Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,663)

Search Parameters:
Keywords = vineyards

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 786 KiB  
Article
Nanopore Workflow for Grapevine Viroid Surveillance in Kazakhstan: Bypassing rRNA Depletion Through Non-Canonical Priming
by Karlygash P. Aubakirova, Zhibek N. Bakytzhanova, Akbota Rakhatkyzy, Laura S. Yerbolova, Natalya P. Malakhova and Nurbol N. Galiakparov
Pathogens 2025, 14(8), 782; https://doi.org/10.3390/pathogens14080782 - 6 Aug 2025
Abstract
Grapevine (Vitis vinifera L.) cultivation is an important agricultural sector worldwide. Its expansion into new areas, like Kazakhstan, brings significant phytosanitary risks. Viroids, such as grapevine yellow speckle viroid 1 (GYSVd-1) and hop stunt viroid (HSVd), are RNA pathogens that threaten vineyard [...] Read more.
Grapevine (Vitis vinifera L.) cultivation is an important agricultural sector worldwide. Its expansion into new areas, like Kazakhstan, brings significant phytosanitary risks. Viroids, such as grapevine yellow speckle viroid 1 (GYSVd-1) and hop stunt viroid (HSVd), are RNA pathogens that threaten vineyard productivity. They can cause a progressive decline through latent infections. Traditional diagnostic methods are usually targeted and therefore not suitable for thorough surveillance. In contrast, modern high-throughput sequencing (HTS) methods often face challenges due to their high costs and complicated sample preparation, such as ribosomal RNA (rRNA) depletion. This study introduces a simplified diagnostic workflow that overcomes these barriers. We utilized the latest Oxford Nanopore V14 cDNA chemistry, which is designed to prevent internal priming, by substituting a targeted oligo(dT)VN priming strategy to facilitate the sequencing of non-polyadenylated viroids from total RNA extracts, completely bypassing the rRNA depletion step and use of random oligonucleotides for c DNA synthesis. This method effectively detects and identifies both GYSVd-1 and HSVd. This workflow significantly reduces the time, cost, and complexity of HTS-based diagnostics. It provides a powerful and scalable tool for establishing strong genomic surveillance and phytosanitary certification programs, which are essential for supporting the growing viticulture industry in Kazakhstan. Full article
26 pages, 3326 KiB  
Article
Zeolite in Vineyard: Innovative Agriculture Management Against Drought Stress
by Eleonora Cataldo, Sergio Puccioni, Aleš Eichmeier and Giovan Battista Mattii
Horticulturae 2025, 11(8), 897; https://doi.org/10.3390/horticulturae11080897 (registering DOI) - 3 Aug 2025
Viewed by 213
Abstract
Discovering, analyzing, and finding a key to understanding the physiological and biochemical responses that Vitis vinifera L. undertakes against drought stress is of fundamental importance for this profitable crop. Today’s considerable climatic fluctuations force researchers and farmers to focus on this issue with [...] Read more.
Discovering, analyzing, and finding a key to understanding the physiological and biochemical responses that Vitis vinifera L. undertakes against drought stress is of fundamental importance for this profitable crop. Today’s considerable climatic fluctuations force researchers and farmers to focus on this issue with solutions inclined to respect the ecosystem. In this academic work, we focused on describing the drought stress consequences on several parameters of secondary metabolites on Vitis vinifera leaves (quercetins, kaempferol, resveratrol, proline, and xanthophylls) and on some ecophysiological characteristics (e.g., water potential, stomatal conductance, and leaf temperature) to compare the answers that diverse agronomic management techniques (i.e., irrigation with and without zeolite, pure zeolite and no application) could instaurate in the metabolic pathway of this important crop with the aim to find convincing and thought-provoking responses to use this captivating and versatile mineral, the zeolite known as the “magic rock”. Stressed grapevines reached 56.80 mmol/m2s gs at veraison and a more negative stem Ψ (+10.63%) compared to plants with zeolite. Resveratrol, in the hottest season, fluctuated from 0.18–0.19 mg/g in zeolite treatments to 0.37 mg/g in stressed vines. Quercetins were inclined to accumulate in response to drought stress too. In fact, we recorded a peak of quercetin (3-O-glucoside + 3-O-glucuronide) of 11.20 mg/g at veraison in stressed plants. It is interesting to note how the pool of metabolites was often unchanged for plants treated with zeolite and for plants treated with water only, thus elevating this mineral to a “stress reliever”. Full article
Show Figures

Figure 1

22 pages, 1111 KiB  
Article
Dynamics of Using Digital Technologies in Agroecological Settings: A Case Study Approach
by Harika Meesala and Gianluca Brunori
Agriculture 2025, 15(15), 1636; https://doi.org/10.3390/agriculture15151636 - 29 Jul 2025
Viewed by 253
Abstract
The main objective of this study is to offer fresh empirical insight into the evolving relationship between digitalisation and agroecology by examining Mulini Di Segalari, a biodynamic vineyard in Italy. While much of the existing literature positions digital agriculture as potentially misaligned with [...] Read more.
The main objective of this study is to offer fresh empirical insight into the evolving relationship between digitalisation and agroecology by examining Mulini Di Segalari, a biodynamic vineyard in Italy. While much of the existing literature positions digital agriculture as potentially misaligned with agroecological principles, this case study unveils how digital tools can actively reinforce agroecological practices when embedded within supportive socio-technical networks. Novel findings of this study highlight how the use of digital technologies supported agroecological practices and led to the reconfiguration of social relations, knowledge systems, and governance structures within the farm. Employing a technographic approach revealed that the farm’s transformation was driven not just by technology but through collaborative arrangements involving different stakeholders. These interactions created new routines, roles, and information flows, supporting a more distributed and participatory model of innovation. By demonstrating how digital tools can catalyse agroecological transitions in a context-sensitive and socially embedded manner, this study challenges the binary framings of technology versus ecology and calls for a more nuanced understanding of digitalisation as a socio-technical process. Full article
Show Figures

Figure 1

20 pages, 2181 KiB  
Article
Metabarcoding Analysis Reveals Microbial Diversity and Potential Soilborne Pathogens Associated with Almond Dieback and Decline
by André Albuquerque, Mariana Patanita, Joana Amaro Ribeiro, Maria Doroteia Campos, Filipa Santos, Tomás Monteiro, Margarida Basaloco and Maria do Rosário Félix
Plants 2025, 14(15), 2309; https://doi.org/10.3390/plants14152309 - 26 Jul 2025
Viewed by 395
Abstract
Almond decline and dieback have become significant challenges in newly established orchards, with symptoms including internal necrosis, canker, and external gummosis. This work aims to explore the potential fungal and bacterial causative agents through metabarcoding and traditional culture plate isolation across six almond [...] Read more.
Almond decline and dieback have become significant challenges in newly established orchards, with symptoms including internal necrosis, canker, and external gummosis. This work aims to explore the potential fungal and bacterial causative agents through metabarcoding and traditional culture plate isolation across six almond cultivars. Our results emphasize the multifactorial nature of almond decline and dieback, with possible co-infections by opportunistic fungi and bacteria playing a central role. Classical isolation identified 47 fungal species or genera, including Diaporthe amygdali, Diplodia corticola, Phytophthora sp., and several Fusarium species. Almond metabarcoding revealed a more diverse microbial community, highlighting the prevalence of soilborne pathogens such as Neocosmospora rubicola, Dactylonectria estremocensis, and Plectosphaerella niemeijerarum. Soil metabarcoding suggested that these pathogens likely originate from nursery substrates or soils shared with other crops, such as olives and vineyards, that serve as a source of inoculum. ‘Soleta’ generally presented lower richness when compared to the other tested cultivars, suggesting a higher degree of biotic stress and decreased plant resilience. This study highlights the value of integrating NGS approaches to comprehensively study complex diseases and the need for further research on pathogen interactions and cultivar susceptibility for the future development of new sustainable, targeted management strategies in almond orchards. Full article
Show Figures

Figure 1

22 pages, 2743 KiB  
Article
Effects of the Application of Different Types of Vermicompost Produced from Wine Industry Waste on the Vegetative and Productive Development of Grapevine in Two Irrigation Conditions
by Fernando Sánchez-Suárez, María del Valle Palenzuela, Cristina Campos-Vazquez, Inés M. Santos-Dueñas, Víctor Manuel Ramos-Muñoz, Antonio Rosal and Rafael Andrés Peinado
Agriculture 2025, 15(15), 1604; https://doi.org/10.3390/agriculture15151604 - 25 Jul 2025
Viewed by 317
Abstract
This study evaluates the agronomic potential of two types of vermicompost—one produced solely from wine industry residues (WIR) and one incorporating sewage sludge (WIR + SS)—under rainfed and deficit irrigation conditions in Mediterranean vineyards. The vermicompost was obtained through a two-phase process involving [...] Read more.
This study evaluates the agronomic potential of two types of vermicompost—one produced solely from wine industry residues (WIR) and one incorporating sewage sludge (WIR + SS)—under rainfed and deficit irrigation conditions in Mediterranean vineyards. The vermicompost was obtained through a two-phase process involving initial thermophilic pre-composting, followed by vermicomposting using Eisenia fetida for 90 days. The conditions were optimized to ensure aerobic decomposition and maintain proper moisture levels (70–85%) and temperature control. This resulted in end products that met the legal standards required for agricultural use. However, population dynamics revealed significantly higher worm reproduction and biomass in the WIR treatment, suggesting superior substrate quality. When applied to grapevines, WIR vermicompost increased soil organic matter, nitrogen availability, and overall fertility. Under rainfed conditions, it improved vegetative growth, yield, and must quality, with increases in yeast assimilable nitrogen (YAN), sugar content, and amino acid levels comparable to those achieved using chemical fertilizers, as opposed to the no-fertilizer trial. Foliar analyses at veraison revealed stronger nutrient uptake, particularly of nitrogen and potassium, which was correlated with improved oenological parameters compared to the no-fertilizer trial. In contrast, WIR + SS compost was less favorable due to lower worm activity and elevated trace elements, despite remaining within legal limits. These results support the use of vermicompost derived solely from wine residues as a sustainable alternative to chemical fertilizers, in line with the goals of the circular economy in viticulture. Full article
(This article belongs to the Special Issue Vermicompost in Sustainable Crop Production—2nd Edition)
Show Figures

Figure 1

20 pages, 342 KiB  
Review
Grassy and Herbaceous Interrow Cover Crops in European Vineyards: A Review of Their Short-Term Effects on Water Management and Regulating Ecosystem Services
by Mihály Zalai, Olimpia Bujtás, Miklós Sárospataki and Zita Dorner
Land 2025, 14(8), 1526; https://doi.org/10.3390/land14081526 - 24 Jul 2025
Viewed by 263
Abstract
Interrow management in vineyards significantly contributes to sustainable viticulture, particularly in water-scarce European regions. Grassy and herbaceous cover crops have been proven to enhance multiple regulating ecosystem services, including soil conservation, carbon sequestration, and improved water infiltration. However, the potential for water competition [...] Read more.
Interrow management in vineyards significantly contributes to sustainable viticulture, particularly in water-scarce European regions. Grassy and herbaceous cover crops have been proven to enhance multiple regulating ecosystem services, including soil conservation, carbon sequestration, and improved water infiltration. However, the potential for water competition with vines necessitates region-specific approaches. This review aims to analyze the effects of different cover crop types and interrow tillage methods on water management and regulating ecosystem services, focusing on main European vineyard areas. The research involved a two-stage literature review by Google Scholar and Scopus, resulting in the identification of 67 relevant scientific publications, with 11 offering experimental data from European contexts. Selected studies were evaluated based on climate conditions, soil properties, slope characteristics, and interrow treatments. Findings highlight that the appropriate selection of cover crop species, sowing and mowing timing, and mulching practices can optimize vineyard resilience under climate stress. Practical recommendations are offered to help winegrowers adopt cost-effective and environmentally adaptive strategies, especially on sloped or shallow soils, where partial cover cropping is often the most beneficial for both yield and ecological balance. Cover crops and mulching reduce erosion, enhance vineyard soil moisture, relieve water stress consequences, and, as a result, these cover cropping techniques can improve yield and nutritional values of grapes (e.g., Brix, pH, K concentration), but effects vary; careful, site-specific, long-term management is essential for best results. Full article
31 pages, 4937 KiB  
Article
Proximal LiDAR Sensing for Monitoring of Vegetative Growth in Rice at Different Growing Stages
by Md Rejaul Karim, Md Nasim Reza, Shahriar Ahmed, Kyu-Ho Lee, Joonjea Sung and Sun-Ok Chung
Agriculture 2025, 15(15), 1579; https://doi.org/10.3390/agriculture15151579 - 23 Jul 2025
Viewed by 275
Abstract
Precise monitoring of vegetative growth is essential for assessing crop responses to environmental changes. Conventional methods of geometric characterization of plants such as RGB imaging, multispectral sensing, and manual measurements often lack precision or scalability for growth monitoring of rice. LiDAR offers high-resolution, [...] Read more.
Precise monitoring of vegetative growth is essential for assessing crop responses to environmental changes. Conventional methods of geometric characterization of plants such as RGB imaging, multispectral sensing, and manual measurements often lack precision or scalability for growth monitoring of rice. LiDAR offers high-resolution, non-destructive 3D canopy characterization, yet applications in rice cultivation across different growth stages remain underexplored, while LiDAR has shown success in other crops such as vineyards. This study addresses that gap by using LiDAR for geometric characterization of rice plants at early, middle, and late growth stages. The objective of this study was to characterize rice plant geometry such as plant height, canopy volume, row distance, and plant spacing using the proximal LiDAR sensing technique at three different growth stages. A commercial LiDAR sensor (model: VPL−16, Velodyne Lidar, San Jose, CA, USA) mounted on a wheeled aluminum frame for data collection, preprocessing, visualization, and geometric feature characterization using a commercial software solution, Python (version 3.11.5), and a custom algorithm. Manual measurements compared with the LiDAR 3D point cloud data measurements, demonstrating high precision in estimating plant geometric characteristics. LiDAR-estimated plant height, canopy volume, row distance, and spacing were 0.5 ± 0.1 m, 0.7 ± 0.05 m3, 0.3 ± 0.00 m, and 0.2 ± 0.001 m at the early stage; 0.93 ± 0.13 m, 1.30 ± 0.12 m3, 0.32 ± 0.01 m, and 0.19 ± 0.01 m at the middle stage; and 0.99 ± 0.06 m, 1.25 ± 0.13 m3, 0.38 ± 0.03 m, and 0.10 ± 0.01 m at the late growth stage. These measurements closely matched manual observations across three stages. RMSE values ranged from 0.01 to 0.06 m and r2 values ranged from 0.86 to 0.98 across parameters, confirming the high accuracy and reliability of proximal LiDAR sensing under field conditions. Although precision was achieved across growth stages, complex canopy structures under field conditions posed segmentation challenges. Further advances in point cloud filtering and classification are required to reliably capture such variability. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

11 pages, 1123 KiB  
Article
Biodiversity of Yeast Species Isolated During Spontaneous Fermentation: Influence of Grape Origin, Vinification Conditions, and Year of Study
by Ana Benito-Castellanos, Beatriz Larreina, María Teresa Calvo de La Banda, Pilar Santamaría, Lucía González-Arenzana and Ana Rosa Gutiérrez
Microorganisms 2025, 13(7), 1707; https://doi.org/10.3390/microorganisms13071707 - 21 Jul 2025
Viewed by 389
Abstract
Winemaking involves a microbial ecosystem where yeast diversity, shaped by terroir and winemaking conditions, determines wine characteristics. Understanding the microbial diversity of vineyards and spontaneous fermentation is crucial for explaining a winery’s typical wine profile. Studying and inoculating indigenous strains make it possible [...] Read more.
Winemaking involves a microbial ecosystem where yeast diversity, shaped by terroir and winemaking conditions, determines wine characteristics. Understanding the microbial diversity of vineyards and spontaneous fermentation is crucial for explaining a winery’s typical wine profile. Studying and inoculating indigenous strains make it possible to produce high quality wines, reflecting the production environment. This study analyzes the yeast species involved in 16 spontaneous fermentations (8 in 2022 and 8 in 2023) from grapes of four distinct vineyards under two sets of winemaking conditions. A total of 1100 yeast colonies were identified by MALDI-TOF and DNA sequencing techniques. Saccharomyces (S.) cerevisiae and Hanseniaspora uvarum were the most prevalent species, alongside significant populations of non-Saccharomyces yeasts such as Lachancea thermotolerans and Metchnikowia pulcherrima, which were the most abundant ones. Minor yeast species, including Aureobasidium pullulans, Starmerella bacillaris, Kazachstania servazzi, and other Hanseniaspora spp., were also detected. The results demonstrated that yeast diversity in spontaneous fermentations varied according to vineyard origin and winemaking conditions. Differences between the two vintages studied indicated that annual climatic conditions significantly influenced yeast diversity, especially among non-Saccharomyces species. This substantial diversity represents a valuable source of indigenous yeasts for preserving the typicity of a winery’s wines under controlled conditions. Full article
(This article belongs to the Special Issue Wine Fermentation Microorganisms)
Show Figures

Figure 1

18 pages, 589 KiB  
Article
Circular Model for the Valorization of Black Grape Pomace for Producing Pasteurized Red Must Enriched in Health-Promoting Phenolic Compounds
by Victoria Artem, Arina Oana Antoce, Elisabeta Irina Geana, Ancuta Nechita, Georgeta Tudor, Petronela Anca Onache and Aurora Ranca
Sustainability 2025, 17(14), 6633; https://doi.org/10.3390/su17146633 - 21 Jul 2025
Viewed by 415
Abstract
As compared to red wine technology, where pomace is macerated, the grape juices and musts are obtained by pressing the grapes and removing the pomace, thus removing an important source of antioxidant molecules. The objective of this study was to exploit the bioactive [...] Read more.
As compared to red wine technology, where pomace is macerated, the grape juices and musts are obtained by pressing the grapes and removing the pomace, thus removing an important source of antioxidant molecules. The objective of this study was to exploit the bioactive compounds from the black grape pomace and obtain a new food product, namely pasteurized red must with improved health-promoting properties. The study was conducted on four grape varieties for red wines—Fetească Neagră, Cabernet Sauvignon, Blauer Zweigelt, and Arcaș—each coming from a certain recognized Romanian vineyard, as follows: Murfatlar, Dealu Mare, Ștefănești-Argeș, and Iași, respectively. Both the must and the pomace extract used for each product were from the same variety and region. The recovery of polyphenols was achieved by macerating the pomace at ambient temperature, using solutions of ethanol in concentrations of 25%, 50%, and 75%. The results showed that the most efficient method of polyphenol recovery was obtained by using the ethanolic solution of 50%, which was selected for the subsequent stages of the study. The selected hydroalcoholic extract was concentrated by eliminating the solvent by roto evaporation and used as a source of supplementary bioactive compounds for the pasteurized must. The phenolic profiles of the musts enriched with phenolic extracts were determined by liquid chromatography, UHPLS-HRMS, revealing significant increases in the content of individual phenolic acids and other polyphenols. The phenolic extract recovered from the pomace significantly optimized the phenolic quality of the pasteurized must, thus contributing to the improvement of its nutritional value. The new product has a phenolic profile close to that of a red wine, but does not contain alcohol. Also, this technology is a sustainable method to convert grape waste into a safe, antioxidant-rich grape juice with potential health benefits. Full article
(This article belongs to the Special Issue Sustainable Research on Food Science and Food Technology)
Show Figures

Figure 1

17 pages, 1618 KiB  
Article
Can Biochar Alleviate Machinery-Induced Soil Compaction? A Field Study in a Tuscan Vineyard
by Fabio De Francesco, Giovanni Mastrolonardo, Gregorio Fantoni, Fabrizio Ungaro and Silvia Baronti
Soil Syst. 2025, 9(3), 81; https://doi.org/10.3390/soilsystems9030081 - 19 Jul 2025
Viewed by 262
Abstract
Soil compaction from mechanized agriculture is a major concern, as frequent machinery use degrades soil structure, reduces porosity, and ultimately impairs crop productivity. Among potential mitigation strategies to enhance soil resilience to machinery-induced compaction, biochar has shown promise in laboratory settings but remains [...] Read more.
Soil compaction from mechanized agriculture is a major concern, as frequent machinery use degrades soil structure, reduces porosity, and ultimately impairs crop productivity. Among potential mitigation strategies to enhance soil resilience to machinery-induced compaction, biochar has shown promise in laboratory settings but remains untested under real field conditions. To address this, we monitored soil in a Tuscan vineyard where biochar was applied at 16 and 32 Mg ha−1, compared to control, on both flat and sloped plots. Soil compaction was induced by 20 passes of a wheeled orchard tractor. Soil bulk density (BD) was measured before, immediately after, and one year following the initial passes, during which 19 additional machine passes occurred as part of the vineyard’s routine agronomic management. Initial results showed a significant BD increase (up to 12.8%) across all treatments, though biochar significantly limited soil compaction, regardless of the applied dose. After one year, in which the soil underwent further compaction, BD further increased across all treatments (up to 20.2%), with the steepest increase observed on the sloped terrain. At this stage, the mitigating effect of biochar on soil compaction was no longer evident. Our findings suggest that biochar may offer some short-term relief from compaction, but further investigations are needed to clarify its long-term effectiveness under field conditions. Full article
(This article belongs to the Special Issue Research on Soil Management and Conservation: 2nd Edition)
Show Figures

Figure 1

20 pages, 2144 KiB  
Article
Effects of Crop Load Management on Berry and Wine Composition of Marselan Grapes
by Jianrong Kai, Jing Zhang, Caiyan Wang, Fang Wang, Xiangyu Sun, Tingting Ma, Qian Ge and Zehua Xu
Horticulturae 2025, 11(7), 851; https://doi.org/10.3390/horticulturae11070851 - 18 Jul 2025
Viewed by 389
Abstract
The aim of this study was to investigate the effects of the crop load on the berry and wine composition of Marselan grapes. Thus, the appropriate crop load for Marselan wine grapes in Ningxia was determined based on the shoot density and the [...] Read more.
The aim of this study was to investigate the effects of the crop load on the berry and wine composition of Marselan grapes. Thus, the appropriate crop load for Marselan wine grapes in Ningxia was determined based on the shoot density and the number of clusters per shoot. Marselan grapes from the Gezi Mountain vineyard, located at the eastern foot of Helan Mountain in the Qingtongxia region of Ningxia, were selected as the research material to conduct a combination experiment with four levels of shoot density and three levels of cluster density. The analysis of the berry and wine chemical composition was combined with a wine sensory evaluation to determine the optimal crop load levels. Crop load regulation significantly affected both the grape berry composition and the basic physicochemical properties of the resulting wine. Low crop loads improved metrics such as the berry weight and soluble solids content. A low shoot density facilitated the accumulation of organic acids, flavonols, and hydroxybenzoic acids in wine. Moderate crop loads were conducive to anthocyanin synthesis—the total individual anthocyanins content in the 10–20 shoots per meter of the canopy treatment group ranged from 116% to 490% of the control group—whereas excessive crop loads hindered its accumulation. Crop load management significantly influenced the aroma composition of wine by regulating the content of sugars, nitrogen sources, and organic acids in grape berries, thereby promoting the synthesis of esters and the accumulation of key aromatic compounds, such as terpenes. This process optimized pleasant flavors, including fruity and floral aromas. In contrast, wines from the high crop load and control treatments contained lower levels of these aroma compounds. Compounds such as ethyl caprylate and β-damascenone were identified as potential quality markers. Overall, the wine produced from vines with a crop load of 30 clusters (15 shoots per meter of canopy, 2 clusters per shoot) received the highest sensory scores. Appropriate crop load management is therefore critical to improving the chemical composition of Marselan wine. Full article
(This article belongs to the Section Viticulture)
Show Figures

Figure 1

21 pages, 2903 KiB  
Article
Compost Tea Combined with Fungicides Modulates Grapevine Bacteriome and Metabolome to Suppress Downy Mildew
by Giuliano Bonanomi, Giuseppina Iacomino, Ayoub Idbella, Giandomenico Amoroso, Alessia Staropoli, Andrea De Sio, Franco Saccocci, Ahmed M. Abd-ElGawad, Mauro Moreno and Mohamed Idbella
J. Fungi 2025, 11(7), 527; https://doi.org/10.3390/jof11070527 - 16 Jul 2025
Viewed by 308
Abstract
Downy mildew, caused by Plasmopara viticola, is a major threat to grapevine (Vitis vinifera) cultivation in humid climates. Restrictions on synthetic pesticides and inconsistent efficacy of current biocontrol agents, especially under rainy conditions, complicate disease management. This study evaluated the [...] Read more.
Downy mildew, caused by Plasmopara viticola, is a major threat to grapevine (Vitis vinifera) cultivation in humid climates. Restrictions on synthetic pesticides and inconsistent efficacy of current biocontrol agents, especially under rainy conditions, complicate disease management. This study evaluated the potential of compost tea to suppress downy mildew in a two-year field experiment (2023 and 2024), combined with reduced synthetic fungicide applications. The study design compared two phytosanitary management strategies on a commercial vineyard: a conventional fungicide against a compost tea strategy supplemented with two cymoxanil applications. The experiment set up had three replicated blocks, each consisting of 100 plants for a total of 600 plants. Mechanistic insights were provided through controlled laboratory experiments involving pre- and post-infection leaf assays, vineyard bacteriome profiling, via 16S rRNA gene sequencing for bacterial communities, across vineyard compartments, i.e., bulk soil, rhizosphere, and phyllosphere, and grapevine metabolomic analysis by GC-MS analysis. Field trials demonstrated that compost tea combined with two fungicide applications effectively reduced disease severity, notably outperforming the fungicide alone in the particularly rainy year of 2023. Bacteriome analysis revealed that compost tea treatment enriched beneficial bacterial genera, including Pseudomonas, Sphingomonas, Enterobacter, Massilia, and Bacillus, known for their growth-promoting and biocontrol activity in the rhizosphere and phyllosphere. Laboratory assays on detached leaves further showed that compost tea alone could suppress both infection and sporulation of P. viticola. Metabolomic analysis highlighted the accumulation of compounds such as tartaric and shikimic acids in compost tea treated leaves, suggesting a potential role in induced resistance. The findings indicate that applying compost tea with reduced fungicide treatments represents a promising and sustainable strategy for managing grapevine downy mildew, even in challenging climates. Full article
(This article belongs to the Special Issue Biological Control of Fungal Plant Pathogens)
Show Figures

Figure 1

20 pages, 10320 KiB  
Article
Advancing Grapevine Disease Detection Through Airborne Imaging: A Pilot Study in Emilia-Romagna (Italy)
by Virginia Strati, Matteo Albéri, Alessio Barbagli, Stefano Boncompagni, Luca Casoli, Enrico Chiarelli, Ruggero Colla, Tommaso Colonna, Nedime Irem Elek, Gabriele Galli, Fabio Gallorini, Enrico Guastaldi, Ghulam Hasnain, Nicola Lopane, Andrea Maino, Fabio Mantovani, Filippo Mantovani, Gian Lorenzo Mazzoli, Federica Migliorini, Dario Petrone, Silvio Pierini, Kassandra Giulia Cristina Raptis and Rocchina Tisoadd Show full author list remove Hide full author list
Remote Sens. 2025, 17(14), 2465; https://doi.org/10.3390/rs17142465 - 16 Jul 2025
Viewed by 390
Abstract
Innovative applications of high-resolution airborne imaging are explored for detecting grapevine diseases. Driven by the motivation to enhance early disease detection, the method’s effectiveness lies in its capacity to identify isolated cases of grapevine yellows (Flavescence dorée and Bois Noir) and trunk disease [...] Read more.
Innovative applications of high-resolution airborne imaging are explored for detecting grapevine diseases. Driven by the motivation to enhance early disease detection, the method’s effectiveness lies in its capacity to identify isolated cases of grapevine yellows (Flavescence dorée and Bois Noir) and trunk disease (Esca complex), crucial for preventing the disease from spreading to unaffected areas. Conducted over a 17 ha vineyard in the Forlì municipality in Emilia-Romagna (Italy), the aerial survey utilized a photogrammetric camera capturing centimeter-level resolution images of the whole area in 17 minutes. These images were then processed through an automated analysis leveraging RGB-based spectral indices (Green–Red Vegetation Index—GRVI, Green–Blue Vegetation Index—GBVI, and Blue–Red Vegetation Index—BRVI). The analysis scanned the 1.24 · 109 pixels of the orthomosaic, detecting 0.4% of the vineyard area showing evidence of disease. The instances, density, and incidence maps provide insights into symptoms’ spatial distribution and facilitate precise interventions. High specificity (0.96) and good sensitivity (0.56) emerged from the ground field observation campaign. Statistical analysis revealed a significant edge effect in symptom distribution, with higher disease occurrence near vineyard borders. This pattern, confirmed by spatial autocorrelation and non-parametric tests, likely reflects increased vector activity and environmental stress at the vineyard margins. The presented pilot study not only provides a reliable detection tool for grapevine diseases but also lays the groundwork for an early warning system that, if extended to larger areas, could offer a valuable system to guide on-the-ground monitoring and facilitate strategic decision-making by the authorities. Full article
Show Figures

Figure 1

15 pages, 466 KiB  
Article
Metagenomic Profiling of the Grapevine Virome in Canadian Vineyards
by Bhadra Murthy Vemulapati, Kankana Ghoshal, Sylvain Lerat, Wendy Mcfadden-Smith, Mamadou L. Fall, José Ramón Úrbez-Torres, Peter Moffet, Ian Boyes, James Phelan, Lucas Bennouna, Debra L. Moreau, Mike Rott and Sudarsana Poojari
Agriculture 2025, 15(14), 1532; https://doi.org/10.3390/agriculture15141532 - 16 Jul 2025
Viewed by 450
Abstract
A high-throughput sequencing-based grapevine metagenomic survey was conducted across all grape-growing Canadian provinces (British Columbia, Ontario, Nova Scotia, and Québec) with the objective of better understanding the grapevine virome composition. In total, 310 composite grapevine samples representing nine Vitis vinifera red; five V. [...] Read more.
A high-throughput sequencing-based grapevine metagenomic survey was conducted across all grape-growing Canadian provinces (British Columbia, Ontario, Nova Scotia, and Québec) with the objective of better understanding the grapevine virome composition. In total, 310 composite grapevine samples representing nine Vitis vinifera red; five V. vinifera white; seven American–French red; and five white hybrid cultivars were analyzed. dsRNA, enriched using two different methods, was used as the starting material and source of viral nucleic acids in HTS. The virome status on the distribution and incidence in different regions and grapevine cultivars is addressed. Results from this study revealed the presence of 20 viruses and 3 viroids in the samples tested. Twelve viruses, which are in the regulated viruses list under grapevine certification, were identified in this survey. The major viruses detected in this survey and their incidence rates are GRSPaV (26% to 100%), GLRaV-2 (1% to 18%), GLRaV-3 (15% to 63%), GRVFV (0% to 52%), GRGV (0% to 52%), GPGV (3.3% to 77%), GFkV (1.5% to 31.6%), and GRBV (0% to 19.4%). This survey is the first comprehensive virome study using viral dsRNA and a metagenomics approach on grapevine samples from the British Columbia, Ontario, Nova Scotia, and Quebec provinces in Canada. Results from this survey highlight the grapevine virome distribution across four major grapevine-growing regions and their cultivars. The outcome of this survey underlines the need for strengthening current management options to mitigate the impact of virus spread, and the implementation of a domestic grapevine clean plant program to improve the sanitary status of the grapevine ecosystem. Full article
(This article belongs to the Section Crop Protection, Diseases, Pests and Weeds)
Show Figures

Figure 1

21 pages, 1518 KiB  
Article
Differences in Vegetative, Productive, and Physiological Behaviors in Actinidia chinensis Plants, cv. Gold 3, as A Function of Cane Type
by Gregorio Gullo, Simone Barbera, Antonino Cannizzaro, Manuel Scarano, Francesco Larocca, Valentino Branca and Antonio Dattola
Plants 2025, 14(14), 2199; https://doi.org/10.3390/plants14142199 - 16 Jul 2025
Viewed by 248
Abstract
This study investigated the influence of cane diameter on vegetative, productive, and physiological behaviors in Actinidia chinensis, cv. Gold 3. Conducted over two years (2021–2022), the experiment compared canes with larger (HD) and smaller (LD) proximal diameters. This research focused on parameters [...] Read more.
This study investigated the influence of cane diameter on vegetative, productive, and physiological behaviors in Actinidia chinensis, cv. Gold 3. Conducted over two years (2021–2022), the experiment compared canes with larger (HD) and smaller (LD) proximal diameters. This research focused on parameters such as shoot morphology, leaf gas exchange, fruit quality, and hydraulic resistance. The results revealed that HD canes promoted more vigorous growth, with a higher proportion of long and medium shoots, whereas LD canes resulted in shorter shoots. Additionally, the HD canes demonstrated a higher leaf area and more extensive leaf coverage, contributing to enhanced photosynthetic activity, as evidenced by enhanced gas exchange, stomatal conductance, and transpiration rates. This higher photosynthetic efficiency in HD canes resulted in more rapid fruit growth, with a larger fruit size and weight, particularly in fruits from non-terminate shoots. By contrast, fruits on LD canes exhibited slower growth, particularly in terms of fresh weight and dry matter accumulation. Despite these differences, maturation indices, including soluble solids and acidity levels, were not significantly affected by cane type. The findings suggest that selecting HD canes during winter pruning could lead to earlier harvests, with improved fruit quality and productivity, making this practice beneficial for optimizing vineyard management in Actinidia chinensis. Full article
(This article belongs to the Section Horticultural Science and Ornamental Plants)
Show Figures

Figure 1

Back to TopTop