical Implants and Devices. ACS Biomater. Sci. Eng. 2016, 2, 454–472. [Google Scholar] [CrossRef]
- McMahon, S.; Bertollo, N.; Cearbhaill, E.D.O.; Salber, J.; Pierucci, L.; Duffy, P.; Dürig, T.; Bi, V.; Wang, W. Bio-resorbable polymer stents: A review of material progress and prospects. Prog. Polym. Sci. 2018, 83, 79–96. [Google Scholar] [CrossRef]
- Fiedler, N.; Teske, M.; Nelz, S.-C.; Flügge, J.W.; Senz, V.; Bajer, D.; Grabow, N.; Oschatz, S. In Vitro Corrosion of Polyester-Coated Magnesium Alloy under pH-Static Conditions. ACS Biomater. Sci. Eng. 2024, 10, 5844–5855. [Google Scholar] [CrossRef]
- Saberi, A.; Bakhsheshi-Rad, H.R.; Abazari, S.; Ismail, A.F.; Sharif, S.; Ramakrishna, S.; Daroonparvar, M.; Berto, F. A Comprehensive Review on Surface Modifications of Biodegradable Magnesium-Based Implant Alloy: Polymer Coatings Opportunities and Challenges. Coatings 2021, 11, 747. [Google Scholar] [CrossRef]
- Cassese, S.; Byrne, R.A.; Ndrepepa, G.; Kufner, S.; Wiebe, J.; Repp, J.; Schunkert, H.; Fusaro, M.; Kimura, T.; Kastrati, A. Everolimus-eluting bioresorbable vascular scaffolds versus everolimus-eluting metallic stents: A meta-analysis of randomised controlled trials. Lancet 2016, 387, 537–544. [Google Scholar] [CrossRef]
- Serruys, P.W.; Chevalier, B.; Sotomi, Y.; Cequier, A.; Carrié, D.; Piek, J.J.; van Boven, A.J.; Dominici, M.; Dudek, D.; McClean, D.; et al. Comparison of an everolimus-eluting bioresorbable scaffold with an everolimus-eluting metallic stent for the treatment of coronary artery stenosis (ABSORB II): A 3 year, randomised, controlled, single-blind, multicentre clinical trial. Lancet 2016, 388, 2479–2491. [Google Scholar] [CrossRef]
- Wykrzykowska, J.J.; Kraak, R.P.; Hofma, S.H.; van der Schaaf, R.J.; Arkenbout, E.K.; IJsselmuiden, A.J.; Elias, J.; van Dongen, I.M.; Tijssen, R.Y.G.; Koch, K.T.; et al. Bioresorbable Scaffolds versus Metallic Stents in Routine PCI. N. Engl. J. Med. 2017, 376, 2319–2328. [Google Scholar] [CrossRef]
- Ali, Z.A.; Serruys, P.W.; Kimura, T.; Gao, R.; Ellis, S.G.; Kereiakes, D.J.; Onuma, Y.; Simonton, C.; Zhang, Z.; Stone, G.W. 2-year outcomes with the Absorb bioresorbable scaffold for treatment of coronary artery disease: A systematic review and meta-analysis of seven randomised trials with an individual patient data substudy. Lancet 2017, 390, 760–772. [Google Scholar] [CrossRef] [PubMed]
- Cockerill, I.; See, C.W.; Young, M.L.; Wang, Y.; Zhu, D. Designing Better Cardiovascular Stent Materials—A Learning Curve. Adv. Funct. Mater. 2021, 31, 2005361. [Google Scholar] [CrossRef]
- Li, G.; Zhao, M.; Xu, F.; Yang, B.; Li, X.; Meng, X.; Teng, L.; Sun, F.; Li, Y. Synthesis and Biological Application of Polylactic Acid. Molecules 2020, 25, 5023. [Google Scholar] [CrossRef]
- Gonzalo, N.; Macaya, C. Absorbable stent: Focus on clinical applications and benefits. Vasc. Health Risk Manag. 2012, 8, 125–132. [Google Scholar] [CrossRef]
- Shen, Y.; Yu, X.; Cui, J.; Yu, F.; Liu, M.; Chen, Y.; Wu, J.; Sun, B.; Mo, X. Development of Biodegradable Polymeric Stents for the Treatment of Cardiovascular Diseases. Biomolecules 2022, 12, 1245. [Google Scholar] [CrossRef]
- Rosenbusch, L.; Schuon, R.; Wilfling, T.; Krüger, P.; Lebahn, K.; John, S.; Sahmel, O.; Grabow, N.; Schulze, M.; Wree, A.; et al. Investigation of Stent Prototypes for the Eustachian Tube in Human Donor Bodies. Bioengineering 2023, 10, 743. [Google Scholar] [CrossRef] [PubMed]
- Choudhury, S.; Asthana, S.; Homer-Vanniasinkam, S.; Chatterjee, K. Emerging trends in biliary stents: A materials and manufacturing perspective. Biomater. Sci. 2022, 10, 3716–3729. [Google Scholar] [CrossRef] [PubMed]
- Karadeli, H.H.; Kuram, E. Single Component Polymers, Polymer Blends, and Polymer Composites for Interventional Endovascular Embolization of Intracranial Aneurysms. Macromol. Biosci. 2024, 24, e2300432. [Google Scholar] [CrossRef]
- Karanasiou, G.S.; Papafaklis, M.I.; Conway, C.; Michalis, L.K.; Tzafriri, R.; Edelman, E.R.; Fotiadis, D.I. Stents: Biomechanics, Biomaterials, and Insights from Computational Modeling. Ann. Biomed. Eng. 2017, 45, 853–872. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Ding, X.; Feng, W.; Gao, Y.; Zhao, S.; Fan, Y. Biomechanical study on implantable and interventional medical devices. Acta Mech. Sin. 2021, 37, 875–894. [Google Scholar] [CrossRef]
- Blair, R.W.; Dunne, N.J.; Lennon, A.B.; Menary, G.H. Multi-objective optimisation of material properties and strut geometry for poly(L-lactic acid) coronary stents using response surface methodology. PLoS ONE 2019, 14, e0218768. [Google Scholar] [CrossRef]
- Oliver, A.A.; Sikora-Jasinska, M.; Demir, A.G.; Guillory, R.J. Recent advances and directions in the development of bioresorbable metallic cardiovascular stents: Insights from recent human and in vivo studies. Acta Biomater. 2021, 127, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Hayman, D.; Bergerson, C.; Miller, S.; Moreno, M.; Moore, J.E. The effect of static and dynamic loading on degra-dation of PLLA stent fibers. J. Biomech. Eng. 2014, 136, 081006. [Google Scholar] [CrossRef]
- Shine, C.J.; McHugh, P.E.; Ronan, W. Impact of Degradation and Material Crystallinity on the Mechanical Per-formance of a Bioresorbable Polymeric Stent. J. Elast. 2021, 145, 243–264. [Google Scholar] [CrossRef]
- Boland, E.L.; Shine, C.J.; Kelly, N.; Sweeney, C.A.; McHugh, P.E. A Review of Material Degradation Modelling for the Analysis and Design of Bioabsorbable Stents. Ann. Biomed. Eng. 2016, 44, 341–356. [Google Scholar] [CrossRef]
- Antonini, L.; Poletti, G.; Mandelli, L.; Dubini, G.; Pennati, G.; Petrini, L. Comprehensive computational analysis of the crimping procedure of PLLA BVS: Effects of material viscous-plastic and temperature dependent behavior. J. Mech. Behav. Biomed. Mater. 2021, 123, 104713. [Google Scholar] [CrossRef]
- Dreher, M.L.; Nagaraja, S.; Bergstrom, J.; Hayman, D. Development of a Flow Evolution Network Model for the Stress-Strain Behavior of Poly(L-lactide). J. Biomech. Eng. 2017, 139, 091002. [Google Scholar] [CrossRef]
- Mian, S.H.; Umer, U.; Moiduddin, K.; Alkhalefah, H. Predicting Mechanical Properties of Polymer Materials Using Rate-Dependent Material Models: Finite Element Analysis of Bespoke Upper Limb Orthoses. Polymers 2024, 16, 1220. [Google Scholar] [CrossRef]
- Bobel, A.C.; McHugh, P.E. Computational Analysis of the Utilisation of the Shape Memory Effect and Balloon Expansion in Fully Polymeric Stent Deployment. Cardiovasc. Eng. Technol. 2018, 9, 60–72. [Google Scholar] [CrossRef]
- Zong, J.; He, Q.; Liu, Y.; Qiu, M.; Wu, J.; Hu, B. Advances in the development of biodegradable coronary stents: A translational perspective. Mater. Today Bio 2022, 16, 100368. [Google Scholar] [CrossRef] [PubMed]
- Carbonaro, D.; Ferro, N.; Mezzadri, F.; Gallo, D.; Audenino, A.L.; Perotto, S.; Morbiducci, U.; Chiastra, C. Easy-to-use formulations based on the homogenization theory for vascular stent design and mechanical charac-terization. Comput. Methods Programs Biomed. 2024, 257, 108467. [Google Scholar] [CrossRef]
- Schiavone, A.; Abunassar, C.; Hossainy, S.; Zhao, L.G. Computational analysis of mechanical stress-strain interac-tion of a bioresorbable scaffold with blood vessel. J. Biomech. 2016, 49, 2677–2683. [Google Scholar] [CrossRef]
- Wang, Q.; Fang, G.; Zhao, Y.; Wang, G.; Cai, T. Computational and experimental investigation into mechanical performances of Poly-L-Lactide Acid (PLLA) coronary stents. J. Mech. Behav. Biomed. Mater. 2017, 65, 415–427. [Google Scholar] [CrossRef]
- Eswaran, S.; Kelley, J.; Bergstrom, J.; Giddings, V. Material Modeling of Polylactide. In Proceedings of the SIMULIA Customer Conference, Suzhou, China, 26 October 2011. [Google Scholar]
- Hoddy, B.; Ahmed, N.; Al-Lamee, K.; Bullett, N.; Curzen, N.; Bressloff, N.W. Investigating the material modelling of a polymeric bioresorbable scaffold via in-silico and in-vitro testing. J. Mech. Behav. Biomed. Mater. 2021, 120, 104557. [Google Scholar] [CrossRef]
- Hoddy, B.; Ahmed, N.; Al-Lamee, K.; Bullett, N.; Bressloff, N.W. Exploring a parallel rheological framework to capture the mechanical behaviour of a thin-strut polymeric bioresorbable coronary scaffold. J. Mech. Behav. Biomed. Mater. 2022, 130, 105154. [Google Scholar] [CrossRef]
- Yang, Z.; Yin, G.; Sun, S.; Xu, P. Medical applications and prospects of polylactic acid materials. iScience 2024, 27, 111512. [Google Scholar] [CrossRef] [PubMed]
- Hussain, M.; Khan, S.M.; Shafiq, M.; Abbas, N. A review on PLA-based biodegradable materials for biomedical applications. Giant 2024, 18, 100261. [Google Scholar] [CrossRef]
- Lim, L.-T.; Auras, R.; Rubino, M. Processing technologies for poly(lactic acid). Prog. Polym. Sci. 2008, 33, 820–852. [Google Scholar] [CrossRef]
- Suuronen, R.; Pohjonen, T.; Hietanen, J.; Lindqvist, C. A 5-year in vitro and in vivo study of the biodegradation of polylactide plates. J. Oral. Maxillofac. Surg. 1998, 56, 604–614; discussion 614–615. [Google Scholar] [CrossRef] [PubMed]
- Chang, L.-F.; Zhou, Y.-G.; Ning, Y.; Zou, J. Toughening Effect of Physically Blended Polyethylene Oxide on Poly-glycolic Acid. J. Polym. Environ. 2020, 28, 2125–2136. [Google Scholar] [CrossRef]
- Hamza, A.A.; El-Bakary, M.A.; Ibrahim, M.A.; Elgamal, M.A.; El-Sayed, N.M. Investigate the degradable behavior of a poly (glycolide-co-trimethylene carbonate) suture material used in a vascular surgery. Polym. Bull. 2022, 79, 10783–10801. [Google Scholar] [CrossRef]
- Metz, S.A.; Chegini, N.; Masterson, B.J. In vivo and in vitro degradatation of monofilament absorbable sutures, PDS® and Maxon®. Biomaterials 1990, 11, 41–45. [Google Scholar] [CrossRef] [PubMed]
- Noorsal, K.; Mantle, M.D.; Gladden, L.F.; Cameron, R.E. Degradation and drug-release studies of a poly(glycolide- co -trimethylene carbonate) copolymer (Maxon). J. Appl. Polym. Sci. 2005, 95, 475–486. [Google Scholar] [CrossRef]
- Nochos, A.N.; Andrikopoulos, K.S.; Voyiatzis, G.A. Manipulation of the drug-release behavior of poly(glycolide- co -trimethylene carbonate). J. Appl. Polym. Sci. 2016, 133, 43915. [Google Scholar] [CrossRef]
- Dong, J.; Liao, L.; Shi, L.; Tan, Z.; Fan, Z.; Li, S.; Lu, Z. A bioresorbable cardiovascular stent prepared from L-lactide, trimethylene carbonate and glycolide terpolymers. Polym. Eng. Sci. 2014, 54, 1418–1426. [Google Scholar] [CrossRef]
- DIN EN ISO 527-2:2012; Plastics—Determination of Tensile Properties—Part 2: Test Conditions for Moulding and Extrusion Plastics. DIN Deutsches Institut für Normung e. V: Berlin, Germany, 2012.
- Schümann, K.; Röhr, U.; Grabow, N.; Schmitz, K.-P. Expandierbare Struktur. German Patent No. DE102016117398B4, 13 July 2023. [Google Scholar]
- Schümann, K.; Wilfling, T.; Paasche, G.; Schuon, R.; Robert, S.; Lenarz, T.; Schmidt, W.; Grabow, N.; Müller, H.; Momma, C.; et al. Development of biodegradable stents for the treatment of Eustachian tube dysfunction. Curr. Dir. Biomed. Eng. 2018, 4, 505–508. [Google Scholar] [CrossRef]
- DIN EN ISO 527-1:2019; Plastics—Determination of Tensile Properties—Part 1: General Principles. DIN Deutsches Institut für Normung e. V: Berlin, Germany, 2019.
- Qiu, T.Y.; Song, M.; Zhao, L.G. A computational study of crimping and expansion of bioresorbable polymeric stents. Mech. Time Depend. Mater. 2018, 22, 273–290. [Google Scholar] [CrossRef]
- Dassault Systèmes Simulia Corp. SIMULIA User Assistance (Abaqus 2023), Parallel Rheological Framework; Online Documentation; Dassault Systèmes Simulia Corp.: Johnston, RI, USA, 2023; Available online: https://help.3ds.com/2023x/English/DSDoc/FrontmatterMap/DSDocHome.htm?contextscope=cloud/ (accessed on 24 October 2025).
- Yeoh, O.H. Some Forms of the Strain Energy Function for Rubber. Rubber Chem. Technol. 1993, 66, 754–771. [Google Scholar] [CrossRef]
- Bergström, J.S.; Bischoff, J.E. An advanced thermomechanical constitutive model for UHMWPE. Int. J. Struct. Changes Solids 2010, 2, 31–39. [Google Scholar]
- Ansys Inc. PolyUMod Three Network (TN) Model. 2025. Available online: https://www.ansys.com/content/dam/resource-center/datasheet/polyumod-three-network-model.pdf (accessed on 24 October 2025).
- Arruda, E.M.; Boyce, M.C. A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. J. Mech. Phys. Solids 1993, 41, 389–412. [Google Scholar] [CrossRef]
- Debusschere, N.; Segers, P.; Dubruel, P.; Verhegghe, B.; Beule, M. de A finite element strategy to investigate the free expansion behaviour of a biodegradable polymeric stent. J. Biomech. 2015, 48, 2012–2018. [Google Scholar] [CrossRef]
- Karim, M.R.; Zhang, Z.; Zhu, Y. Prediction of Nonlinear Viscoelastic Recovery of Thermoplastic Polymers Using Abaqus Parallel Rheological Framework (PRF) Model. In Proceedings of the Science in the Age of Experience 2016, Boston, MA, USA, 23–27 May 2016. [Google Scholar]
- Fiedler, N.; Oschatz, S.; Grabow, N.; Lebahn, K. Strain-rate dependence of mechanical characteristics of PLLA with different MW. Curr. Dir. Biomed. Eng. 2023, 9, 459–462. [Google Scholar] [CrossRef]
- Grabow, N.; Schlun, M.; Sternberg, K.; Hakansson, N.; Kramer, S.; Schmitz, K.-P. Mechanical properties of laser cut poly(L-lactide) micro-specimens: Implications for stent design, manufacture, and sterilization. J. Biomech. Eng. 2005, 127, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Oschatz, S.; Schultz, S.; Fiedler, N.; Markhoff, J.; Teske, M.; Koper, D.; Senz, V.; Brandt-Wunderlich, C.; Schmitz, K.-P.; Grabow, N.; et al. PLLA/PEO blend as self-curing material for a biodegradable Eustachian tube stent. Mater. Des. 2025, 256, 114255. [Google Scholar] [CrossRef]
- Farah, S.; Anderson, D.G.; Langer, R. Physical and mechanical properties of PLA, and their functions in widespread applications—A comprehensive review. Adv. Drug Deliv. Rev. 2016, 107, 367–392. [Google Scholar] [CrossRef] [PubMed]
- Bukala, J.; Buszman, P.P.; Małachowski, J.; Mazurkiewicz, L.; Sybilski, K. Experimental Tests, FEM Constitutive Modeling and Validation of PLGA Bioresorbable Polymer for Stent Applications. Materials 2020, 13, 2003. [Google Scholar] [CrossRef]
- Dos Santos, F.J.; Hernandez, B.A.; Santos, R.; Machado, M.; Souza, M.; Capello Sousa, E.A.; Andrade, A. Bioab-sorbable Polymeric Stent for the Treatment of Coarctation of the Aorta (CoA) in Children: A Methodology to Evaluate the Design and Mechanical Properties of PLA Polymer. Materials 2023, 16, 4403. [Google Scholar] [CrossRef]
- Knight, J.; Salim, H.; Elemam, H.; Elbelbisi, A. Calibration of Thermal Viscoelastic Material Models for the Dynamic Responses of PVB and SG Interlayer Materials. Polymers 2024, 16, 1870. [Google Scholar] [CrossRef]














| Material | PRF Coefficients | |
|---|---|---|
| PLLA | Yeoh hyperelasticity viscoelastic networks (N = 2) plasticity | C10, C20 *, C30 * S1, q1, n1, m1, S2, q2, n2, m2 Y0, hard, expn |
| PGA-co-TMC | Yeoh hyperelasticity viscoelastic networks (N = 2) plasticity | C10, C20 *, C30 * S1, q1, n1, m1, 1, S2, q2, n2, m2, 2 Y0, hard, expn |
| Material | TN Coefficients | |
|---|---|---|
| PLLA | experimental data network A network B network C temperature dependence | λL *, κ *, a *, q * µA, A, mA µBi, µBf, β, B, mB µC *, n *, α *, θ * |
| PGA-co-TMC | experimental data network A network B network C temperature dependence | λL, κ *, a *, q * µA, A, mA µBi, µBf, β, B, mB µC *, n *, α *, θ * |
| Parameter | Value |
|---|---|
| solver | Abaqus Standard |
| model geometry | planar stent segment |
| step time | - |
| expansion | 25.2 s |
| acute strain recovery | 0.5 s |
| element type | C3D8I |
| mesh | 30,450 elements 0.1 mm mesh edge length curvature control enabled (0.05) |
| number of equations | 499,530 (LEP), 496,080 (PRF), 496,080 (TN) |
| applied displacement | 3.15 mm |
| Parameter | PLLA | PGA-co-TMC |
|---|---|---|
| strain amplitudes | - | - |
| ε1 | 0.1 mm | 0.08 mm |
| ε2 | 0.3 mm | 0.24 mm |
| ε3 | 0.475 mm | 2.74 mm |
| ε4 | 0.625 mm | 7.58 mm |
| unloading rate | - | - |
| 0.5 | 5.167 N/s | 0.887 N/s |
| 50 | 516.667 N/s | 135.33 N/s |
| Material | Stress Amplitude [MPa] | Stress Relaxation [MPa] | Recovery [%] | ||||||
|---|---|---|---|---|---|---|---|---|---|
| PLLA | 8.92 ± 0.48 | 25.43 ± 0.61 | 37.88 ± 0.39 | 48.18 ± 0.56 | 0.22 ± 0.01 | 1.01 ± 0.03 | 2.49 ± 0.13 | 3.62 ± 0.03 | 0.042 ± 0.001 |
| PGA-co-TMC | 2.11 ± 0.51 | 4.30 ± 0.28 | 28.34 ± 1.11 | 34.86 ± 1.09 | 0.28 ± 0.07 | 0.43 ± 0.03 | 8.19 ± 0.35 | 10.08 ± 0.09 | 6.745 ± 0.140 |
| PLLA | PGA-co-TMC | |||||||
|---|---|---|---|---|---|---|---|---|
| 5% | 15% | Max. Expansion | Acute Strain Recovery | 25% | 65% | Max. Expansion | Acute Strain Recovery | |
| video frame | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
| contour | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
| opening area [mm2] | 20.87 | 25.98 | 29.94 | 18.66 | 30.03 | 44.68 | 53.94 | 38.92 |
| v. Mises stress | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
| opening area [mm2] | 17.78 | 24.41 | 29.73 | 22.73 | 31.79 | 53.26 | 68.84 | 45.56 |
| PLLA | PGA-co-TMC | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| NMAD | Stiffness [N/mm] | F1.5mm [N] | NMAD | Stiffness [N/mm] | F6.3mm [N] | |||||
| PLLA-1 | PLLA-2 | PLLA-3 | PGA-co-TMC-1 | PGA-co-TMC-2 | PGA-co-TMC-3 | |||||
| LEP | 0.41 | 0.45 | 0.28 | 46.38 | 39.36 | 3.28 | 6.00 | 5.08 | 8.34 | 25.90 |
| PRF | 0.17 | 0.20 | 0.07 | 41.24 | 31.14 | 3.73 | 6.62 | 5.64 | 6.37 | 28.95 |
| TN | 0.57 | 0.61 | 0.42 | 55.00 | 41.86 | 3.58 | 6.78 | 5.79 | 7.87 | 29.18 |
| experiments | 30.53 ± 3.61 | 29.79 ± 0.56 | 4.00 ± 0.70 | 11.91 ± 2.12 | ||||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fiedler, N.; Kleine, T.; Oschatz, S.; Schultz, S.; Grabow, N.; Lebahn, K. Calibration Framework for Modeling Nonlinear Viscoelastic–Plastic Behavior of Bioresorbable Polymers in Finite Element Analysis for Stent Applications. Polymers 2025, 17, 2863. https://doi.org/10.3390/polym17212863
Fiedler N, Kleine T, Oschatz S, Schultz S, Grabow N, Lebahn K. Calibration Framework for Modeling Nonlinear Viscoelastic–Plastic Behavior of Bioresorbable Polymers in Finite Element Analysis for Stent Applications. Polymers. 2025; 17(21):2863. https://doi.org/10.3390/polym17212863
Chicago/Turabian StyleFiedler, Nicklas, Thomas Kleine, Stefan Oschatz, Selina Schultz, Niels Grabow, and Kerstin Lebahn. 2025. "Calibration Framework for Modeling Nonlinear Viscoelastic–Plastic Behavior of Bioresorbable Polymers in Finite Element Analysis for Stent Applications" Polymers 17, no. 21: 2863. https://doi.org/10.3390/polym17212863
APA StyleFiedler, N., Kleine, T., Oschatz, S., Schultz, S., Grabow, N., & Lebahn, K. (2025). Calibration Framework for Modeling Nonlinear Viscoelastic–Plastic Behavior of Bioresorbable Polymers in Finite Element Analysis for Stent Applications. Polymers, 17(21), 2863. https://doi.org/10.3390/polym17212863































































































