Biodiversity of Yeast Species Isolated During Spontaneous Fermentation: Influence of Grape Origin, Vinification Conditions, and Year of Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Grapes and Spontaneous Fermentation
2.2. Yeast Isolation and Identification
3. Results and Discussion
3.1. Grape Must Maturity and Climatic Influences
3.2. Distribution of Yeast Species in the Different Stages of Fermentation
3.3. Influence of Winemaking Conditions (LF and WF) on Yeast Species Distribution
3.4. Influence of Grape Origin and Vintage on Yeast Species Distribution
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Varela, C.; Siebert, T.; Cozzolino, D.; Rose, L.; McLean, H.; Henschke, P.A. Discovering a chemical basis for differentiating wines made by fermentation with wild indigenous and inoculated yeasts: Role of yeasts volatile compounds. Aust. J. Grape Wine Res. 2009, 15, 238–248. [Google Scholar] [CrossRef]
- Carrau, F.; Boido, E.; Ramey, D. Yeasts for low input winemaking: Microbial terroir and flavour differentiation. Adv. Appl. Microbiol. 2020, 111, 89–121. [Google Scholar] [CrossRef] [PubMed]
- Ciani, M.; Comitini, F.; Mannazzu, I.; Domizio, P. Controlled mixed culture fermentation: A new perspective on the use of non-Saccharomyces yeasts in winemaking. FEMS Yeast Res. 2010, 10, 123–133. [Google Scholar] [CrossRef] [PubMed]
- Jolly, N.P.; Varela, C.; Pretorius, I.S. Not your ordinary yeast: Non-Saccharomyces yeasts in wine production uncovered. FEMS Yeast Res. 2014, 14, 215–237. [Google Scholar] [CrossRef] [PubMed]
- Padilla, B.; Zulian, L.; Ferreres, A.; Pastor, R.; Esteve-Zarzoso, B.; Beltran, G.; Mas, A. Sequential inoculation of native non- Sac-charomyces and Saccharomyces cerevisiae strains for winemaking. Front. Microbiol. 2017, 8, 1293. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Liu, S.; Yang, Q.; Liu, X.; Xu, Y.; Zhou, Z.; Mao, J. Effects of simultaneous inoculation of non-Saccharomyces yeasts and Saccharomyces cerevisiae on overall quality, flavor compounds, and sensory analysis of huangjiu. Food Biosci. 2023, 53, 102539. [Google Scholar] [CrossRef]
- Villar, N.; Pérez-Nevado, F.; Andrés, A.I.; Garcia-Parra, J.; Ramirez, M.; Valdés, M.E.; Moreno, D. Influence of yeast inoculum (Saccharomyces cerevisiae and Torulaspora delbrueckii) on the production of rosé wines from high hydrostatic pressure-treated musts. Eur. Food Res. Technol. 2025, 251, 467–482. [Google Scholar] [CrossRef]
- García-Luque, E.; González, R.; Cao, R.; Soto, E.; Blanco, P. Sequential fermentation with non-Saccharomyces yeasts improves the chemical and sensory characteristics of Albariño and Lado wines. Fermentation 2025, 11, 73. [Google Scholar] [CrossRef]
- Gilbert, J.A.; van der Lelie, D.; Zarraonaindia, I. Microbial terroir for wine grapes. Proc. Natl. Acad. Sci. USA 2014, 111, 5–6. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Zhang, P.; Chen, D.; Howell, K.S. From the vineyard to the winery: How microbial ecology drives regional distinctiveness of wine. Front. Microbiol. 2019, 10, 2679. [Google Scholar] [CrossRef] [PubMed]
- Pretorius, I.S. Tasting the terroir of wine of wine yeast innovation. FEMS Yeast Res. 2020, 20, foz084. [Google Scholar] [CrossRef] [PubMed]
- Goddard, M.R.; Anfang, N.; Tang, R.; Gardner, R.C.; Jun, C. A distinct population of Saccharomyces cerevisiae in New Zeeland: Evidence for local dispersal by insects and human-aided global dispersal in oak barrels. Environ. Microbiol. 2010, 12, 63–73. [Google Scholar] [CrossRef] [PubMed]
- Francesca, N.; Canale, D.E.; Settanni, L.; Moschetti, G. Dissemination of wine-related yeasts by migratory birds. Environ. Microbiol. Rep. 2012, 4, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Comitini, F.; Capece, A.; Ciani, M.; Romano, P. New insights on the use of wine yeasts. Curr. Opin. Food Sci. 2017, 13, 44–49. [Google Scholar] [CrossRef]
- Di Ganvito, P.; Englezos, V.; Rantsiou, K.; Cocolin, L. Bioprotection strategies in winemaking. Int. J. Food Microbiol. 2022, 364, 109532. [Google Scholar] [CrossRef] [PubMed]
- Vallet-Courbin, A.; Lucas, M.; Dutilh, L.; Miot-Sertier, C.; Windholtz, S.; Lucas, P.; Masneuf-Pomarede, I.; Maupeu, J. Identificación de las levaduras y bacterias enológicas por espectrometría de masa de tipo MALDI-TOF. IVES Tech. Rev. 2022. [Google Scholar] [CrossRef]
- Bourassa, L.; Butler-Wu, S.M. MALDI-TOF mass spectrometry for microorganism identification. Methods Microbiol. 2015, 42, 37–85. [Google Scholar] [CrossRef]
- López, I. Detección y Control por Técnicas de Biología Molecular de Bacterias Lácticas Autóctonas Responsables de la Fermentación Maloláctica de Vinos Tintos de D.O.Ca Rioja. Master’s Thesis, University of La Rioja, Logroño, Spain, 2004. [Google Scholar]
- Kurtzman, C.P.; Robnett, C.J. Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie Van Leeuwenhoek 1998, 73, 331–371. [Google Scholar] [CrossRef] [PubMed]
- Agroclimatic Information Service of La Rioja, SIAR. Available online: https://www.larioja.org/agricultura/es/informacion-agroclimatica (accessed on January 2025).
- van Leeuwen, C.; Destrac-Irvine, A.; Dubernet, M.; Duchêne, E.; Gowdy, M.; Marguerit, E.; Pieri, P.; Parker, A.; de Rességuier, L.; Ollat, N. An Update on the Impact of Climate Change in Viticulture and Potential Adaptations. Agronomy 2019, 9, 514. [Google Scholar] [CrossRef]
- Rogiers, S.Y.; Greer, D.H.; Liu, Y.; Baby, T.; Xiao, Z. Impact of climate change on grape berry ripening: An assessment of adaptation strategies for the Australian vineyard. Front. Plant Sci. 2022, 13, 1094633. [Google Scholar] [CrossRef] [PubMed]
- Portillo, M.C.; Mas, A. Analysis of microbial diversity and dynamics during wine fermentation of Grenache grape variety by high throughput barcoding sequencing. LWT Food Sci. Technol. 2016, 72, 317–321. [Google Scholar] [CrossRef]
- Fugelsang, K.C.; Edwards, C.G. Microbial ecology during vinification. In Wine Microbiology; Fugelsang, K.C., Edwards, C.G., Eds.; Springer: New York, NY, USA, 2007; Volume 2, pp. 82–101. Available online: https://link.springer.com/book/10.1007/978-0-387-33349-6#toc (accessed on January 2025).
- Shimizu, H.; Kamada, A.; Koyama, K.; Iwasita, K.; Goto-Yamamoto, N. Yeast diversity during the spontaneous fermentation of wine with only the microbiota on grapes cultivated in Japan. J. Biosci. Bioeng. 2023, 136, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Morgan, S.C.; Tantikachornkiat, M.; Scholl, C.M.; Benson, N.L.; Cliff, M.A.; Durall, D.M. The effect of sulfur dioxide addition at crush on the fungaland bacterial communities and the sensory attributes of Pinot gris wines. Int. J. Food Microbiol. 2019, 290, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Binati, R.L.; Maule, M.; Luzzini, G.; Martelli, F.; Felis, G.E.; Ugliano, M.; Torrian, S. From bioprotective effects to diversification of wine aroma: Expanding the knowledge on Metschnikowia pulcherrima oenological potential. Food Res. Int. 2023, 174, 113550. [Google Scholar] [CrossRef] [PubMed]
- Salopek, D.D.; Vrhovsek, U.; Carlin, S.; Radeka, S.; Lukić, I. In-Depth characterization of the volatile aroma profile and other characteristics of white wine produced by sequential inoculation with a Lachancea thermotolerans starter yeast strain. Fermentation 2024, 10, 515. [Google Scholar] [CrossRef]
- Englezos, V.; Cravero, F.; Torchio, F.; Rantsiou, K.; Ortiz-Julien, A.; Lambri, M.; Gerbi, V.; Rolle, L.; Cocolin, L. Oxygen availability and strain combination modulate yeast growth dynamics in mixed culture fermentations of grape must with Starmerella bacillaris and Saccharomyces cerevisiae. Food Microbiol. 2018, 69, 179–188. [Google Scholar] [CrossRef] [PubMed]
- Jood, I.; Hoff, J.W.; Setati, M.E. Evaluating fermentation characteristics of Kazachstania spp. and their potential influence on wine quality. World J. Microbiol. Biotechnol. 2017, 33, 129. [Google Scholar] [CrossRef] [PubMed]
- Rompkovksi, C.; Agustini, B.C.; Deffert, F.; Amboni Stadtlober, M.G.; Brand, D.; Almeida da Silva, G.; Bordin Bonfim, T.M. Microbial dynamics in industrial-scale wine fermentation employing Hanseniaspora uvarum β-glucosidase-producer strain. J. Food Sci. Technol. 2022, 59, 4. [Google Scholar] [CrossRef] [PubMed]
- Mancic, S.; Stamenković Stojanović, S.; Danilović, B.; Djordjević, N.; Malićanin, M.; Lazić, M.; Karabegović, I. Oenological characterization of native Hanseniaspora uvarum strains. Fermentation 2022, 8, 92. [Google Scholar] [CrossRef]
- Badura, J.; Kiene, F.; Brezina, S.; Fritsch, S.; Semmler, H.; Rauhut, D.; Pretorius, I.S.; von Wallbrunn, C.; van Wyk, N. Aroma profiles of Vitis vinifera L. cv. Gewürztraminer must fermented with co-cultures of Saccharomyces cerevisiae and seven Hanseniaspora spp. Fermentation 2023, 9, 109. [Google Scholar] [CrossRef]
- Martín Russo, V. Hanseniaspora vineae: Caracterización y su Uso en la Vinificación. Master’s Thesis, Universidad de la República, Montevideo, Uruguay, 2016. [Google Scholar]
- Di Maro, E.; Ercolini, D.; Coppola, S. Yeast dynamics during spontaneous wine fermentation of the Catalanesca grape. Int. J. Food Microbiol. 2007, 117, 201–210. [Google Scholar] [CrossRef] [PubMed]
- Erten, H. Relations between elevated temperatures and fermentation behaviour of Kloeckera apiculata and Saccharomyces cerevisiae associated with winemaking in mixed cultures. World J. Microbiol. Biotechnol. 2002, 18, 373–378. [Google Scholar] [CrossRef]
- Henick-Kling, T.; Edinger, W.; Daniel, P.; Monk, P. Selective effects of sulfur dioxide and yeast starter culture addition on indigenous yeast population and sensory characteristics of wine. J. Appl. Microbiol. 1998, 84, 865–876. [Google Scholar] [CrossRef]
- Englezos, V.; Cravero, F.; Torchio, F.; Giascosa, S.; Ortiz-Julien, A.; Gerbi, V.; Rolle, L.; Cocolin, L. Volatile profiles and chromatic characteristicsa of red wines produced with Starmerella bacillaris and Saccharomyces cerevisiae. Food Res. Int. 2018, 109, 298–309. [Google Scholar] [CrossRef] [PubMed]
- Yan, G.; Zhang, B.; Joseph, L.; Waterhouse, A.L. Effects of initial oxygenation on chemical and aromatic composition of wine in mixed starters of Hanseniaspora vinae and Saccharomyces cerevisiae. Food Microbiol. 2020, 90, 103460. [Google Scholar] [CrossRef] [PubMed]
- Fleet, G.H.; Heard, G.M. Yeasts: Growth during fermentation. In Wine, Microbiology and Biotechnology; Fleet, G.H., Ed.; Harwood Academic Publishers: Lausanne, Switzerland, 1993; pp. 27–54. [Google Scholar]
- Le Jeune, C.; Claude, E.; Demuyter, C.; Lollier, M. Evolution of the population of Saccharomyces cerevisiae from grape to wine in a spontaneous fermentation. Food Microbiol. 2006, 23, 709–716. [Google Scholar] [CrossRef] [PubMed]
- Ocón, E.; Gutiérrez, A.R.; Garijo, P.; López, R.; Santamaría, P. Presence of non-Saccharomyces yeasts in cellar equipments and grape juice during harvest time. Food Microbiol. 2010, 27, 1023–1027. [Google Scholar] [CrossRef] [PubMed]
- Pretorius, I.S. Tailoring wine yeast for the new millenium: Novel approaches to the ancient art of winemaking. Yeast 2000, 16, 675–729. [Google Scholar] [CrossRef] [PubMed]
- Tempère, S.; Marchal, A.; Barbe, J.C.; Bely, M.; Masneuf-Pomarede, I.; Marullo, P.; Albertin, W. The complexity of wine: Clarifying the role of microorganisms. Appl. Microbiol. Biotecnol. 2018, 102, 3995–4007. [Google Scholar] [CrossRef] [PubMed]
- Schütz, M.; Gafner, J. Dynamics of the yeast strain population during spontaneous alcoholic fermentation determined by CHEF gel electrophoresis. Lett. Appl. Microbiol. 1994, 19, 253–257. [Google Scholar] [CrossRef]
Vineyard | Grape Variety | PAS (%) | |
---|---|---|---|
2022 | 2023 | ||
Vineyard 1 | Tempranillo | 14.4 | 15.2 |
Vineyard 2 | Tempranillo | 13.5 | 12.6 |
Vineyard 3 | Graciano | 15.3 | 13.1 |
Vineyard 4 | Tempranillo | 15.3 | 15.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benito-Castellanos, A.; Larreina, B.; Banda, M.T.C.d.L.; Santamaría, P.; González-Arenzana, L.; Gutiérrez, A.R. Biodiversity of Yeast Species Isolated During Spontaneous Fermentation: Influence of Grape Origin, Vinification Conditions, and Year of Study. Microorganisms 2025, 13, 1707. https://doi.org/10.3390/microorganisms13071707
Benito-Castellanos A, Larreina B, Banda MTCdL, Santamaría P, González-Arenzana L, Gutiérrez AR. Biodiversity of Yeast Species Isolated During Spontaneous Fermentation: Influence of Grape Origin, Vinification Conditions, and Year of Study. Microorganisms. 2025; 13(7):1707. https://doi.org/10.3390/microorganisms13071707
Chicago/Turabian StyleBenito-Castellanos, Ana, Beatriz Larreina, María Teresa Calvo de La Banda, Pilar Santamaría, Lucía González-Arenzana, and Ana Rosa Gutiérrez. 2025. "Biodiversity of Yeast Species Isolated During Spontaneous Fermentation: Influence of Grape Origin, Vinification Conditions, and Year of Study" Microorganisms 13, no. 7: 1707. https://doi.org/10.3390/microorganisms13071707
APA StyleBenito-Castellanos, A., Larreina, B., Banda, M. T. C. d. L., Santamaría, P., González-Arenzana, L., & Gutiérrez, A. R. (2025). Biodiversity of Yeast Species Isolated During Spontaneous Fermentation: Influence of Grape Origin, Vinification Conditions, and Year of Study. Microorganisms, 13(7), 1707. https://doi.org/10.3390/microorganisms13071707