Differences in Vegetative, Productive, and Physiological Behaviors in Actinidia chinensis Plants, cv. Gold 3, as A Function of Cane Type
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Site and Plant Material
2.2. Experimental Design
- ‒
- HD cane with a larger proximal diameter (~2 cm);
- ‒
- HL cane with a smaller proximal diameter (~1.5 cm).
2.3. Field and Laboratory Measurements
2.4. Physiological Measurements
2.4.1. Gas Exchange
2.4.2. Cane Hydraulic Conductance
2.4.3. Chlorophyll Fluorescence Parameter
2.5. Morphometric and Maturation Indexes of the Fruit
2.5.1. Fresh Weight
2.5.2. Colorimetric Analysis
2.5.3. Dry Matter Content
2.5.4. Total Soluble Solids (TSSs)
2.5.5. Titratable Acidity (TA)
2.5.6. Nutraceutical Parameters
Extraction of the Matrix
Total Polyphenol Content
Total Antioxidant Capacity
Total Flavonoid Content (TF)
2.5.7. Harvest and Pruning Residues
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAOSTAT. 2023. Available online: https://www.fao.org/faostat/en/ (accessed on 6 June 2025).
- Guerriero, R.; Scalabrelli, G.; Vitagliano, C. Effect of natural and artificial chilling on bud opening and fruitfulness of Actinidia deliciosa single node cuttings (Hayward’ and Tomuri’). Dis. Appl. Mat. 1992, 1, 223. [Google Scholar]
- Volz, R.K.; Gibbs, H.M.; Lupton, G.B. Variation in fruitfulness among kiwifruit replacement canes. Acta Hortic. 1991, 297, 443–450. [Google Scholar] [CrossRef]
- Walton, E.F.; Richardson, A.C.; Waller, J.E.; Dow, B.W. Effect of time of cane initiation on subsequent fruitfulness in kiwifruit. N. Z. J. Crop Hortic. Sci. 2000, 28, 271–275. [Google Scholar] [CrossRef]
- Costa, G.; Vizzotto, G.; Testolin, R. Kiwifruit: Variations in vegetative gradient and cropping performance as related to cane orientation. Adv. Hortic. Sci. 1991, 5, 1000–1004. [Google Scholar]
- Snelgar, W.P. The effect of cane orientation on ower production in kiwifruit (Actinidia deliciosa). J. Hortic. Sci. 1988, 63, 341–347. [Google Scholar] [CrossRef]
- Tombesi, A.; Antognozzi, E.; Palliotti, A. Optimum leaf area index in T-bar trained kiwifruit vines. J. Hortic. Sci. 1994, 69, 339–350. [Google Scholar] [CrossRef]
- Di Lorenzo, R.; Di Marco, L.; Raimondo, A.; Inglese, P. Survey of kiwifruit (Actinidia deliciosa) flowering and fruiting behavior in some areas of Southern Italy. Acta Hortic. 1990, 282, 119–126. [Google Scholar] [CrossRef]
- Inglese, P.; Gullo, G. Influence of pruning length and bud load on plant fertility, yield and fruit characteristics of ‘Hayward’ kiwifruit. Acta Hortic. 1992, 297, 451–458. [Google Scholar] [CrossRef]
- Gullo, G.; Dattola, A.; Vonella, V.; Allegra, A.; Zappia, R. Morphological, qualitative, and nutraceutical differences between fruits of Actinidia deliciosa (A. Chev.) CF Liang & AR Ferguson and A. chinensis Planch varieties. Eur. J. Hortic. Sci. 2022, 87. [Google Scholar] [CrossRef]
- Austin, P.T.; Hall, A.J.; Snelgar, W.P.; Currie, M.J. Modelling kiwifruit budbreak as a function of temperature and bud interactions. Ann. Bot. 2002, 89, 695–706. [Google Scholar] [CrossRef]
- Greer, D.H.; Jeffares, D. Temperature-dependence of carbon acquisition and demand in relation to shoot growth of kiwifruit (Actinidia deliciosa) vines grown in controlled environments. Fun. Plant Biol. 1998, 25, 843–850. [Google Scholar] [CrossRef]
- Henwooda, R.J.T.; Wargenta, J.J.; Blackc, M.; Heyes, J.A. Environmental and management factors contributing to variability in flesh colour of a red kiwifruit cultivar in New Zealand. Sci. Hortic. 2018, 235, 21–31. [Google Scholar] [CrossRef]
- Morgan, D.C.; Warrington, I.J.; Halligan, E.A. Effect of temperature and photosynthetic photon flux density on vegetative growth of kiwifruit (Actinidia chinensis). N. Z. J. Agric. Res. 1985, 28, 109–116. [Google Scholar] [CrossRef]
- Rajan, P.; Natraj, P.; Kim, M.; Lee, M.; Jang, Y.J.; Lee, Y.J.; Kim, S.C. Climate Change Impacts on and Response Strategies for Kiwifruit Production: A Comprehensive Review. Plants 2024, 13, 2354. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S. Heat stress effects in fruit crops: A review. Agric. Rev. 2020, 41, 73–78. [Google Scholar] [CrossRef]
- Zhao, Z.; Duan, M.; Yan, S.; Liu, Z.; Wang, Q.; Fu, J.; Tong, Y. Effects of different fertilizations on fruit quality, yield and soil fertility in field-grown kiwifruit orchard. Int. J. Agric. Biol. Eng. 2017, 10, 162–171. [Google Scholar]
- Foster, T.M.; Seleznyova, A.N.; Barnett, A.M. Independent control of organogenesis and shoot tip abortion are key factors to developmental plasticity in kiwifruit (Actinidia). Ann. Bot. 2007, 100, 471–481. [Google Scholar] [CrossRef] [PubMed]
- Tombesi, A.; Antognozzi, E.; Palliotti, A. Influence of light exposure on characteristics and storage life of kiwifruit. N. Z. J. Crop Hortic. Sci. 1993, 21, 85–90. [Google Scholar] [CrossRef]
- Tavarini, S.; Degl’Innocenti, E.; Remorini, D.; Massai, R.; Guidi, L. Polygalacturonase and β-galactosidase activities in Hayward kiwifruit as affected by light exposure, maturity stage and storage time. Sci. Hortic. 2009, 120, 342–347. [Google Scholar] [CrossRef]
- Palmer, J.; Diack, R.; Johnston, J.; Boldingh, H. Manipulation of fruit dry matter accumulation and fruit size in ‘Scifresh’ apple through alteration of the carbon supply, and its relationship with apoplastic sugar composition. J. Hortic. Sci. Biotechnol. 2013, 88, 483–489. [Google Scholar] [CrossRef]
- Richardson, A.C.; Walton, E.F.; Meekings, J.S.; Boldingh, H.L. Carbohydrate changes in kiwifruit buds during the onset and release from dormancy. Sci. Hortic. 2010, 124, 463–468. [Google Scholar] [CrossRef]
- Richardson, A.C.; Marsh, K.B.; Boldingh, H.L.; Pickering, A.H.; Bulley, S.M.; Frearson, N.J.; Ferguson, A.R.; Thornber, S.E.; Bolitho, K.M.; Macrae, E.A. High growing temperatures reduce fruit carbohydrate and vitamin C in kiwifruit. Plant Cell Environ. 2004, 27, 423–435. [Google Scholar] [CrossRef]
- Nardozza, S.; Boldingh, H.L.; Richardson, A.C.; Costa, G.; Marsh, H.; MacRae, E.A.; Clearwater, M.J. Variation in carbon content and size in developing fruit of Actinidia deliciosa genotypes. Func. Plant Biol. 2010, 37, 545–554. [Google Scholar] [CrossRef]
- Desnoues, E.; Gibon, Y.; Baldazzi, V.; Signoret, V.; Genard, M.; Quilot-Turion, B. Profiling sugar metabolism during fruit development in a peach progeny with different fructose-to-glucose ratios. BMC Plant Biol. 2014, 14, 336. [Google Scholar] [CrossRef] [PubMed]
- Torp, T.G.; Barnett, A.M.; Miller, S.A. Effects of cane size and pruning system on shootgrowth, fowering and productivity of ‘Hayward’ kiwifruitvines. J. Hortic. Sci. Biotec. 2003, 78, 219–224. [Google Scholar] [CrossRef]
- Clearwater, M.J.; Seleznyova, A.N.; Thorp, T.G.; Blattmann, P.; Barnett, A.M.; Lowe, R.G.; Austin, P.T. Vigor-controlling rootstocks affect early shoot growth and leaf area development of kiwifruit. Tree Physiol. 2006, 26, 505–515. [Google Scholar] [CrossRef] [PubMed]
- Medic, A.; Hudina, M.; Veberic, R. The effect of cane vigour on the kiwifruit (Actinidia chinensis) and kiwiberry (Actinidia arguta) quality. Sci. Rep. 2021, 11, 12749. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Li, D.; Li, L.; Han, F.; Liu, X.; Zhang, P.; Chen, M.; Zhong, C. The differentiation of chilling requirements of kiwifruit cultivars related to ploidy variation. HortScience 2017, 52, 1676–1679. [Google Scholar] [CrossRef]
- Li, D.; Xie, X.; Liu, X.; Cheng, C.; Guo, W.; Zhong, C.; Atak, A. Effects of short-term high temperature on gas exchange in kiwifruits (Actinidia spp.). Biology 2022, 11, 1686. [Google Scholar] [CrossRef] [PubMed]
- Dichio, B.; Tataranni, G.; Montanaro, G.; Xylogiannis, E. Stomatal and hydraulic water transport factors in mycorrhizated olive trees. Acta Italus Hortus 2016, 20, 80. [Google Scholar]
- Slinkard, K.; Singleton, V.L. Total phenol analysis: Automation and comparison with manual methods. Am. J. Enol. Vitic. 1997, 28, 49–55. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice Evans, C. Antioxidant activity applying an improved ABTS radical cation decolourisation assay. Free Radic. Bio. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Dewanto, V.; Wu, X.; Adom, K.K.; Liu, R.H. Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J. Agric. Food Chem. 2002, 50, 3010–3014. [Google Scholar] [CrossRef] [PubMed]
- Björkman, O.; Demmig, B. Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta 1987, 170, 489–504. [Google Scholar] [CrossRef] [PubMed]
- Snowball, A.M. Seasonal cycle of shoot development in selected Actinidia species. N. Z. J. Crop Hortic. Sci. 1997, 25, 221–231. [Google Scholar] [CrossRef]
- Michailidis, M.; Karagiannis, E.; Tanou, G.; Sarrou, E.; Adamakis, I.D.; Karamanoli, K.; Martens, S.; Molassiotis, A. Metabolic mechanisms underpinning vegetative bud dormancy release and shoot development in sweet cherry. Environ. Exp. Bot. 2018, 155, 1–11. [Google Scholar] [CrossRef]
- Richardson, A.; Eyre, V.; Kashuba, P.; Ellingham, D.; Jenkins, H.; Nardozza, S. Early shoot development affects carbohydrate supply and fruit quality of red-fleshed Actinidia chinensis var. chinensis ‘Zes008’. Agronomy 2020, 11, 66. [Google Scholar] [CrossRef]
- Collins, C.; Wang, X.; Lesefko, S.; De Bei, R.; Fuentes, S. Effects of canopy management practices on grapevine bud fruitfuness. Oeno One 2020, 54, 313–325. [Google Scholar] [CrossRef]
- Bijan, K.; Saeed, E.; Enayatela, T.; Majid, R.; Yajya, E. Anatomical study and natural incidence of primary bud necrosis and its correlation with cane diameter, node position and sampling date in Vitis vinifera L. cv. Askari. Ann. Biol. Res. 2013, 4, 163–172. [Google Scholar]
- Dattola, A.; Accardo, A.; Zappia, R.; Gullo, G.A.M. Fruit Variation in Yellow-Fleshed Actinidia (Actinidia chinensis Planch) Plants Grown in Southern Italy as a Function of Shoot Type. Agriculture 2024, 14, 1335. [Google Scholar] [CrossRef]
- Riedell, W.E.; Schumacher, T.E. Transport of water and nutrients in plants. Agric. Sci. 2009, 1, 372–378. [Google Scholar]
- Venturas, M.D.; Sperry, J.S.; Hacke, U.G. Plant xylem hydraulics: What we understand, current research, and future challenges. J. Int. Plant Biol. 2017, 59, 356–389. [Google Scholar] [CrossRef] [PubMed]
- Tombesi, S.; Marsal, J.; Basile, B.; Weibel, A.; Solari, L.; Johnson, S.; Day, K.; DeJong, T.M. Peach tree vigor is a function of rootstock xylem anatomy and hydraulic conductance. Acta Hortic. 2012, 932, 483–489. [Google Scholar] [CrossRef]
- Thorp, T.G.; Clearwater, M.J.; Barnett, A.M.; Martin, P.J.; Blattmann, P.J.; Currie, M.B. ‘Hort16A’ fruit beak end softening and shrivelling in California. Acta Hortic. 2007, 753, 389–396. [Google Scholar] [CrossRef]
- Seleznyova, A.N.; Thorp, T.G.; Barnett, A.M.; Costes, E. Quantitative analysis of shoot development and branching patterns in Actinidia. Ann. Bot. 2002, 89, 471–482. [Google Scholar] [CrossRef] [PubMed]
- Greer, D.H.; Halligan, E.A. Photosynthetic and fluorescence light responses for kiwifruit (Actinidia deliciosa) leaves at different stages of development on vines grown at two different photon flux densities. Func. Plant Biol. 2001, 28, 373–382. [Google Scholar] [CrossRef]
- Greer, D.H.; Laing, W.A.; Kipnis, T. Photoinhibition of photosynthesis in intact kiwifruit (Actinidia deliciosa) leaves: Effect of temperature. Planta 1988, 174, 152–158. [Google Scholar] [CrossRef] [PubMed]
- Alves, P.L.D.C.; Magalhães, A.C.; Barja, P.R. The phenomenon of photoinhibition of photosynthesis and its importance in reforestation. Bot. Rev. 2002, 68, 193–208. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K.; Buschmann, C.; Knapp, M. How to correctly determine the different chlorophyll fluorescence parameters and the chlorophyll fluorescence decrease ratio R Fd of leaves with the PAM fluorometer. Photosynthetica 2005, 43, 379–393. [Google Scholar] [CrossRef]
- Morandi, B.; Manfrini, L.; Losciale, P.; Zibordi, M.; Corelli Grappadelli, L. Changes in vascular and transpiration flows affect the seasonal and daily growth of kiwifruit (Actinidia deliciosa) berry. Ann. Bot. 2010, 105, 913–923. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.H.; Genard, M.; Kervella, J.; Li, S.H.; Laurent, R. Relationship between skin speckle, soluble solids content and transpiration rate in nectarines. Europ. J. Hortic. Sci. 2003, 68, 83–85. [Google Scholar] [CrossRef]
- Fishman, S.; Génard, M. A biophysical model of fruit growth: Simulation of seasonal and diurnal dynamics of mass. Plant Cell Environ. 1998, 21, 739–752. [Google Scholar] [CrossRef]
- Montanaro, G.; Dichio, B.; Xiloyannis, C.; Lang, A. Fruit transpiration in kiwifruit: Environmental drivers and predictive model. AoB Plants 2012, 2012, pls036. [Google Scholar] [CrossRef] [PubMed]
- Lalonde, S.; Tegeder, M.; Throne-Holst, M.; Frommer, W.B.; Patrick, J.W. Phloem loading and unloading of sugars and amino acids. Plant Cell Environ. 2003, 26, 37–56. [Google Scholar] [CrossRef]
- Patrick, J.W. Phloem unloading: Sieve element unloading and post-sieve element transport. Annu. Rev. Plant. Biol. 1997, 48, 191–222. [Google Scholar] [CrossRef] [PubMed]
Treatment (T) | Phenological Stage | |||
---|---|---|---|---|
CS | BS | VS | ||
The first 10 d of April | LD | 13.21 ± 1.98 n.s. | 55.21 ± 5.50 n.s. | 31.57 ± 6.8 n.s. |
HD | 19.07 ± 2.03 | 55.97 ± 3.73 | 24.95 ± 3.95 | |
The second 10 d of April | LD | 14.83 ± 2.38 n.s. | 31.07 ± 3.09 n.s. | 46.82 ± 4.42 n.s. |
HD | 19.17 ± 2.06 | 29.99 ± 2.48 | 50.82 ± 2.37 | |
The first 10 d of May | LD | 14.82 ± 6.31 n.s. | 37.96 ± 3.23 n.s. | 55.94 ± 2.94 n.s. |
HD | 18.90 ± 1.56 | 30.89 ± 1.85 | 50.20 ± 2.20 | |
Years (Y) | n.s. | n.s. | n.s. | |
Interaction Y × T | n.s. | n.s. | n.s. |
Treatment (T) | SP | Ms | Ls |
---|---|---|---|
LD | 52.67 ± 4.13 ** | 10.43 ± 3.41 ** | 28.29 ± 5.26 ** |
HD | 19.03 ± 6.48 | 19.03 ± 5.22 | 70.53 ± 5.16 |
Years (Y) | n.s. | n.s. | n.s. |
T × Y | n.s. | n.s. | n.s. |
Treatment (T) | Leaves n° | Leaf Area cm2 |
---|---|---|
SP-HD | 6.0 ± 0.78 d | 578.94 ± 8.75 d |
SP-LD | 5.8 ± 0.42 d | 528.14 ± 7.35 d |
MS-HD | 13.75 ± 2.37 c | 1326.74 ± 9.64 c |
MS-LD | 13.25 ± 1.15 c | 1295.12 ± 8.95 c |
LS-HD | 26.5 ± 4.35 a | 2573.06 ± 12.00 a |
LS-LD | 17.6 ± 1.35 b | 1711.08 ± 4.35 b |
Years (Y) | * | * |
Treatment (T) | n.s. | n.s. |
Y × T | n.s. | n.s. |
Epoch | Treatment (T) | Pn µmol CO2 m−2 s−1 | gs µmol H2O m–2 s–1 | Ci ppm | Fv’/Fm’ | PhiPS2 | ETR | E mmol H2O m−2 s−1 | LF °C | Leaf Water Potential BAR |
---|---|---|---|---|---|---|---|---|---|---|
June | HD | 18.8 ± 0.11 * | 0.23 ± 0.02 * | 251.55 ± 2.15 * | 0.62 ± 0.15 * | 0.25 ± 0.01 * | 157.14 ± 0.55 * | 2.99 ± 0.15 * | 30.53 ± 0.15 * | −4.04 ± 0.01 * |
LD | 17.22 ± 0.12 | 0.20 ± 0.02 | 232.1 ± 0.01 | 0.57 ± 0.02 | 0.23 ± 0.23 | 132.15 ± 1.76 | 2.41 ± 0.23 | 31.49 ± 0.01 | −6.22 ± 0.11 | |
July | HD | 18.6 ± 0.08 * | 0.23 ± 0.01 * | 248.61 ± 1.75 * | 0.62 ± 0.11 * | 0.23 ± 0.02 * | 153.11 ± 0.34 * | 2.95 ± 0.13 * | 31.02 ± 0.11 * | −4.08 ± 0.00 * |
LD | 16.84 ± 0.11 | 0.18 ± 0.01 | 231.22 ± 0.01 | 0.57 ± 0.02 | 0.19 ± 0.12 | 130.22 ± 1.15 | 2.22 ± 0.11 | 31.540 ± 0.04 | −6.54 ± 0.13 | |
August | HD | 17.8 ± 0.06 * | 0.21 ± 0.03 * | 242.86 ± 1.88 * | 0.59 ± 0.08 * | 0.22 ± 0.03 * | 152.18 ± 0.33 * | 2.88 ± 0.11 * | 31.52 ± 0.01 * | −4.23 ± 0.02 * |
LD | 16.42 ± 0.09 | 0.17 ± 0.02 | 230.85 ± 0.03 | 0.55 ± 0.00b | 0.18 ± 0.15 | 127.21 ± 1.18 | 2.04 ± 0.12 | 31.580 ± 0.06 | −6.87 ± 0.15 | |
Epoch | * | * | * | * | * | * | * | * | *. | |
Y (Year) | * | * | * | * | * | * | * | * | n.s. | |
Y × T | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. |
Treatment | Shoot Type | ||
---|---|---|---|
SP | MSs | LSs | |
LD | 2.33 ± 0.55 b | 3.33 ± 0.61 a | 3.71 ± 0.49 a |
HD | 2.27 ± 0.66 b | 3.75 ± 0.20 a | 3.57 ± 0.36 a |
Year (Y) | n.s. | ||
Treatment | n.s. | ||
T × Y | n.s. |
Shoot Type | Calibration Class | ||||
---|---|---|---|---|---|
80–90 | 90–110 | 110–120 | 120–140 | 140–150 | |
HD | 28.57 * | 28.57 * | 22.86 * | 14.28 * | 5.714 * |
LD | 22.85 | 57.14 | 14.28 | 5.714 | 2.857 |
year | n.s. | n.s. | n.s. | * | * |
Treatment | Number Leaves n° | Leaf Area cm2 |
---|---|---|
SP | 3.09 ± 0.77 c | 2.49 ± 0.40 c |
MS | 5.50 ± 1.69 b | 3.81 ± 0.39 b |
LS | 9.47 ± 1.93 a | 8.56 ± 1.19 a |
DAFB | Treatment | TSS (°Brix) | Fir (Kg.cm−2) | TA (%) | TSS/TA |
---|---|---|---|---|---|
73 | HD | 6.00 ± 0.18 n.s. | 10.17 ± 0.17 n.s. | 1.40 ± 0.03 n.s. | 2.27 ± 0.02 n.s. |
LD | 5.96 ± 0.15 | 10.19 ± 0.19 | 1.47 ± 0.05 | 2.08 ± 0.02 | |
112 | HD | 6.50 ± 0.31 n.s. | 9.31 ± 0.18 n.s. | 1.58 ± 0.03 n.s. | 1.99 ± 0.01 n.s. |
LD | 6.49 ± 0.28 | 8.79 ± 0.19 | 1.64 ± 0.03 | 1.99 ± 0.02 | |
133 | HD | 7.26 ± 0.15 n.s. | 9.08 ± 0.21 n.s. | 1.58 ± 0.05 n.s. | 2.01 ± 0.03 n.s. |
LD | 7.58 ± 0.18 | 8.44 ± 0.20 | 1.65 ± 0.02 | 1.86 ± 0.01 | |
155 | HD | 9.64 ± 0.15 n.s. | 8.10 ± 0.15 n.s. | 1.58 ± 0.02 n.s. | 2.04 ± 0.02 n.s. |
LD | 10.44 ± 0.18 | 8.34 ± 0.18 | 1.55 ± 0.02 | 2.34 ± 0.03 |
DAFB | Treatment | L* | a* | b* | Ch | °Hue |
---|---|---|---|---|---|---|
73 | LD | 64.4 ± 0.52 n.s. | −6.10 ± 0.61 n.s. | 24.4 ± 0.22 n.s. | 25.2 ± 0.41 n.s. | 103.95 ± 0.20 n.s. |
HD | 64.8 ± 0.31 | −6.18 ± 0.55 | 24.9 ± 0.21 | 25.6 ± 0.45 | 103.88 ± 0.19 | |
112 | LD | 75.3 ± 0.30 n.s. | −4.52 ± 0.48 n.s. | 21.0 ± 0.21 n.s. | 21.7 ± 0.21 n.s. | 101.84 ± 0.22 n.s. |
HD | 73.6 ± 0.23 | −3.71 ± 0.46 | 19.9 ± 0.26 | 20.1 ± 0.22 | 100.51 ± 0.23 | |
133 | LD | 75.1 ± 0.40 n.s. | −1.73 ± 0.48 n.s. | 16.73 ± 0.31 n.s. | 16.7 ± 0.51 n.s. | 94.4 ± 0.35 n.s. |
HD | 74.4 ± 0.28 | −2.27 ± 0.35 | 16.62 ± 0.34 | 12.9 ± 0.55 | 94.23 ± 0.26 | |
155 | LD | 74.8 ± 0.25 n.s. | −0.04 ± 0.18 n.s. | 14.7 ± 0.35 n.s. | 14.8 ± 0.22 n.s. | 91.38 ± 0.28 n.s. |
HD | 74.4 ± 0.22 | −0.17 ± 0.21 | 14.8 ± 0.36 | 14.9 ± 0.28 | 91.76 ± 0.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gullo, G.; Barbera, S.; Cannizzaro, A.; Scarano, M.; Larocca, F.; Branca, V.; Dattola, A. Differences in Vegetative, Productive, and Physiological Behaviors in Actinidia chinensis Plants, cv. Gold 3, as A Function of Cane Type. Plants 2025, 14, 2199. https://doi.org/10.3390/plants14142199
Gullo G, Barbera S, Cannizzaro A, Scarano M, Larocca F, Branca V, Dattola A. Differences in Vegetative, Productive, and Physiological Behaviors in Actinidia chinensis Plants, cv. Gold 3, as A Function of Cane Type. Plants. 2025; 14(14):2199. https://doi.org/10.3390/plants14142199
Chicago/Turabian StyleGullo, Gregorio, Simone Barbera, Antonino Cannizzaro, Manuel Scarano, Francesco Larocca, Valentino Branca, and Antonio Dattola. 2025. "Differences in Vegetative, Productive, and Physiological Behaviors in Actinidia chinensis Plants, cv. Gold 3, as A Function of Cane Type" Plants 14, no. 14: 2199. https://doi.org/10.3390/plants14142199
APA StyleGullo, G., Barbera, S., Cannizzaro, A., Scarano, M., Larocca, F., Branca, V., & Dattola, A. (2025). Differences in Vegetative, Productive, and Physiological Behaviors in Actinidia chinensis Plants, cv. Gold 3, as A Function of Cane Type. Plants, 14(14), 2199. https://doi.org/10.3390/plants14142199