Effects of the Application of Different Types of Vermicompost Produced from Wine Industry Waste on the Vegetative and Productive Development of Grapevine in Two Irrigation Conditions
Abstract
1. Introduction
2. Materials and Methods
2.1. Organic Waste Used and Earthworms
2.2. Precomposting and Vermicomposting
2.3. Location of the Vineyard and Assay Conditions
2.4. Climate and Soil Characterization
2.5. Physicochemical and Phytotoxic Characterization of Vermicompost
2.6. Determination of Agronomic Parameters
2.6.1. Foliar Analysis
2.6.2. General Agronomic Parameters
2.7. Determination of Must Parameters and Amino Acid Profile
2.8. Statistical Analysis
3. Results and Discussion
3.1. Earthworm Population Dynamics During Vermicomposting
3.2. Physico-Chemical and Phytotoxic Parameters of Vermicompost
3.3. Climate
3.4. Agronomic Parameters
3.4.1. Soil Parameters
3.4.2. Foliar Parameters
3.4.3. Vegetative and Productive Vineyard Parameters
3.5. Must Parameters and Amino Acid Profile
3.6. Cluster and Principal Component Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DEEM | Ethoxymethylenmalonate |
DMPP | 3,4-Dimethylpyrazole Phosphate |
DTPA | Diethylenetriaminepentaacetic acid |
OM | Organic Matter |
OIV | International Organisation of Vine and Wine |
SA | Exposed Surface Area |
UV | Ultraviolet |
YAN | Yeast assimilable Nitrogen |
WIR Verm | Vermicompost of wine industry residues |
WIR + SS Verm | Vermicompost of wine industry residues and sewage sludge |
WWTP | Urban Wastewater Treatment Plant |
References
- OIV State of the World Vine and Wine Sector in 2024. Available online: https://www.oiv.int/sites/default/files/2025-04/OIV-State_of_the_World_Vine-and-Wine-Sector-in-2024.pdf (accessed on 21 April 2025).
- Giorgi, F.; Lionello, P. Climate Change Projections for the Mediterranean Region. Glob. Planet. Change 2008, 63, 90–104. [Google Scholar] [CrossRef]
- Gaitán, E.; Pino-Otín, M.R. Using Bioclimatic Indicators to Assess Climate Change Impacts on the Spanish Wine Sector. Atmos. Res. 2023, 286, 106660. [Google Scholar] [CrossRef]
- Fraga, H. Viticulture and Winemaking under Climate Change. Agronomy 2019, 9, 783. [Google Scholar] [CrossRef]
- Bucur, G.M.; Dejeu, L. Research on Adaptation Measures of Viticulture to Climate Change: Overview. Sci. Pap. Ser. B Hortic. 2022, 66, 177–190. [Google Scholar]
- van Leeuwen, C.; Sgubin, G.; Bois, B.; Ollat, N.; Swingedouw, D.; Zito, S.; Gambetta, G.A. Climate Change Impacts and Adaptations of Wine Production. Nat. Rev. Earth Environ. 2024, 5, 258–275. [Google Scholar] [CrossRef]
- Fraga, H.; García de Cortázar Atauri, I.; Malheiro, A.C.; Santos, J.A. Modelling Climate Change Impacts on Viticultural Yield, Phenology and Stress Conditions in Europe. Glob. Change Biol. 2016, 22, 3774–3788. [Google Scholar] [CrossRef] [PubMed]
- van Leeuwen, C.; Darriet, P. The Impact of Climate Change on Viticulture and Wine Quality. J. Wine Econ. 2016, 11, 150–167. [Google Scholar] [CrossRef]
- Allamy, L.; Van Leeuwen, C.; Pons, A. Impact of Harvest Date on Aroma Compound Composition of Merlot and Cabernet-Sauvignon Must and Wine in a Context of Climate Change: A Focus on Cooked Fruit Molecular Markers. OENO One 2023, 57, 99–112. [Google Scholar] [CrossRef]
- Milazzo, F.; Fernández, P.; Peña, A.; Vanwalleghem, T. The Resilience of Soil Erosion Rates under Historical Land Use Change in Agroecosystems of Southern Spain. Sci. Total Environ. 2022, 822, 153672. [Google Scholar] [CrossRef] [PubMed]
- Arellano, B.; Zheng, Q.; Roca, J. Analysis of Climate Change Effects on Precipitation and Temperature Trends in Spain. Land 2025, 14, 85. [Google Scholar] [CrossRef]
- Selmy, S.A.H.; Abd Al-Aziz, S.H.; Jiménez-Ballesta, R.; García-Navarro, F.J.; Fadl, M.E. Modeling and Assessing Potential Soil Erosion Hazards Using USLE and Wind Erosion Models in Integration with GIS Techniques: Dakhla Oasis, Egypt. Agriculture 2021, 11, 1124. [Google Scholar] [CrossRef]
- Lucchetta, M.; Romano, A.; Alzate Zuluaga, M.Y.; Fornasier, F.; Monterisi, S.; Pii, Y.; Marcuzzo, P.; Lovat, L.; Gaiotti, F. Compost Application Boosts Soil Restoration in Highly Disturbed Hillslope Vineyard. Front. Plant Sci. 2023, 14, 1289288. [Google Scholar] [CrossRef] [PubMed]
- Gaiotti, F.; Marcuzzo, P.; Belfiore, N.; Lovat, L.; Fornasier, F.; Tomasi, D. Influence of Compost Addition on Soil Properties, Root Growth and Vine Performances of Vitis Vinifera Cv Cabernet Sauvignon. Sci. Hortic. 2017, 225, 88–95. [Google Scholar] [CrossRef]
- Burg, P.; Badalíková, B.; Mašán, V.; Csáki, Š.; Burgová, J.; Turan, J.; Matwijczuk, A. Evaluation of the Effect of Deep Compost Application in the Areas around Vineyard Tree Trunks on Selected Soil Chemical Properties and the Vegetative Growth of the Vine. Processes 2023, 11, 632. [Google Scholar] [CrossRef]
- Ho, T.T.K.; Tra, V.T.; Le, T.H.; Nguyen, N.-K.-Q.; Tran, C.-S.; Nguyen, P.-T.; Vo, T.-D.-H.; Thai, V.-N.; Bui, X.-T. Compost to Improve Sustainable Soil Cultivation and Crop Productivity. Case Stud. Chem. Environ. Eng. 2022, 6, 100211. [Google Scholar] [CrossRef]
- EC—European Commission. Circular Economy Action Plan—The European Green Deal; Publications Office: Brussels, Belgium, 2020. [Google Scholar]
- Wesseler, J. The EU ’s Farm-to-fork Strategy: An Assessment from the Perspective of Agricultural Economics. Appl. Econ. Perspect. Policy 2022, 44, 1826–1843. [Google Scholar] [CrossRef]
- Rodrigues, R.P.; Gando-Ferreira, L.M.; Quina, M.J. Increasing Value of Winery Residues through Integrated Biorefinery Processes: A Review. Molecules 2022, 27, 4709. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues Machado, A.; Atatoprak, T.; Santos, J.; Alexandre, E.M.C.; Pintado, M.E.; Paiva, J.A.P.; Nunes, J. Potentialities of the Extraction Technologies and Use of Bioactive Compounds from Winery By-Products: A Review from a Circular Bioeconomy Perspective. Appl. Sci. 2023, 13, 7754. [Google Scholar] [CrossRef]
- Gouvinhas, I.; Barros, A. Winery By-Products as Source of Bioactive Compounds for Pharmaceutical and Cosmetic Industries. In Innovation in the Food Sector Through the Valorization of Food and Agro-Food By-Products; IntechOpen: London, UK, 2021. [Google Scholar]
- Nascimento-Gonçalves, E.; Azevedo, T.; Lopes, H.; Sousa, J.R.; Oliveira, P.A.; Roboredo, M.; Coimbra, A.M.; Morais, M.C. Vermicomposting as a Valorization Solution to the Winery Sector By-Products. Agronomy 2024, 14, 1111. [Google Scholar] [CrossRef]
- Nogales, R.; Fernández-Gómez, M.J.; Delgado-Moreno, L.; Castillo-Díaz, J.M.; Romero, E. Eco-Friendly Vermitechnological Winery Waste Management: A Pilot-Scale Study. SN Appl. Sci. 2020, 2, 653. [Google Scholar] [CrossRef]
- Paradelo, R.; Moldes, A.B.; Barral, M.T. Properties of Slate Mining Wastes Incubated with Grape Marc Compost under Laboratory Conditions. Waste Manag. 2009, 29, 579–584. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Brandón, M.; Martínez-Cordeiro, H.; Domínguez, J. Changes in the Nutrient Dynamics and Microbiological Properties of Grape Marc in a Continuous-Feeding Vermicomposting System. Waste Manag. 2021, 135, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Nogales, R.; Cifuentes, C.; Benítez, E. Vermicomposting of Winery Wastes: A Laboratory Study. J. Environ. Sci. Health Part B 2005, 40, 659–673. [Google Scholar] [CrossRef] [PubMed]
- Dominguez, J.; Gómez-Brandón, M. Life Cycles of Vermicomposting Earthworms. Acta Zool. Mex. 2010, 26, 309–320. [Google Scholar]
- Ndegwa, P.M.; Thompson, S.A.; Das, K.C. Effects of Stocking Density and Feeding Rate on Vermicomposting of Biosolids. Bioresour. Technol. 2000, 71, 5–12. [Google Scholar] [CrossRef]
- Hidalgo Fernández-Cano, L.; Hidalgo Togores, J. Tratado de Viticultura; Mundi Prensa: Madrid, Spain, 2019; Volume I and II. [Google Scholar]
- Consejería de Medio Ambiente y Rural, P.A. y Territorio.J. de E.E. Red de Asesoramiento al Regante de Extremadura (REDAREX). Available online: https://redarexplus.juntaex.es/RedarexPlus/ (accessed on 10 May 2025).
- Rosal, A. Caracterización y Mejora de La Calidad En El Compostaje de Residuos Municipales. Ph.D. Thesis, Universidad de Córdoba, Cordoba, Spain, 2007. [Google Scholar]
- Olsen, S.R.; Cole, C.V.; Watanabe, F.S. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate; USDA Circular No. 939; US Government Printing Office: Washington, DC, USA, 1954. [Google Scholar]
- Lindsay, W.L.; Norvell, W.A. Development of a DTPA Soil Test for Zinc, Iron, Manganese, and Copper. Soil. Sci. Soc. Am. J. 1978, 42, 421–428. [Google Scholar] [CrossRef]
- Duan, Z.; Zhu, Y.; Xia, H.; Huang, K.; Peng, L. A Novel Strategy for Eliminating Antibiotic Resistance Genes during Fertilization of Dewatered Sludge by Earthworms: Vermicomposting Practice Using Chinese Herbal Residues Derived from Lianhua Qingwen as a Bulking Material. J. Environ. Manag. 2024, 349, 119444. [Google Scholar] [CrossRef] [PubMed]
- Palenzuela, M.d.V.; López de Lerma, N.; Sánchez-Suárez, F.; Martínez-García, R.; Peinado, R.A.; Rosal, A. Aroma Composition of Wines Produced from Grapes Treated with Organic Amendments. Appl. Sci. 2023, 13, 8001. [Google Scholar] [CrossRef]
- RD 506/2013 RD 506/2013; Productos Fertilizantes. Boletín Oficial Del Estado. Ministerio de La Presidencia: Madrid, Spain, 2013.
- Sánchez-de-Miguel, P.; Baeza, P.; Junquera, P.; Lissarrague, J.R. Vegetative Development: Total Leaf Area and Surface Area Indexes. In Methodologies and Results in Grapevine Research; Springer: Dordrecht, The Netherlands, 2010; pp. 31–44. [Google Scholar]
- International Organisation of Vine and Wine. Compendium of International Methods of Wine and Must Analysis; International Organisation of Vine and Wine: Dijon, France, 2023; ISBN 9782850380686. [Google Scholar]
- Shively, C.E.; Henick-Kling, T. Comparison of Two Procedures for Assay of Free Amino Nitrogen. Am. J. Enol. Vitic. 2001, 52, 400–401. [Google Scholar] [CrossRef]
- Gómez-Alonso, S.; Hermosín-Gutiérrez, I.; García-Romero, E. Simultaneous HPLC Analysis of Biogenic Amines, Amino Acids, and Ammonium Ion as Aminoenone Derivatives in Wine and Beer Samples. J. Agric. Food Chem. 2007, 55, 608–613. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Brandón, M.; Fornasier, F.; de Andrade, N.; Domínguez, J. Influence of Earthworms on the Microbial Properties and Extracellular Enzyme Activities during Vermicomposting of Raw and Distilled Grape Marc. J. Environ. Manag. 2022, 319, 115654. [Google Scholar] [CrossRef] [PubMed]
- Castillo-González, E.; Giraldi-Díaz, M.R.; De Medina-Salas, L.; Sánchez-Castillo, M.P. Pre-Composting and Vermicomposting of Pineapple (Ananas Comosus) and Vegetable Waste. Appl. Sci. 2019, 9, 3564. [Google Scholar] [CrossRef]
- Tabassum-Abbasi; Khamrang, C.; Abbasi, T.; Abbasi, S.A. The Fecundity and the Vermicomposting Efficiency of Three Generations of Four Earthworm Species in High-Rate Vermireactors Fed with the Pernicious Aquatic Weed Salvinia. Environ. Sci. Pollut. Res. 2022, 30, 27382–27393. [Google Scholar] [CrossRef] [PubMed]
- Santana, N.A.; Jacques, R.J.S.; Antoniolli, Z.I.; Martínez-Cordeiro, H.; Domínguez, J. Changes in the Chemical and Biological Characteristics of Grape Marc Vermicompost during a Two-Year Production Period. Appl. Soil Ecol. 2020, 154, 103587. [Google Scholar] [CrossRef]
- Domínguez, J.; Martínez-Cordeiro, H.; Álvarez-Casas, M.; Lores, M. Vermicomposting Grape Marc Yields High Quality Organic Biofertiliser and Bioactive Polyphenols. Waste Manag. Res. J. Sustain. Circ. Econ. 2014, 32, 1235–1240. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Brandón, M.; Lores, M.; Martínez-Cordeiro, H.; Domínguez, J. Effectiveness of Vermicomposting for Bioconversion of Grape Marc Derived from Red Winemaking into a Value-Added Product. Environ. Sci. Pollut. Res. 2020, 27, 33438–33445. [Google Scholar] [CrossRef] [PubMed]
- Villar, I.; Alves, D.; Pérez-Díaz, D.; Mato, S. Changes in Microbial Dynamics during Vermicomposting of Fresh and Composted Sewage Sludge. Waste Manag. 2016, 48, 409–417. [Google Scholar] [CrossRef] [PubMed]
- Luo, G.; Li, L.; Friman, V.-P.; Guo, J.; Guo, S.; Shen, Q.; Ling, N. Organic Amendments Increase Crop Yields by Improving Microbe-Mediated Soil Functioning of Agroecosystems: A Meta-Analysis. Soil. Biol. Biochem. 2018, 124, 105–115. [Google Scholar] [CrossRef]
- Cidre-González, A.; Ruiz-Gómez, F.J.; Bonet, F.J.; González-Moreno, P. Forecasting the Risk of Phytophthora Cinnamomi Related-Decline in Mediterranean Forest Ecosystems under Climate Change Scenarios. Ecol. Modell. 2025, 505, 111115. [Google Scholar] [CrossRef]
- Priya, E.; Sarkar, S.; Maji, P.K. A Review on Slow-Release Fertilizer: Nutrient Release Mechanism and Agricultural Sustainability. J. Environ. Chem. Eng. 2024, 12, 113211. [Google Scholar] [CrossRef]
- Schreiner, R.P. Nutrient Uptake and Distribution in Young Pinot Noir Grapevines over Two Seasons. Am. J. Enol. Vitic. 2016, 67, 436–448. [Google Scholar] [CrossRef]
- Cocco, A.; Mercenaro, L.; Muscas, E.; Mura, A.; Nieddu, G.; Lentini, A. Multiple Effects of Nitrogen Fertilization on Grape Vegetative Growth, Berry Quality and Pest Development in Mediterranean Vineyards. Horticulturae 2021, 7, 530. [Google Scholar] [CrossRef]
- MPELASOKA, B.S.; SCHACHTMAN, D.P.; TREEBY, M.T.; THOMAS, M.R. A Review of Potassium Nutrition in Grapevines with Special Emphasis on Berry Accumulation. Aust. J. Grape Wine Res. 2003, 9, 154–168. [Google Scholar] [CrossRef]
- Bai, R.; Liu, H.; Liu, Y.; Yong, J.W.H. Effects of Foliar Application of Magnesium Fertilizer on Photosynthesis and Growth in Grapes. Agronomy 2024, 14, 2659. [Google Scholar] [CrossRef]
- Dhaliwal, S.S.; Naresh, R.K.; Mandal, A.; Singh, R.; Dhaliwal, M.K. Dynamics and Transformations of Micronutrients in Agricultural Soils as Influenced by Organic Matter Build-up: A Review. Environ. Sustain. Indic. 2019, 1–2, 100007. [Google Scholar] [CrossRef]
- Chtouki, M.; Laaziz, F.; Naciri, R.; Garré, S.; Nguyen, F.; Oukarroum, A. Interactive Effect of Soil Moisture Content and Phosphorus Fertilizer Form on Chickpea Growth, Photosynthesis, and Nutrient Uptake. Sci. Rep. 2022, 12, 6671. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Vidaurre, J.M.; Pérez-Álvarez, E.P.; García-Escudero, E.; Peregrina, F. Effects of Soil Water-Holding Capacity and Soil N-NO3 and K on the Nutrient Content, Vigour and Yield of Cv. Tempranillo Vine and the Composition of Its Must and Wine. OENO One 2023, 57, 447–466. [Google Scholar] [CrossRef]
- Keller, M. The Science of Grapevines; Elsevier: Amsterdam, The Nethrlands, 2020; ISBN 9780128163658. [Google Scholar]
- Badalíková, B.; Burg, P.; Mašán, V.; Prudil, J.; Jobbágy, J.; Čížková, A.; Krištof, K.; Vašinka, M. Deep Placement of Compost into Vineyard Soil Affecting Physical Properties of Soils, Yield and Quality of Grapes. Sustainability 2022, 14, 7823. [Google Scholar] [CrossRef]
- Guilpart, N.; Metay, A.; Gary, C. Grapevine Bud Fertility and Number of Berries per Bunch Are Determined by Water and Nitrogen Stress around Flowering in the Previous Year. Eur. J. Agron. 2014, 54, 9–20. [Google Scholar] [CrossRef]
- Verdenal, T.; Spangenberg, J.E.; Zufferey, V.; Lorenzini, F.; Dienes-Nagy, A.; Gindro, K.; Spring, J.-L.; Viret, O. Leaf-to-Fruit Ratio Affects the Impact of Foliar-Applied Nitrogen on N Accumulation in the Grape Must. OENO One 2016, 50, 23. [Google Scholar] [CrossRef]
- Martínez-Lüscher, J.; Kurtural, S.K. Same Season and Carry-Over Effects of Source-Sink Adjustments on Grapevine Yields and Non-Structural Carbohydrates. Front. Plant Sci. 2021, 12, 695319. [Google Scholar] [CrossRef] [PubMed]
- Peanusaha, S.; Pourreza, A.; Kamiya, Y.; Fidelibus, M.W.; Chakraborty, M. Nitrogen Retrieval in Grapevine (Vitis vinifera L.) Leaves by Hyperspectral Sensing. Remote Sens. Environ. 2024, 302, 113966. [Google Scholar] [CrossRef]
- Rogiers, S.Y.; Coetzee, Z.A.; Walker, R.R.; Deloire, A.; Tyerman, S.D. Potassium in the Grape (Vitis vinifera L.) Berry: Transport and Function. Front. Plant Sci. 2017, 8, 1629. [Google Scholar] [CrossRef] [PubMed]
- Moreno, J.J.; Peinado, R.A. Enological Chemistry; Academic Press: Boston, MA, USA, 2012. [Google Scholar]
- Forino, M.; Picariello, L.; Rinaldi, A.; Moio, L.; Gambuti, A. How Must PH Affects the Level of Red Wine Phenols. LWT 2020, 129, 109546. [Google Scholar] [CrossRef]
- Miliordos, D.E.; Kanapitsas, A.; Lola, D.; Goulioti, E.; Kontoudakis, N.; Leventis, G.; Tsiknia, M.; Kotseridis, Y. Effect of Nitrogen Fertilization on Savvatiano (Vitis vinifera L.) Grape and Wine Composition. Beverages 2022, 8, 29. [Google Scholar] [CrossRef]
- Gobert, A.; Tourdot-Maréchal, R.; Sparrow, C.; Morge, C.; Alexandre, H. Influence of Nitrogen Status in Wine Alcoholic Fermentation. Food Microbiol. 2019, 83, 71–85. [Google Scholar] [CrossRef] [PubMed]
- Bisson, L.F. Stuck and Sluggish Fermentations. Am. J. Enol. Vitic. 1999, 50, 107–119. [Google Scholar] [CrossRef]
- Ralser, M.; Wamelink, M.M.; Kowald, A.; Gerisch, B.; Heeren, G.; Struys, E.A.; Klipp, E.; Jakobs, C.; Breitenbach, M.; Lehrach, H.; et al. Dynamic Rerouting of the Carbohydrate Flux Is Key to Counteracting Oxidative Stress. J. Biol. 2007, 6, 10. [Google Scholar] [CrossRef] [PubMed]
- Hazelwood, L.A.; Daran, J.-M.; van Maris, A.J.A.; Pronk, J.T.; Dickinson, J.R. The Ehrlich Pathway for Fusel Alcohol Production: A Century of Research on Saccharomyces cerevisiae Metabolism. Appl. Environ. Microbiol. 2008, 74, 2259–2266. [Google Scholar] [CrossRef] [PubMed]
- Linderholm, A.L.; Findleton, C.L.; Kumar, G.; Hong, Y.; Bisson, L.F. Identification of Genes Affecting Hydrogen Sulfide Formation in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 2008, 74, 1418–1427. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, R.; Gonzlez, A.; Torres, F.; Gallardo, J.A. Técnicas de Anélisis de Datos Multivariable. Tratamiento Computacional; Universidad de Granada: Granada, Spain, 1994. [Google Scholar]
- Dayer, S.; Peña, J.P.; Gindro, K.; Torregrosa, L.; Voinesco, F.; Martínez, L.; Prieto, J.A.; Zufferey, V. Changes in Leaf Stomatal Conductance, Petiole Hydraulics and Vessel Morphology in Grapevine (Vitis vinifera Cv. Chasselas) under Different Light and Irrigation Regimes. Funct. Plant Biol. 2017, 44, 679. [Google Scholar] [CrossRef] [PubMed]
Vine Shoots | Lees | Grape Marc | Sewage Sludge | |
---|---|---|---|---|
Humidity (%) | 3.3 | 66.9 | 76.3 | 77.1 |
pH | 5.2 ± 0.0 | 3.7 ± 0.0 | 4.0 ± 0.0 | 7.5 ± 0.0 |
EC (dS·m−1) | 1.1 ± 0.0 | 3.1 ± 0.1 | 1.5 ± 0.0 | 4.2 ± 0.2 |
OM (%) | 91 ± 4 | 69.2 ± 0.1 | 96.6 ± 0.4 | 59 ± 1 |
N (%) | 0.6 ± 0.1 | 1.6 ± 0.1 | 1.9 ± 0.3 | 3.6 ± 0.1 |
C/N | 88.18 | 25.15 | 29.6 | 9.48 |
Earthworm Biomass (g·m−2 fm) | Adults·m−2 | Juveniles·m−2 | Cocoons·m−2 | |
---|---|---|---|---|
WIR Verm. | 2523 ± 58 | 1392 ± 113 | 4445 ± 252 | 7373 ± 875 |
WIR + SS Verm. | 1149 ± 72 | 572 ± 39 | 1618 ± 78 | 1278 ± 82 |
t-test | *** | *** | *** | *** |
Parameter | WIR Verm. | WIR + SS Verm. |
---|---|---|
pH | 8.13 ± 0.09 a | 7.39 ± 0.07 b |
EC (dS·m−1) | 1.10 ± 0.06 a | 2.66 ± 0.06 b |
OM (%) | 65.63 ± 2.39 a | 53.00 ± 2.30 b |
N (%) | 2.26 ± 0.16 a | 2.75 ± 0.32 a |
C/N | 16.88 | 11.21 |
GI (%) | 111,0 | 82.6 |
P (mg·kg−1) | 4095 ± 173 | 7097 ± 275 |
Available P (%) | 0.32 ± 0.04 a | 0.27 ± 0.01 a |
B (mg·kg−1) | 163 ± 14 a | 98 ± 9 b |
Na (mg·kg−1) | 604 ± 50 a | 935 ± 63 b |
Mg (mg·kg−1) | 3995 ± 212 a | 5243 ± 49 b |
K (mg·kg−1) | 30,998 ± 697 a | 15,378 ± 852 b |
Ca (mg·kg−1) | 55,669 ± 568 a | 63,921 ± 985 b |
Cr (mg·kg−1) | 89 ± 5 a | 66 ± 19 a |
Mn (mg·kg−1) | 192 ± 8 a | 304 ± 10 b |
Fe (mg·kg−1) | 7787 ± 535 a | 10,873 ± 489 b |
Cu (mg·kg−1) | 53 ± 3 a | 202 ± 12 b |
Ni (mg·kg−1) | 10 ± 3 a | 18 ± 7 a |
Zn (mg·kg−1) | 96 ± 6 a | 455 ± 44 b |
Mo (mg·kg−1) | 1.0 ± 0.2 a | 2.7 ± 0.9 b |
Cd (mg·kg−1) | 0.1 ± 0.0 a | 1.1 ± 0.3 b |
Hg (mg·kg−1) | <LOD | 0.2 ± 0.0 |
Pb (mg·kg−1) | 5.9 ± 0.3 a | 45 ± 4 b |
Granulometry (mm) | 25.0 * | 25.0 * |
Min. Temp. (°C) | Mean Temp. (°C) | Max. Temp. (°C) | Rainfall (mm) | Irrigation (mm) | |
---|---|---|---|---|---|
April | 9.7 | 16.3 | 23.2 | 12.9 | 0 |
May | 11.0 | 18.8 | 26.2 | 1.6 | 0 |
June | 15.6 | 22.7 | 29.7 | 29.7 | 15 |
July | 18.6 | 27.6 | 35.7 | 0.0 | 28 |
August | 19.6 | 28.3 | 36.5 | 0.0 | 28 |
September | 14.6 | 21.7 | 28.9 | 1.0 | 7 |
Rainfed Vineyard | Deficit Irrigation Vineyard | |||||||
---|---|---|---|---|---|---|---|---|
Control | Chemical Fertilizer | WIR Verm. | WIR + SS Verm. | Control | Chemical Fertilizer | WIR Verm. | WIR + SS Verm. | |
pH | 7.36 ± 0.06 B | 7.43 ± 0.06 B | 8.41 ± 0.05 A | 7.46 ± 0.03 B | 8.40 ± 0.05 a | 7.92 ± 0.04 b | 8.01 ± 0.01 b | 8.46 ± 0.05 a |
C.E. (dS·m−1) | 1.09 ± 0.05 B | 0.9 ± 0.02 C | 1.0 ± 0.1 BC | 1.5 ± 0.2 A | 1.08 ± 0.01 c | 1.25 ± 0.02 b | 1.24 ± 0.03 b | 1.45 ± 0.01 a |
OM (%) | 2.8 ± 0.2 C | 3.5 ± 0.2 B | 4.8 ± 0.1 A | 4.5 ± 0.1 A | 2.7 ± 0.1 c | 3.2 ± 0.1 b | 4.1 ± 0.1 a | 3.9 ± 0.2 a |
NH 4+ (mg·kg−1) | 0.03 ± 0.01 A | 0.05 ± 0.01 A | 0.04 ± 0.01 A | 0.05 ± 0.01 A | 0.03 ± 0.01 a | 0.05 ± 0.02 a | 0.03 ± 0.01 a | 0.04 ± 0.02 a |
N (%) | 0.12 ± 0.02 B | 0.12 ± 0.02 B | 0.17 ± 0.02 A | 0.22 ± 0.01 A | 0.13 ± 0.02 b | 0.12 ± 0.03 b | 0.18 ± 0.02 a | 0.19 ± 0.02 a |
P (mg·kg−1) | 19.6 ± 0.8 B | 24.1 ± 1.8 A | 23.7 ± 0.9 A | 22.2 ± 1 A | 9.7 ± 0.3 b | 9.1 ± 0.3 b | 6.6 ± 0.1 c | 11.4 ± 0.4 a |
K (mg·kg−1) | 365 ± 18 A | 364 ± 6 A | 356 ± 6 A | 383 ± 12 A | 435 ± 19 a | 427 ± 21 a | 435 ± 13 a | 428 ± 4 a |
Ca (mg·kg−1) | 5477 ± 258 A | 4730 ± 126 A | 5605 ± 338 A | 5171 ± 180 A | 6729 ± 127 a | 7178 ± 299 a | 6690 ± 104 a | 6614 ± 221 a |
Mg (mg·kg−1) | 332 ± 16 A | 307 ± 10 AB | 289 ± 11 B | 289 ± 7 B | 444 ± 18 a | 423 ± 18 a | 438 ± 7 a | 418 ± 32 a |
Na (mg·kg−1) | 113 ± 5 B | 134 ± 6 A | 110 ± 3 B | 109 ± 4 B | 175 ± 13 b | 165 ± 7 b | 214 ± 13 a | 186 ± 19 ab |
Fe (mg·kg−1) | 17 ± 1.4 A | 13.2 ± 1.1 B | 13.3 ± 0.9 B | 16.2 ± 0.2 A | 6.2 ± 0.2 b | 6.6 ± 0.3 b | 5.8 ± 0.6 b | 8.3 ± 0.2 a |
Cu (mg·kg−1) | 0.81 ± 0.08 A | 0.76 ± 0.06 A | 0.77 ± 0.08 A | 0.74 ± 0.07 A | 0.62 ± 0.04 a | 0.54 ± 0.08 a | 0.64 ± 0.02 a | 0.63 ± 0.02 a |
Mn (mg·kg−1) | 13.3 ± 0.5 A | 14.1 ± 0.3 A | 13.2 ± 0.5 A | 15. ± 1 A | 12.07 ± 0.07 b | 12.5 ± 0.4 b | 14.5 ± 0.3 a | 13.1 ± 0.8 a |
Zn (mg·kg−1) | 0.5 ± 0.02 B | 0.6 ± 0.04 B | 0.81 ± 0.03 A | 0.77 ± 0.05 A | 0.51 ± 0.02 b | 0.53 ± 0.01 b | 0.5 ± 0.04 b | 0.92 ± 0.05 a |
Rainfed Vineyard | Deficit Irrigation Vineyard | |||||||
---|---|---|---|---|---|---|---|---|
Control | Chemical Fertilizer | WIR Verm. | WIR + SS Verm. | Control | Chemical Fertilizer | WIR Verm. | WIR + SS Verm. | |
N (%) | 1.45 ± 0.05 B | 1.59 ± 0.06 A | 1.36 ± 0.06 B | 1.45 ± 0.04 B | 0.58 ± 0.03 b | 0.88 ± 0.06 a | 0.6 ± 0.01 b | 0.83 ± 0.02 a |
P (%) | 0.5 ± 0.01 B | 0.49 ± 0.02 B | 0.54 ± 0.02 AB | 0.58 ± 0.04 A | 0.37 ± 0.01 b | 0.34 ± 0.01 bc | 0.33 ± 0.02 c | 0.45 ± 0 a |
K (%) | 1.4 ± 0.09 A | 1.31 ± 0.04 A | 1.3 ± 0.1 A | 1.5 ± 0.1 A | 1.38 ± 0.02 b | 1.78 ± 0.02 a | 1.48 ± 0.08 b | 1.85 ± 0.06 a |
Ca (%) | 1.8 ± 0.08 B | 1.81 ± 0.08 B | 2.01 ± 0.09 B | 2.4 ± 0.2 A | 2.31 ± 0.03 a | 2.34 ± 0.08 a | 2.35 ± 0.08 a | 2.28 ± 0.05 a |
Mg (%) | 0.47 ± 0.02 A | 0.4 ± 0.03 B | 0.41 ± 0.03 AB | 0.47 ± 0.02 A | 0.66 ± 0.03 a | 0.61 ± 0.03 a | 0.68 ± 0.03 a | 0.69 ± 0.04 a |
Na (mg·kg−1) | 606 ± 28 B | 633 ± 40 AB | 691 ± 15 A | 358 ± 39 C | 746 ± 61 b | 645 ± 30 bc | 912 ± 69 a | 586 ± 35 c |
Fe (mg·kg−1) | 63 ± 3 B | 59 ± 4 B | 73 ± 3 A | 56 ± 4 B | 67 ± 8 a | 59 ± 1 b | 40 ± 3 d | 41 ± 2 c |
B (mg·kg−1) | 45 ± 3 B | 41 ± 5 B | 50 ± 7 B | 58 ± 3 A | 40 ± 1 b | 50 ± 2 a | 53 ± 2 a | 44 ± 5 ab |
Mn (mgkg−1) | 37 ± 1 A | 15.8 ± 0.5 B | 11.8 ± 0.5 C | 12.5 ± 0.9 C | 34.1 ± 0.8 ab | 35.2 ± 0.8 a | 30 ± 2 b | 35 ± 3 a |
Cu (mg·kg−1) | 9.1 ± 0.2 A | 9.3 ± 0.5 A | 9.7 ± 0.2 A | 8.9 ± 0.5 A | 7.2 ± 0.1 b | 16.2 ± 0.6 a | 6.63 ± 0.07 bc | 6 ± 0.3 c |
Zn (mg·kg−1) | 15.3 ± 0.9 A | 17.1 ± 0.7 A | 15.1 ± 0.9 A | 16 ± 1 A | 20 ± 2 b | 24 ± 1 a | 14 ± 1 c | 17.7 ± 0.1 b |
Mo(mg·kg−1) | 7.3 ± 0.4 A | 7.2 ± 0.2 A | 7.2 ± 0.3 A | 0.19 ± 0 B | 0.27 ± 0.01 a | 0.18 ± 0.01 b | 0.1 ± 0 c | 0.08 ± 0 d |
Cr (mg·kg−1) | 7.3 ± 0.4 A | 2.61 ± 0.01 B | 1.96 ± 0.06 C | 1.63 ± 0.08 C | 5 ± 0.2 a | 2.29 ± 0.05 b | 0.82 ± 0.04 c | 0.89 ± 0.01 c |
Ni (mg·kg−1) | 4.8 ± 0.2 A | 2 ± 0.1 B | 1.83 ± 0.07 C | 1.42 ± 0.04 C | 4 ± 0.2 a | 2.37 ± 0.09 b | 0.93 ± 0.04 c | 0.94 ± 0.02 c |
As (mg·kg−1) | 0.71 ± 0.03 A | 0.07 ± 0 B | 0.06 ± 0 B | 0 ± 0 C | 0.07 ± 0.01 a | 0.04 ± 0 b | 0.02 ± 0 d | 0.03 ± 0 c |
Cd (mg·kg−1) | 0.05 ± 0 A | 0.05 ± 0 A | 0.04 ± 0 AB | 0.03 ± 0 B | 0.03 ± 0 ab | 0.04 ± 0 b | 0.02 ± 0 a | 0.03 ± 0 ab |
Hg (mg·kg−1) | 0.19 ± 0.01 A | 0.13 ± 0.01 B | 0.14 ± 0 B | 0.05 ± 0 A | n.d. | n.d. | n.d. | n.d. |
Pb (mg·kg−1) | 1.12 ± 0.03 A | 0.48 ± 0.02 B | 0.51 ± 0 B | 0.38 ± 0.02 C | 0.28 ± 0.01 c | 0.71 ± 0.03 a | 0.33 ± 0 c | 0.17 ± 0 d |
Rainfed Vineyard | Deficit Irrigation Vineyard | |||||||
---|---|---|---|---|---|---|---|---|
Control | Chemical Fertilizer | WIR Verm. | WIR + SS Verm. | Control | Chemical Fertilizer | WIR Verm. | WIR + SS Verm. | |
N (%) | 0.46 ± 0.02 C | 0.74 ± 0.02 A | 0.74 ± 0.01 A | 0.67 ± 0.03 B | 0.37 ± 0.01 c | 0.49 ± 0.02 b | 0.54 ± 0.01 ab | 0.57 ± 0.05 a |
P (%) | 0.52 ± 0 A | 0.55 ± 0.02 A | 0.48 ± 0.01 B | 0.38 ± 0.01 C | 0.37 ± 0.01 a | 0.38 ± 0.01 a | 0.08 ± 0 c | 0.13 ± 0.01 b |
K (%) | 1.43 ± 0.01 C | 2.6 ± 0.01 B | 3.15 ± 0.06 A | 2.7 ± 0.1 B | 1.4 ± 0.1 b | 2 ± 0.04 a | 1.28 ± 0.02 b | 1.43 ± 0.01 b |
Ca (%) | 2.09 ± 0.03 C | 3.2 ± 0.3 A | 2.7 ± 0.2 AB | 2.4 ± 0.2 C | 2.64 ± 0.07 ab | 2.9 ± 0.2 a | 2.5 ± 0.2 b | 2.7 ± 0.1 ab |
Mg (%) | 0.46 ± 0.03 C | 0.84 ± 0.03 A | 0.73 ± 0.03 B | 0.85 ± 0.03 A | 0.63 ± 0.04 b | 0.62 ± 0.03 b | 1.1 ± 0.05 a | 1.02 ± 0.04 a |
Na (mg·kg−1) | 285 ± 10 C | 445 ± 10 A | 372 ± 11 B | 422 ± 15 A | 798 ± 76 bc | 715 ± 6 c | 1033 ± 41 a | 866 ± 50 b |
Fe (mg·kg−1) | 83 ± 4 A | 45 ± 9 B | 47 ± 2 B | 78 ± 2 A | 57 ± 9 a | 66 ± 1 a | 45 ± 1 b | 36 ± 2 c |
B (mg·kg−1) | 43 ± 3 B | 50 ± 2 A | 30 ± 2 C | 36 ± 1 C | 43 ± 3 bc | 49 ± 3 ab | 53 ± 4 a | 35.4 ± 0.7 c |
Mn (mgkg−1) | 38.4 ± 0.2 A | 25.9 ± 0.5 B | 18.6 ± 0.7 C | 18 ± 1 C | 38 ± 1 c | 41.9 ± 0.9 bc | 46 ± 1 ab | 50 ± 3 a |
Cu (mg·kg−1) | 8.9 ± 0.3 A | 4.9 ± 0.3 B | 3 ± 0.1 C | 3.5 ± 0.2 C | 7.8 ± 0.3 b | 17.4 ± 0.3 a | 2.9 ± 0.1 c | 2.5 ± 0.2 c |
Zn (mg·kg−1) | 15 ± 0.5 C | 18.2 ± 0.6 B | 28 ± 2 A | 13.3 ± 0.6 C | 23.5 ± 0.5 ab | 24.7 ± 0.8 a | 21.7 ± 0.6 b | 22 ± 2 ab |
Mo(mg·kg−1) | 0.32 ± 0 A | 0.32 ± 0.02 A | 0.09 ± 0 C | 0.28 ± 0.01 B | 0.28 ± 0.01 a | 0.14 ± 0.01 c | 0.05 ± 0 d | 0.17 ± 0.01 b |
Cr (mg·kg−1) | 5.6 ± 0.4 A | 6.2 ± 0.3 A | 0.23 ± 0 C | 1.3 ± 0.07 B | 4.97 ± 0.09 a | 1.85 ± 0.04 b | 0.22 ± 0.01 c | n.d. |
Ni (mg·kg−1) | 3.9 ± 0.2 A | 3.19 ± 0.09 B | 0.9 ± 0.06 D | 1.83 ± 0.05 C | 3.9 ± 0.1 a | 2.4 ± 0.2 b | 0.81 ± 0.06 c | 0.68 ± 0.02 c |
As (mg·kg−1) | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Cd (mg·kg−1) | 0.03 ± 0 B | 0.05 ± 0 A | 0.01 ± 0 C | 0.02 ± 0 C | 0.04 ± 0 b | 0.05 ± 0 a | 0.04 ± 0 b | 0.02 ± 0 c |
Hg (mg·kg−1) | 0.03 ± 0 B | 0.03 ± 0 B | 0.03 ± 0 B | 0.16 ± 0.01 A | 0.04 ± 0 a | 0.04 ± 0 a | 0.04 ± 0 a | 0.03 ± 0 a |
Pb (mg·kg−1) | 1.64 ± 0.01 A | 0.68 ± 0.02 C | 0.22 ± 0 D | 1.18 ± 0.04 B | 0.32 ± 0.02 c | 0.58 ± 0.01 a | 0.26 ± 0.02 d | 0.49 ± 0.03 c |
Rainfed Vineyard | Deficit Irrigation Vineyard | ||||||||
---|---|---|---|---|---|---|---|---|---|
Control | Chemical Fertilizer | WIR Verm. | WIR + SS Verm. | Control | Chemical Fertilizer | WIR Verm. | WIR + SS Verm. | ||
Shoots | (nº) | 12.1 ± 2.5 A | 10.9 ± 1.3 A | 11.1 ± 1.5 A | 10.8 ± 1.6 A | 11.5 ± 1 b | 13.8 ± 3.6 ab | 14.6 ± 0.5 ab | 16.2 ± 1.3 a |
Clusters | (nº) | 12.8 ± 4.1 | 12.5 ± 2.1 | 13.9 ± 3.2 | 11.9 ± 4.7 | 20 ± 4.9 | 16.8 ± 3.3 | 17.8 ± 4.1 | 20.6 ± 5.7 |
Yield | (kg vine−1) | 2.8 ± 1.1 | 3.7 ± 1 | 3.7 ± 0.7 | 3.2 ± 1.2 | 8.8 ± 2 | 7.1 ± 1.7 | 6.5 ± 1.7 | 9.6 ± 2.3 |
Cluster weight | (g) | 217 ± 55 B | 309 ± 108 A | 271 ± 60 AB | 274 ± 48 AB | 439 ± 37 a | 429 ± 106 a | 373 ± 78 a | 522 ± 265 a |
Fertility | (cluters shoot−1) | 1.1 ± 0.4 | 1.2 ± 0.2 | 1.3 ± 0.3 | 1.1 ± 0.5 | 1.7 ± 0.3 | 1.3 ± 0.3 | 1.2 ± 0.3 | 1.3 ± 0.3 |
SA | (m2 vine−1) | 3.9 ± 0.4 B | 4.6 ± 0.4 A | 4.5 ± 0.2 A | 4.6 ± 0.4 A | 3.7 ± 0.3 a | 3.8 ± 0.3 a | 3.8 ± 0.4 a | 4 ± 0.3 a |
Pruning weight | (kg vine−1) | 0.7 ± 0.2 | 0.7 ± 0.2 | 0.7 ± 0.1 | 0.6 ± 0.1 | 0.63 ± 0.05 | 0.6 ± 0.2 | 0.6 ± 0.1 | 0.7 ± 0.2 |
SA/Yield | (m2 kg−1) | 1.7 ± 0.9 | 1.3 ± 0.5 | 1.3 ± 0.2 | 1.7 ± 0.7 | 0.4 ± 0.1 | 0.6 ± 0.1 | 0.6 ± 0.1 | 0.4 ± 0.1 |
Ravaz index | (kg kg−1) | 4 ± 2 | 5 ± 1 | 6 ± 2 | 5 ± 2 | 15 ± 5 | 11 ± 3 | 12 ± 2 | 14 ± 4 |
Rainfed Vineyard | Deficit Irrigation Vineyard | ||||||||
---|---|---|---|---|---|---|---|---|---|
Control | Chemical Fertilizer | WIR Verm. | WIR + SS Verm. | Control | Chemical Fertilizer | WIR Verm. | WIR + SS Verm. | ||
Ethanol probable | (% v/v) | 12.3 ± 0.1 C | 12.8 ± 0.06 AB | 13.0 ± 0.1 A | 12.77 ± 0.06 B | 11.17 ± 0.06 b | 11.3 ± 0.1 b | 11.8 ± 0.2 a | 11 ± 0.1 b |
pH | 4.13 ± 0.02 C | 4.2 ± 0.01 A | 4.18 ± 0.01 AB | 4.15 ± 0.02 BC | 3.82 ± 0.02 c | 3.87 ± 0.02 b | 3.93 ± 0.01 a | 3.8 ± 0.02 c | |
Titratable acidity | (g L−1 TH2) | 3.81 ± 0.02 B | 3.95 ± 0.09 A | 3.88 ± 0.03 AB | 3.9 ± 0.05 AB | 3.5 ± 0.03 a | 3.3 ± 0.1 b | 3.27 ± 0.03 b | 3.59 ± 0.02 a |
YAN | mg L−1 | 234 ± 5 B | 277 ± 8 A | 278 ± 7 A | 261 ± 5 A | 149 ± 8 ab | 147 ± 6 ab | 159 ± 8 a | 135 ± 8 b |
NH4+ | mg L−1 | 83 ± 4 C | 138 ± 8 B | 132 ± 9 B | 171 ± 9 A | 58 ± 3 a | 65 ± 5 a | 52 ± 3 bc | 47 ± 2 c |
Rainfed Vineyard | Deficit Irrigation Vineyard | |||||||
---|---|---|---|---|---|---|---|---|
Control | Chemical Fertilizer | WIR Verm. | WIR + SS Verm. | Control | Chemical Fertilizer | WIR Verm. | WIR + SS Verm. | |
L-aspartic acid | 0.16 ± 0.01 C | 0.27 ± 0.01 A | 0.23 ± 0.01 B | 0.27 ± 0.01 A | 0.14 ± 0.01 a | 0.14 ± 0.01 a | 0.13 ± 0.01 a | 0.1 ± 0.01 b |
L-glutamic acid | 0.38 ± 0.02 C | 0.6 ± 0.02 A | 0.39 ± 0.01 BC | 0.42 ± 0.01 B | 0.32 ± 0.01 b | 0.35 ± 0.01 a | 0.29 ± 0.01 bc | 0.28 ± 0.01 c |
L-glutamine | 0.07 ± 0.01 C | 0.16 ± 0.01 A | 0.11 ± 0.01 B | 0.13 ± 0.01 B | 0.03 ± 0 b | 0.03 ± 0 a | 0.03 ± 0 b | 0.03 ± 0 b |
L-histidine | 0.24 ± 0.01 C | 0.5 ± 0.03 A | 0.36 ± 0.02 B | 0.36 ± 0.02 B | 0.12 ± 0.01 b | 0.14 ± 0.01 a | 0.12 ± 0.01 b | 0.11 ± 0 b |
Glycine | 0.22 ± 0.01 C | 0.38 ± 0.02 A | 0.3 ± 0.01 B | 0.31 ± 0.03 B | 0.17 ± 0.01 b | 0.2 ± 0.01 a | 0.16 ± 0.01 b | 0.15 ± 0.01 b |
L-threonine | 0.01 ± 0 C | 0.05 ± 0 B | 0.06 ± 0 A | 0.07 ± 0 A | 0.01 ± 0 b | 0.01 ± 0 b | 0.01 ± 0 b | 0.06 ± 0 a |
L-arginine | 1.3 ± 0.06 C | 2.6 ± 0.1 A | 1.82 ± 0.06 B | 1.9 ± 0.1 B | 0.88 ± 0.03 a | 0.9 ± 0.04 a | 0.85 ± 0.04 a | 0.74 ± 0.02 b |
L-alanine | 0.4 ± 0.02 C | 0.67 ± 0.03 A | 0.54 ± 0.02 B | 0.63 ± 0.03 A | 0.3 ± 0.01 ab | 0.33 ± 0.04 a | 0.27 ± 0.02 ab | 0.25 ± 0.01 b |
γ-amino-n-butyric acid | 0.17 ± 0.01 C | 0.36 ± 0.02 A | 0.24 ± 0.01 B | 0.37 ± 0.02 A | 0.11 ± 0.01 b | 0.15 ± 0.01 a | 0.12 ± 0.01 b | 0.08 ± 0 c |
L-α-amino-n-butyric acid | 0.24 ± 0.01 D | 0.44 ± 0.01 C | 0.59 ± 0.02 B | 0.71 ± 0.03 A | 0.01 ± 0 c | 0.21 ± 0.01 a | 0.17 ± 0.01 b | 0.01 ± 0 c |
L-proline | 0.33 ± 0.01 D | 0.53 ± 0.02 B | 0.42 ± 0.02 C | 0.65 ± 0.03 A | 0.46 ± 0.02 a | 0.27 ± 0.01 b | 0.24 ± 0.01 b | 0.43 ± 0.02 a |
L-valine | 0.17 ± 0.01 C | 0.31 ± 0.01 A | 0.26 ± 0.01 B | 0.28 ± 0.01 B | 0.15 ± 0.01 a | 0.17 ± 0.01 a | 0.13 ± 0.01 b | 0.09 ± 0 c |
L-methionine | 0.02 ± 0 B | 0.02 ± 0 B | 0.01 ± 0 C | 0.04 ± 0 A | 0.01 ± 0 a | 0.01 ± 0 b | 0.01 ± 0 ab | 0.01 ± 0 ab |
L-isoleucine | 0.04 ± 0 C | 0.06 ± 0 B | 0.05 ± 0 B | 0.07 ± 0 A | 0.04 ± 0 ab | 0.04 ± 0 a | 0.04 ± 0 bc | 0.03 ± 0 c |
L-tryptophan | 0.04 ± 0 C | 0.06 ± 0 A | 0.05 ± 0 B | 0.07 ± 0.01 A | 0.03 ± 0 a | 0.03 ± 0 a | 0.02 ± 0 b | 0.02 ± 0 b |
L-leucine | 0.05 ± 0 D | 0.09 ± 0 B | 0.07 ± 0 C | 0.11 ± 0 A | 0.05 ± 0 ab | 0.05 ± 0 a | 0.05 ± 0 b | 0.05 ± 0 ab |
L-phenylalanine | 0.05 ± 0 C | 0.07 ± 0 B | 0.06 ± 0 B | 0.09 ± 0.01 A | 0.03 ± 0 a | 0.03 ± 0 a | 0.03 ± 0 b | 0.03 ± 0 c |
L-ornithine | 0.14 ± 0.01 D | 0.29 ± 0.01 A | 0.2 ± 0.01 C | 0.26 ± 0.01 B | 0.06 ± 0 bc | 0.07 ± 0 ab | 0.07 ± 0 a | 0.06 ± 0 c |
L-lysine | 0.15 ± 0.01 C | 0.28 ± 0.01 A | 0.22 ± 0.01 B | 0.26 ± 0.01 A | 0.11 ± 0.01 a | 0.11 ± 0 ab | 0.1 ± 0 ab | 0.09 ± 0.01 b |
Putrescine | 0.07 ± 0 C | 0.1 ± 0.01 B | 0.1 ± 0.01 B | 0.13 ± 0.01 A | 0.12 ± 0.01 a | 0.11 ± 0 ab | 0.07 ± 0.01 c | 0.1 ± 0 b |
Total | 4.7 ± 0.1 D | 8.6 ± 0.3 A | 6.7 ± 0.3 C | 7.9 ± 0.3 B | 3.5 ± 0.1 a | 3.7 ± 0.2 ab | 3.2 ± 0.2 bc | 3.05 ± 0.04 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez-Suárez, F.; Palenzuela, M.d.V.; Campos-Vazquez, C.; Santos-Dueñas, I.M.; Ramos-Muñoz, V.M.; Rosal, A.; Peinado, R.A. Effects of the Application of Different Types of Vermicompost Produced from Wine Industry Waste on the Vegetative and Productive Development of Grapevine in Two Irrigation Conditions. Agriculture 2025, 15, 1604. https://doi.org/10.3390/agriculture15151604
Sánchez-Suárez F, Palenzuela MdV, Campos-Vazquez C, Santos-Dueñas IM, Ramos-Muñoz VM, Rosal A, Peinado RA. Effects of the Application of Different Types of Vermicompost Produced from Wine Industry Waste on the Vegetative and Productive Development of Grapevine in Two Irrigation Conditions. Agriculture. 2025; 15(15):1604. https://doi.org/10.3390/agriculture15151604
Chicago/Turabian StyleSánchez-Suárez, Fernando, María del Valle Palenzuela, Cristina Campos-Vazquez, Inés M. Santos-Dueñas, Víctor Manuel Ramos-Muñoz, Antonio Rosal, and Rafael Andrés Peinado. 2025. "Effects of the Application of Different Types of Vermicompost Produced from Wine Industry Waste on the Vegetative and Productive Development of Grapevine in Two Irrigation Conditions" Agriculture 15, no. 15: 1604. https://doi.org/10.3390/agriculture15151604
APA StyleSánchez-Suárez, F., Palenzuela, M. d. V., Campos-Vazquez, C., Santos-Dueñas, I. M., Ramos-Muñoz, V. M., Rosal, A., & Peinado, R. A. (2025). Effects of the Application of Different Types of Vermicompost Produced from Wine Industry Waste on the Vegetative and Productive Development of Grapevine in Two Irrigation Conditions. Agriculture, 15(15), 1604. https://doi.org/10.3390/agriculture15151604