Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (37)

Search Parameters:
Keywords = viscoelastic surfactant solutions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 5788 KB  
Article
Flow Characteristics and Enhanced Oil Recovery Performance of Anionic and Zwitterionic Viscoelastic Surfactant System
by Chenyue Ling, Yafei Liu, Xuchun Yang, Qi Ye and Desheng Zhou
Gels 2025, 11(8), 627; https://doi.org/10.3390/gels11080627 - 10 Aug 2025
Viewed by 438
Abstract
Surfactant flooding has shown potential in enhanced oil recovery (EOR), but conventional surfactants often underperform in heterogeneous reservoirs. This study investigates the impact of a surfactant mixture, combining anionic sodium dodecyl sulfate (SDS) and zwitterionic oleylamidopropyl betaine (OAB-30), on two-phase flow behavior and [...] Read more.
Surfactant flooding has shown potential in enhanced oil recovery (EOR), but conventional surfactants often underperform in heterogeneous reservoirs. This study investigates the impact of a surfactant mixture, combining anionic sodium dodecyl sulfate (SDS) and zwitterionic oleylamidopropyl betaine (OAB-30), on two-phase flow behavior and its EOR potential. Six surfactant solutions with varying concentrations were first screened using an idealized dead-end shaped microchannel in combination with interfacial properties and rheological tests. The results showed that 0.2% SDS and 0.6% OAB-30 produced the highest oil recovery in the dead-end structure. Interfacial tension was reduced to 0.374 mN/m and strong viscoelastic behavior was observed using the optimized surfactant mixture. Wettability of the surface tended to be more hydrophilic after the application of the surfactant mixture as well. Subsequently, the microscale oil displacement process was examined using the optimized surfactant mixture via microfluidic devices with an idealized pore–throat network with permeability contrast and realistic pore–throat structure. The application of the optimal surfactant formula resulted in 28.46% and 49.96% improvement over conventional water flooding in a realistic pore–throat structure and idealized pore–throat network. The critical micelle concentration measurements of the mixture suggested favorable micelle formation, contributing to gel-like properties that improved sweep efficiency by lowering the mobility ratio. In heterogenous pore–throat networks, the emulsification, micellar solubilization, wettability alteration, and viscoelastic properties of the surfactant mixture favored the oil recovery process. This work provides experimental evidence and mechanistic insights for the application of viscoelastic surfactants in EOR in heterogeneous reservoirs. Full article
(This article belongs to the Special Issue Applications of Gels for Enhanced Oil Recovery)
Show Figures

Figure 1

22 pages, 3730 KB  
Article
Reservoir Compatibility and Enhanced Oil Recovery of Polymer and Polymer/Surfactant System: Effects of Molecular Weight and Hydrophobic Association
by Tao Liu, Xin Chen and Xiang Tang
Polymers 2025, 17(10), 1390; https://doi.org/10.3390/polym17101390 - 18 May 2025
Viewed by 793
Abstract
In this paper, four kinds of flooding systems, high-molecular-weight polymer (HMP), low-molecular-weight polymer (LMP), hydrophobic association polymer (HAP), and LMP/petroleum sulfonate (PS), are preferred. By comparing the static performance, their good basic characteristics as an oil displacement system are clarified. The application concentration [...] Read more.
In this paper, four kinds of flooding systems, high-molecular-weight polymer (HMP), low-molecular-weight polymer (LMP), hydrophobic association polymer (HAP), and LMP/petroleum sulfonate (PS), are preferred. By comparing the static performance, their good basic characteristics as an oil displacement system are clarified. The application concentration range of the polymer solution is optimized and designed in combination with core injectivity experiments and mobility control theory. The oil displacement system and its injection volume have been optimized via three parallel core flooding experiments. The results show that the increase of the polymer molecular weight and the association will enhance the viscosity-increasing performance, viscosity stability, viscoelasticity, and hydrodynamic characteristic size of the solution. According to whether the injection pressure curve reaches equilibrium and the time required for equilibrium, the matching relationship between the polymer and the reservoir can be divided into plugging, flow difficulty and flow smoothly. Based on the mobility control theory, the minimum mobility of the target core occurs when the water saturation is 30–40%. Therefore, the polymer formulation for the application of combined cores with viscosities of 50 mD, 210 mD, and 350 mD is set at 1500 mg/L for LMP and 800 mg/L for MAP. HAP has the best profile improvement effect, but its lowest EOR is 9.68%, which mainly acts on high-permeability layers; LMP can produce more remaining oil in middle-permeability layers, and its EOR can reach 12.01%; LMP/PS can give full play to the oil displacement performance of the polymer and the oil washing ability of the surfactant, and its highest EOR is 21.32%. Meanwhile, the emulsification effect also makes the profile improvement last longer. According to the EOR efficiency and final oil recovery, the optimal injection volume of LMP/PS can be designed to be 0.6–0.7 PV. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

20 pages, 3259 KB  
Article
The Rheological Enhancement of an Internal Olefin Sulphonate Surfactant upon Interactions with Cationic Surfactants by Micellization Changes
by Ana María Lozada, María Isabel Sandoval and Ronald Mercado
Materials 2025, 18(6), 1270; https://doi.org/10.3390/ma18061270 - 13 Mar 2025
Cited by 1 | Viewed by 694
Abstract
Enhanced oil recovery (EOR) methods traditionally rely on polymer solutions to improve viscosity and elasticity; however, their effectiveness is limited under high-temperature, high-salinity, and high-shear conditions, leading to elevated operational costs. Anionic/cationic formulations have been studied in terms of interfacial tension reduction for [...] Read more.
Enhanced oil recovery (EOR) methods traditionally rely on polymer solutions to improve viscosity and elasticity; however, their effectiveness is limited under high-temperature, high-salinity, and high-shear conditions, leading to elevated operational costs. Anionic/cationic formulations have been studied in terms of interfacial tension reduction for EOR applications. This study presents a novel approach to EOR by enhancing the rheological properties of an anionic internal olefin sulfonate surfactant through interactions with cationic surfactants, eliminating the need for polymer molecules. This research demonstrates that cationic surfactants can induce micellization changes, resulting in substantial viscosity enhancement and viscoelasticity development. The effect is found to depend on the hydrocarbon chain length and concentration of the cationic surfactants, with longer chains yielding higher viscosity and more pronounced non-Newtonian behavior. Additionally, this study reveals that the addition of NaCl alters micellar organization, with the order of component additions playing a critical role in rheological performance. This kinetic-dependent micellization behavior, rarely explored in EOR applications, highlights the potential of counterion surfactants as viscosity enhancers in surfactant-based flooding processes. Oscillatory rheology confirms that cationic/anionic surfactant systems in this study exhibit stable viscoelastic behavior, making them potentially more suitable for harsh reservoir environments than polymer-based EOR fluids. These findings open new avenues for the development of cost-effective and tailored surfactant formulations, offering an alternative to polymer solutions under challenging reservoir conditions. Full article
(This article belongs to the Section Advanced Nanomaterials and Nanotechnology)
Show Figures

Figure 1

17 pages, 8338 KB  
Article
Numerical Simulation of Acid Diversion and Wormhole Propagation Mechanism of Nanoparticle VES Acid in High-Temperature Carbonate Reservoirs
by Da Wang, Yunjin Wang, Puyong Feng, Yuan Li, Kun Zhang, Fujian Zhou, Fuming Li and Yancai Gao
Processes 2025, 13(3), 608; https://doi.org/10.3390/pr13030608 - 20 Feb 2025
Cited by 1 | Viewed by 659
Abstract
Uniform acid distribution is a critical challenge and a key factor for the successful acidizing of carbonate reservoirs. Previous experimental studies have shown that nanoparticles can enhance the viscosity and thermal resistance of viscoelastic surfactant (VES) fracturing fluids. However, there has been limited [...] Read more.
Uniform acid distribution is a critical challenge and a key factor for the successful acidizing of carbonate reservoirs. Previous experimental studies have shown that nanoparticles can enhance the viscosity and thermal resistance of viscoelastic surfactant (VES) fracturing fluids. However, there has been limited research on the effects of nanoparticles on the wormhole propagation and diversion performance of VES acid. This paper establishes a nanoparticle VES acid rheological model based on rheology experiments, and introduces a porous medium temperature field and nanoparticle adsorption model into a two-scale continuum model to establish a mathematical model for the expansion of wormholes in nanoparticle VES acid. The accuracy of the wormhole model is verified through laboratory experiments. The effects of permeability contrast, initial acid temperature, and nanoparticle adsorption on the diversion performance and wormhole propagation of nanoparticle VES acid are analyzed. The results indicate that nanoparticle VES acid differs from conventional VES acid, with its invaded zone divided into high-viscosity and low-viscosity zones. The presence of the high-viscosity zone allows nanoparticle VES acid to improve wormhole propagation in low-permeability cores by 16.2% compared to conventional VES acid. At 393 K, nanoparticle VES acid has a better diversion effect in carbonate cores with permeability contrast of 10, as the acid fluid flows faster in high-permeability cores, resulting in wormhole shapes with more branches. Numerical model results show that when the permeability contrast is 8, increasing the injection temperature of the acid solution from 293 K to 368 K improves the ability of low-permeability cores by 33.3%. This study establishes a mathematical model for nanoparticle VES acid based on laboratory experiments and numerical simulations, investigates the effects of nanoparticles on VES rheological properties under acidic conditions, and clarifies the wormhole propagation and acid diversion behavior of nanoparticle VES acid, providing guidance for future field applications of this acid. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

14 pages, 6222 KB  
Article
Rheological Properties of Emulsions Stabilized by Cellulose Derivatives with the Addition of Ethyl Alcohol
by Sylwia Różańska, Jacek Różański, Patrycja Wagner and Ewelina Warmbier-Wytykowska
Materials 2024, 17(24), 6090; https://doi.org/10.3390/ma17246090 - 13 Dec 2024
Cited by 1 | Viewed by 1324
Abstract
The paper presents the results of research on the rheological properties and stability of oil-in-water emulsions containing cellulose derivatives: methylcellulose, hydroxyethylcellulose, and hydroxypropylmethylcellulose. The continuous phase of the emulsion was a 70% ethanol (EtOH) solution by volume. The dispersed phase consisted of mineral, [...] Read more.
The paper presents the results of research on the rheological properties and stability of oil-in-water emulsions containing cellulose derivatives: methylcellulose, hydroxyethylcellulose, and hydroxypropylmethylcellulose. The continuous phase of the emulsion was a 70% ethanol (EtOH) solution by volume. The dispersed phase consisted of mineral, linseed, and canola oils (20% by volume). Rheological measurements were performed in both steady and oscillatory flow. Emulsion stability was assessed on visual observation and changes in droplet diameter over a period of 5 months after preparation. Relatively stable emulsions were obtained without the addition of low-molecular-weight surfactants, exhibiting viscoelastic properties. The presence of ethanol in the continuous phase significantly slowed down the processes of emulsion sedimentation or creaming, as well as droplet coalescence. The reasons for the slow phase separation were linked to changes in density and zero-shear viscosity of the continuous phase caused by the addition of EtOH. All emulsions were highly polydisperse, and the addition of methylcellulose and hydroxypropylmethylcellulose further led to the formation of strongly flocculated emulsions. Droplet flocculation resulted in highly viscoelastic fluids. In particular, for emulsions containing hydroxypropylmethylcellulose, the ratio of the storage modulus to the loss modulus approached a value close to 0.1, which is characteristic of gels. Full article
(This article belongs to the Section Polymeric Materials)
Show Figures

Figure 1

19 pages, 10942 KB  
Article
Adsorption and Aggregation Behaviors of Oleyl Alcohol-Based Extended Surfactant and Its Mixtures
by Ping Li, Peiyu Ren, Shuoyu Wang, Jiangshan Wang, Zidan Sun, Jiayi Sun and Weibo Gu
Molecules 2024, 29(11), 2570; https://doi.org/10.3390/molecules29112570 - 30 May 2024
Cited by 3 | Viewed by 1467
Abstract
An oleyl alcohol-based extended surfactant, sodium oleyl polyethylene oxide-polypropylene oxide sulfate (OE3P3S), was synthesized and identified using FT-IR and 1H NMR. The adsorption and aggregation behaviors of OE3P3S and its mixture with cationic surfactant [...] Read more.
An oleyl alcohol-based extended surfactant, sodium oleyl polyethylene oxide-polypropylene oxide sulfate (OE3P3S), was synthesized and identified using FT-IR and 1H NMR. The adsorption and aggregation behaviors of OE3P3S and its mixture with cationic surfactant alkyltrimethylammoniumbromide (ATAB) were investigated under different molar ratios. The static surface tension analysis indicated that the critical micellization concentration (cmc) and the critical surface tension (γcmc) of OE3P3S were 0.72 mmol/L, and 36.16 mN/m, respectively. The cmc and γcmc values of the binary system were much lower than that of the individual component. And the cmc values of OE3P3S/ATAB = 6:4 mixtures decreased with an increase in the chain length of the cationic surfactant in the binary system. It was found from the dynamic surface tension that there was a slower diffusion rate in the binary system compared to the pure surfactant, and the adsorption processes for OE3P3S/ATAB = 6:4 were mixed diffusion-kinetic adsorption mechanisms. With a combination of DLS data and TEM measurements, formations of vesicles in OE3P3S/ATAB = 6:4 solutions appeared to occur at a concentration of 0.05 mmol/L. By studying the formation of liquid crystal structures in an emulsion prepared with OE3P3S as the surfactant, it was found that the oil-in-water emulsion is birefringent with a Maltese cross texture, and the rheological properties revealed its predominant viscoelastic behavior and shear thinning properties. Full article
(This article belongs to the Special Issue Surfactants at the Soft Interfacial Layer)
Show Figures

Graphical abstract

14 pages, 3182 KB  
Article
Rheological Behaviors and Fractional Viscoelastic Modeling of Glucopone (APG)/Water/Hydrocarbons Solutions
by Mohamed A. Siddig
Colloids Interfaces 2024, 8(3), 27; https://doi.org/10.3390/colloids8030027 - 24 Apr 2024
Viewed by 1642
Abstract
The aims of this work are to study the rheological behaviors of a microemulsion of Glucopone–water–hydrocarbon systems and to use a fractional model to describe several experimental results of these systems. Four different types of hydrocarbons were considered. The frequency dependent storage, G [...] Read more.
The aims of this work are to study the rheological behaviors of a microemulsion of Glucopone–water–hydrocarbon systems and to use a fractional model to describe several experimental results of these systems. Four different types of hydrocarbons were considered. The frequency dependent storage, G′, and loss modulus, G″, were investigated below the critical strain. The critical strain was found to decrease as the alkane chain lengths increased, while the opposite behavior was observed for zero shear viscosity, η0. Most of the microemulsions exhibited stable elastic fluid behavior (G′ > G″) below 10 rad s−1 angular frequency. For all systems, elastic modulus values were found to be greater than loss modulus in the frequency range studied, indicating more elastic behaviors. Shear-thinning behaviors were observed, and the complex viscosity decreased with an increase in hydrocarbon chain lengths. The effects of hydrocarbon types on the rheological behaviors were more profound in the dodecane systems which showed maximum values of G′ and η0. The Friedrich–Braun model was introduced and was used to describe several experimental results on Alkyl polyglocoside solutions. Fractional rheology successfully described the viscoelastic phenomena in Glucopone surfactant solutions and the comparisons between the experimental results and the theoretical predictions were found to be satisfactory. Full article
(This article belongs to the Special Issue Rheology of Complex Fluids and Interfaces)
Show Figures

Figure 1

13 pages, 2852 KB  
Article
Dynamic Interfacial Properties and Foamability of DoTAB/SiO2 Mixtures
by Fariza Amankeldi, Maratbek Gabdullin, Miras Issakhov, Zhanar Ospanova, Altynay Sharipova, Saule Aidarova and Reinhard Miller
Colloids Interfaces 2024, 8(2), 19; https://doi.org/10.3390/colloids8020019 - 11 Mar 2024
Cited by 2 | Viewed by 1989
Abstract
The interaction between nanoparticles and cationic surfactants is an exciting and emerging field in interfacial science. This area of research holds significant promise, linking fundamental principles to practical applications in a variety of industries, including chemical processes, biomedical applications and the petroleum industry. [...] Read more.
The interaction between nanoparticles and cationic surfactants is an exciting and emerging field in interfacial science. This area of research holds significant promise, linking fundamental principles to practical applications in a variety of industries, including chemical processes, biomedical applications and the petroleum industry. This study explores the interaction between dodecyltrimethylammonium bromide (DoTAB) and silica (SiO2) nanoparticles, investigating their influence on dynamic interfacial properties and foam characteristics. Through equilibrium and dynamic surface tension measurements, along with examining the dilational visco-elasticity behavior, this research reveals the complex surface behavior of DoTAB/SiO2 mixtures compared to individual surfactant solutions. The foamability and stability experiments indicate that the addition of SiO2 significantly improves the foam stability. Notably, stable foams are achieved at low SiO2 concentrations, suggesting a cost-effective approach to enhancing the foam stability. This study identifies the optimal stability conditions for 12 mM DoTAB solutions, emphasizing the crucial role of the critical aggregation concentration region. These findings offer valuable insights for designing surfactant-nanoparticle formulations to enhance foam performance in various industrial applications. Full article
Show Figures

Figure 1

15 pages, 4633 KB  
Article
Enhancing Oil-Uptake Efficiency with an Alkyl Polyglycoside–Dodecanol Formulation
by Lorenzo Veronico, Giuseppe Colafemmina and Luigi Gentile
Colloids Interfaces 2024, 8(1), 6; https://doi.org/10.3390/colloids8010006 - 4 Jan 2024
Cited by 12 | Viewed by 4473 | Correction
Abstract
This study provides valuable insights into biobased surfactant systems, shedding light on their behavior and potential applications in cleaning and oil recovery processes. By combining the alkyl polyglycoside Triton® CG-110 with C12OH fatty alcohol, a promising strategy emerges, enhancing the [...] Read more.
This study provides valuable insights into biobased surfactant systems, shedding light on their behavior and potential applications in cleaning and oil recovery processes. By combining the alkyl polyglycoside Triton® CG-110 with C12OH fatty alcohol, a promising strategy emerges, enhancing the efficiency of surfactant-based formulations. This innovative approach paves the way for sustainable solutions in diverse industrial applications. A rheological analysis of the formulations containing C12OH demonstrated a Newtonian-like behavior of up to 3.2 v/v% of Triton, while a viscoelastic response was observed in a system containing 6.4 v/v% of Triton. Self-diffusion nuclear magnetic resonance revealed the formation of larger aggregates with C12OH, diverging from the classical spherical micellar solution. Moreover, cleaning efficiency tests highlighted C12OH’s significant enhancement of the surfactant system’s oil-uptake capacity. This study identified the optimum formulation point, corresponding to the Winsor III microemulsion phase, in samples containing C12OH. This pivotal discovery showcases the potential of tailored surfactant blends, indicating a path toward greener and more effective industrial practices. Full article
(This article belongs to the Special Issue Progress in Surfactants with Low Environmental Impact)
Show Figures

Figure 1

15 pages, 7045 KB  
Article
Polymerization Behavior and Rheological Properties of a Surfactant-Modified Reactive Hydrophobic Monomer
by Xin Wen, Lei Wang, Xiaojuan Lai, Guiru Liu, Wenwen Yang, Jinhao Gao, Yameng Liu and Wenyu Cui
Chemistry 2023, 5(4), 2598-2612; https://doi.org/10.3390/chemistry5040168 - 14 Nov 2023
Viewed by 1844
Abstract
The structures and properties of hydrophobic association polymers can be controlled using micelles. In this work, we synthesize a reactive hydrophobic surfactant monomer, KS-3, from oleic acid, N,N-dimethylpropylenediamine, and allyl chloride. A strong synergistic effect between KS-3 and cocamidopropyl betaine [...] Read more.
The structures and properties of hydrophobic association polymers can be controlled using micelles. In this work, we synthesize a reactive hydrophobic surfactant monomer, KS-3, from oleic acid, N,N-dimethylpropylenediamine, and allyl chloride. A strong synergistic effect between KS-3 and cocamidopropyl betaine in aqueous solution enhances the hydrophilic dispersibility of KS-3, thereby transforming spherical micelles into cylindrical micelles. KS-3 was grafted onto a polyacrylamide chain via aqueous free-radical polymerization to obtain RES, a hydrophobic association polymer. Structural analysis revealed that the RES polymers assembled in wormlike micelles were more tightly arranged than those assembled in spherical micelles, resulting in a compact network structure in water, smooth surface, and high thermal stability. Rheological tests revealed that the synthesized polymers with wormlike and spherical micelles exhibited shear-thinning properties along with different structural strengths and viscoelasticities. Therefore, controlling the micellar state can effectively regulate the polymer properties. The polymers obtained through wormlike micelle polymerization have potential applications in fields with high demands, such as drug release, water purification, and oilfield development. Full article
(This article belongs to the Section Chemistry of Materials)
Show Figures

Figure 1

19 pages, 4643 KB  
Article
Fracturing Fluid Polymer Thickener with Superior Temperature, Salt and Shear Resistance Properties from the Synergistic Effect of Double-Tail Hydrophobic Monomer and Nonionic Polymerizable Surfactant
by Shenglong Shi, Jinsheng Sun, Kaihe Lv, Jingping Liu, Yingrui Bai, Jintang Wang, Xianbin Huang, Jiafeng Jin and Jian Li
Molecules 2023, 28(13), 5104; https://doi.org/10.3390/molecules28135104 - 29 Jun 2023
Cited by 13 | Viewed by 2431
Abstract
To develop high-salinity, high-temperature reservoirs, two hydrophobically associating polymers as fracturing fluid thickener were respectively synthesized through aqueous solution polymerization with acrylamide (AM), acrylic acid (AA), 2-acrylamido-2-methylpropanesulfonic acid (AMPS), nonionic polymerizable surfactant (NPS) and double-tail hydrophobic monomer (DHM). The thickener ASDM (AM/AA/AMPS/NPS/DHM) and [...] Read more.
To develop high-salinity, high-temperature reservoirs, two hydrophobically associating polymers as fracturing fluid thickener were respectively synthesized through aqueous solution polymerization with acrylamide (AM), acrylic acid (AA), 2-acrylamido-2-methylpropanesulfonic acid (AMPS), nonionic polymerizable surfactant (NPS) and double-tail hydrophobic monomer (DHM). The thickener ASDM (AM/AA/AMPS/NPS/DHM) and thickener ASD (AM/AA/AMPS/DHM) were compared in terms of properties of water dissolution, thickening ability, rheological behavior and sand-carrying. The results showed that ASDM could be quickly diluted in water within 6 min, 66.7% less than that of ASD. ASDM exhibited salt-thickening performance, and the apparent viscosity of 0.5 wt% ASDM reached 175.9 mPa·s in 100,000 mg/L brine, 100.6% higher than that of ASD. The viscosity of 0.5 wt% ASDM was 85.9 mPa·s after shearing for 120 min at 120 °C and at 170 s−1, 46.6% higher than that of ASD. ASDM exhibited better performance in thickening ability, viscoelasticity, shear recovery, thixotropy and sand-carrying than ASD. The synergistic effect of hydrophobic association and linear entanglement greatly enhancing the performance of ASDM and the compactness of the spatial network structure of the ASDM was enhanced. In general, ASDM exhibited great potential for application in extreme environmental conditions with high salt and high temperatures. Full article
(This article belongs to the Special Issue Advances in Water-Soluble Polymers)
Show Figures

Figure 1

13 pages, 4002 KB  
Article
pH-Responsive Viscoelastic Fluids of a C22-Tailed Surfactant Induced by Trivalent Metal Ions
by Zhi Xu, Shuai Yu, Rong Fu, Ji Wang and Yujun Feng
Molecules 2023, 28(12), 4621; https://doi.org/10.3390/molecules28124621 - 7 Jun 2023
Cited by 2 | Viewed by 1706
Abstract
pH-responsive viscoelastic fluids are often achieved by adding hydrotropes into surfactant solutions. However, the use of metal salts to prepare pH-responsive viscoelastic fluids has been less documented. Herein, a pH-responsive viscoelastic fluid was developed by blending an ultra-long-chain tertiary amine, N-erucamidopropyl-N, [...] Read more.
pH-responsive viscoelastic fluids are often achieved by adding hydrotropes into surfactant solutions. However, the use of metal salts to prepare pH-responsive viscoelastic fluids has been less documented. Herein, a pH-responsive viscoelastic fluid was developed by blending an ultra-long-chain tertiary amine, N-erucamidopropyl-N, N-dimethylamine (UC22AMPM), with metal salts (i.e., AlCl3, CrCl3, and FeCl3). The effects of the surfactant/metal salt mixing ratio and the type of metal ions on the viscoelasticity and phase behavior of fluids were systematically examined by appearance observation and rheometry. To elucidate the role of metal ions, the rheological properties between AlCl3− and HCl−UC22AMPM systems were compared. Results showed the above metal salt evoked the low-viscosity UC22AMPM dispersions to form viscoelastic solutions. Similar to HCl, AlCl3 could also protonate the UC22AMPM into a cationic surfactant, forming wormlike micelles (WLMs). Notably, much stronger viscoelastic behavior was evidenced in the UC22AMPM−AlCl3 systems because the Al3+ as metal chelators coordinated with WLMs, promoting the increment of viscosity. By tuning the pH, the macroscopic appearance of the UC22AMPM−AlCl3 system switched between transparent solutions and milky dispersion, concomitant with a viscosity variation of one order of magnitude. Importantly, the UC22AMPM−AlCl3 systems showed a constant viscosity of 40 mPa·s at 80 °C and 170 s−1 for 120 min, indicative of good heat and shear resistances. The metal-containing viscoelastic fluids are expected to be good candidates for high-temperature reservoir hydraulic fracturing. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

15 pages, 6019 KB  
Article
Development of a Novel Surfactant-Based Viscoelastic Fluid System as an Alternative Nonpolymeric Fracturing Fluid and Comparative Analysis with Traditional Guar Gum Gel Fluid
by Mahesh Chandra Patel, Mohammed Abdalla Ayoub, Mazlin Bt Idress and Anirbid Sircar
Polymers 2023, 15(11), 2444; https://doi.org/10.3390/polym15112444 - 25 May 2023
Cited by 8 | Viewed by 2089
Abstract
Surfactant-based viscoelastic (SBVE) fluids have recently gained interest from many oil industry researchers due to their polymer-like viscoelastic behaviour and ability to mitigate problems of polymeric fluids by replacing them during various operations. This study investigates an alternative SBVE fluid system for hydraulic [...] Read more.
Surfactant-based viscoelastic (SBVE) fluids have recently gained interest from many oil industry researchers due to their polymer-like viscoelastic behaviour and ability to mitigate problems of polymeric fluids by replacing them during various operations. This study investigates an alternative SBVE fluid system for hydraulic fracturing with comparable rheological characteristics to conventional polymeric guar gum fluid. In this study, low and high surfactant concentration SBVE fluid and nanofluid systems were synthesized, optimized, and compared. Cetyltrimethylammonium bromide and counterion inorganic sodium nitrate salt, with and without 1 wt% ZnO nano-dispersion additives, were used; these are entangled wormlike micellar solutions of cationic surfactant. The fluids were divided into the categories of type 1, type 2, type 3, and type 4, and were optimized by comparing the rheological characteristics of different concentration fluids in each category at 25 °C. The authors have reported recently that ZnO NPs can improve the rheological characteristics of fluids with a low surfactant concentration of 0.1 M cetyltrimethylammonium bromide by proposing fluids and nanofluids of type 1 and type 2. In addition, conventional polymeric guar gum gel fluid is prepared in this study and analyzed for its rheological characteristics. The rheology of all SBVE fluids and the guar gum fluid was analyzed using a rotational rheometer at varying shear rate conditions from 0.1 to 500 s−1 under 25 °C, 35 °C, 45 °C, 55 °C, 65 °C, and 75 °C temperature conditions. The comparative analysis section compares the rheology of the optimal SBVE fluids and nanofluids in each category to the rheology of polymeric guar gum fluid for the entire range of shear rates and temperature conditions. The type 3 optimum fluid with high surfactant concentration of 0.2 M cetyltrimethylammonium bromide and 1.2 M sodium nitrate was the best of all the optimum fluids and nanofluids. This fluid shows comparative rheology to guar gum fluid even at elevated shear rate and temperature conditions. The comparison of average viscosity values under a different group of shear rate conditions suggests that the overall optimum SBVE fluid prepared in this study is a potential nonpolymeric viscoelastic fluid candidate for hydraulic fracturing operation that could replace polymeric guar gum fluids. Full article
(This article belongs to the Special Issue Sustainable and Eco-Innovative Polymer Materials)
Show Figures

Figure 1

10 pages, 1934 KB  
Article
Prediction of the Viscoelastic Properties of a Cetyl Pyridinium Chloride/Sodium Salicylate Micellar Solution: (II) Prediction of the Step Rate Experiments
by Shuxin Huang
Polymers 2022, 14(24), 5561; https://doi.org/10.3390/polym14245561 - 19 Dec 2022
Cited by 1 | Viewed by 1581
Abstract
The reliable viscoelastic characterization and prediction of micellar solution is still required in industrial applications of the solution, e.g., in surfactant flooding and pharmaceuticals. Based on the recent theoretical characterization of the viscoelastic properties of a cetyl pyridinium chloride/sodium salicylate (CPyCl/NaSal) wormlike micellar [...] Read more.
The reliable viscoelastic characterization and prediction of micellar solution is still required in industrial applications of the solution, e.g., in surfactant flooding and pharmaceuticals. Based on the recent theoretical characterization of the viscoelastic properties of a cetyl pyridinium chloride/sodium salicylate (CPyCl/NaSal) wormlike micellar solution with a structuralized constitutive model in the work published in 2022, the present work predicted five groups of transient shear viscoelasticities of the solution experimentally obtained in 2010, which include the first normal stress difference (N1) versus time curve in the start-up experiment, the shear stress (τ12) in the start-up experiment, τ12 in the long-term start-up experiment, the stress relaxation upon cessation of steady shear flow, and the transient N112 in the step strain experiment. The study findings clearly show an improvement in the predictions of the viscoelastic properties of the micellar solution compared with those predicted previously. For example, the experimental N112 is 9 at the strain of 9 in the step strain experiment, and the corresponding previous and present predictions are 2.47 and 8.45, respectively. Full article
(This article belongs to the Section Polymer Physics and Theory)
Show Figures

Graphical abstract

12 pages, 8230 KB  
Article
CO2-Responsive Wormlike Micelles Based on Pseudo-Tetrameric Surfactant
by Xia Wei, Xiran He, Dongmei Zhang and Xin Su
Molecules 2022, 27(22), 7922; https://doi.org/10.3390/molecules27227922 - 16 Nov 2022
Cited by 11 | Viewed by 1971
Abstract
Wormlike micelles, which are linear aggregates created by the self-assembly of surfactants, may entangle to form dynamic three-dimensional network-like structures, endowing solutions with considerable macroscopic viscoelasticity. Recently, a pressing need has arisen to research a novel stimuli-responsive worm-like micelle that is efficient and [...] Read more.
Wormlike micelles, which are linear aggregates created by the self-assembly of surfactants, may entangle to form dynamic three-dimensional network-like structures, endowing solutions with considerable macroscopic viscoelasticity. Recently, a pressing need has arisen to research a novel stimuli-responsive worm-like micelle that is efficient and environmentally friendly. CO2 is an inexpensive, abundant, non-toxic, biocompatible, and non-combustible gas, and it is anticipated that CO2 may serve as the trigger for stimuli-responsive worm-like micelles. In this paper, the formation of CO2-switchable pseudo-tetrameric surfactants, which subsequently self-assemble into CO2-switched wormlike micelles, is accomplished using a simple mixing of two commercial reagents, such as stearic acids and cyclen. The rheological characteristics switched by the use of CO2 are cycled between that of a low-viscosity (1.2 mPa·s) fluid and a viscoelastic fluid (worm-like micelles, 3000 mPa·s). This article expands the field of study on stimuli-responsive worm-like micelles. Full article
Show Figures

Figure 1

Back to TopTop