Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (393)

Search Parameters:
Keywords = vertical profiles of concentration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 4161 KiB  
Article
Indoor/Outdoor Particulate Matter and Related Pollutants in a Sensitive Public Building in Madrid (Spain)
by Elisabeth Alonso-Blanco, Francisco Javier Gómez-Moreno, Elías Díaz-Ramiro, Javier Fernández, Esther Coz, Carlos Yagüe, Carlos Román-Cascón, Dulcenombre Gómez-Garre, Adolfo Narros, Rafael Borge and Begoña Artíñano
Int. J. Environ. Res. Public Health 2025, 22(8), 1175; https://doi.org/10.3390/ijerph22081175 - 25 Jul 2025
Viewed by 362
Abstract
According to the World Health Organization (WHO), indoor air quality (IAQ) is becoming a serious global concern due to its significant impact on human health. However, not all relevant health parameters are currently regulated. For example, particle number concentration (PNC) and its associated [...] Read more.
According to the World Health Organization (WHO), indoor air quality (IAQ) is becoming a serious global concern due to its significant impact on human health. However, not all relevant health parameters are currently regulated. For example, particle number concentration (PNC) and its associated carbonaceous species, such as black carbon (BC), which are classified as carcinogenic by the International Agency for Research on Cancer (IARC), are not currently regulated. Compared with IAQ studies in other types of buildings, studies focusing on IAQ in hospitals or other healthcare facilities are scarce. Therefore, this study aims to evaluate the impact of these outdoor pollutants, among others, on the indoor environment of a hospital under different atmospheric conditions. To identify the seasonal influence, two different periods of two consecutive seasons (summer 2020 and winter 2021) were selected for the measurements. Regulated pollutants (NO, NO2, O3, PM10, and PM2.5) and nonregulated pollutants (PM1, PNC, and equivalent BC (eBC)) in outdoor air were simultaneously measured indoor and outdoor. This study also investigated the impact of indoor activities on indoor air quality. In the absence of indoor activities, outdoor sources significantly contribute to indoor traffic-related pollutants. Indoor and outdoor (I-O) measurements showed similar behavior, but indoor concentrations were lower, with peak levels delayed by up to two hours. Seasonal variations in indoor/outdoor (I/O) ratios were lower for particles than for associated gaseous pollutants. Particle infiltration depended on particle size, with it being higher the smaller the particle size. Indoor activities also significantly affected indoor pollutants. PMx (especially PM10 and PM2.5) concentrations were mainly modulated by walking-induced particle resuspension. Vertical eBC profiles indicated a relatively well-mixed environment. Ventilation through open windows rapidly altered indoor air quality. Outdoor-dominant pollutants (PNC, eBC, and NOX) had I/O ratios ≥ 1. Staying in the room with an open window had a synergistic effect, increasing the I/O ratios for all pollutants. Higher I/O ratios were associated with turbulent outdoor conditions in both unoccupied and occupied conditions. Statistically significant differences were observed between stable (TKE ≤ 1 m2 s−2) and unstable (TKE > 1 m2 s−2) conditions, except for NO2 in summer. This finding was particularly significant when the wind direction was westerly or easterly during unstable conditions. The results of this study highlight the importance of understanding the behavior of indoor particulate matter and related pollutants. These pollutants are highly variable, and knowledge about them is crucial for determining their health effects, particularly in public buildings such as hospitals, where information on IAQ is often limited. More measurement data is particularly important for further research into I-O transport mechanisms, which are essential for developing preventive measures and improving IAQ. Full article
Show Figures

Figure 1

17 pages, 4255 KiB  
Article
Exploring the Global and Regional Factors Influencing the Density of Trachurus japonicus in the South China Sea
by Mingshuai Sun, Yaquan Li, Zuozhi Chen, Youwei Xu, Yutao Yang, Yan Zhang, Yalan Peng and Haoda Zhou
Biology 2025, 14(7), 895; https://doi.org/10.3390/biology14070895 - 21 Jul 2025
Viewed by 219
Abstract
In this cross-disciplinary investigation, we uncover a suite of previously unexamined factors and their intricate interplay that hold causal relationships with the distribution of Trachurus japonicus in the northern reaches of the South China Sea, thereby extending the existing research paradigms. Leveraging advanced [...] Read more.
In this cross-disciplinary investigation, we uncover a suite of previously unexamined factors and their intricate interplay that hold causal relationships with the distribution of Trachurus japonicus in the northern reaches of the South China Sea, thereby extending the existing research paradigms. Leveraging advanced machine learning algorithms and causal inference, our robust experimental design uncovered nine key global and regional factors affecting the distribution of T. japonicus density. A robust experimental design identified nine key factors significantly influencing this density: mean sea-level pressure (msl-0, msl-4), surface pressure (sp-0, sp-4), Summit ozone concentration (Ozone_sum), F10.7 solar flux index (F10.7_index), nitrate concentration at 20 m depth (N3M20), sonar-detected effective vertical range beneath the surface (Height), and survey month (Month). Crucially, stable causal relationships were identified among Ozone_sum, F10.7_index, Height, and N3M20. Variations in Ozone_sum likely impact surface UV radiation levels, influencing plankton dynamics (a primary food source) and potentially larval/juvenile fish survival. The F10.7_index, reflecting solar activity, may affect geomagnetic fields, potentially influencing the migration and orientation behavior of T. japonicus. N3M20 directly modulates primary productivity by limiting phytoplankton growth, thereby shaping the availability and distribution of prey organisms throughout the food web. Height defines the vertical habitat range acoustically detectable, intrinsically linking directly to the vertical distribution and availability of the fish stock itself. Surface pressures (msl-0/sp-0) and their lagged effects (msl-4/sp-4) significantly influence sea surface temperature profiles, ocean currents, and stratification, all critical determinants of suitable habitats and prey aggregation. The strong influence of Month predominantly reflects seasonal changes in water temperature, reproductive cycles, and associated shifts in nutrient supply and plankton blooms. Rigorous robustness checks (Data Subset and Random Common Cause Refutation) confirmed the reliability and consistency of these causal findings. This elucidation of the distinct biological and physical pathways linking these diverse factors leading to T. japonicus density provides a significantly improved foundation for predicting distribution patterns globally and offers concrete scientific insights for sustainable fishery management strategies. Full article
Show Figures

Figure 1

17 pages, 3127 KiB  
Article
The Impact of Pile Diameter on the Performance of Single Piles: A Kinematic Analysis Based on the TBEC 2018 Guidelines
by Mehmet Hayrullah Akyıldız, Mehmet Salih Keskin, Senem Yılmaz Çetin, Sabahattin Kaplan and Gültekin Aktaş
Buildings 2025, 15(14), 2540; https://doi.org/10.3390/buildings15142540 - 19 Jul 2025
Viewed by 246
Abstract
This study investigates the effect of pile diameter on the seismic performance of single piles using the kinematic interaction framework outlined in Method III of the Turkish Building Earthquake Code TBEC-2018. Pile diameters of 65 cm, 80 cm, and 100 cm were analyzed [...] Read more.
This study investigates the effect of pile diameter on the seismic performance of single piles using the kinematic interaction framework outlined in Method III of the Turkish Building Earthquake Code TBEC-2018. Pile diameters of 65 cm, 80 cm, and 100 cm were analyzed under four different soil profiles—soft clay, stiff clay, very loose sand-A, and very loose sand-B. The methodology integrated nonlinear spring modeling (P-y, T-z, Q-z) for soil behavior, one-dimensional site response analysis using DEEPSOIL, and structural analysis with SAP2000. The simulation results showed that increasing the pile diameter led to a significant rise in internal forces: the maximum bending moment increased up to 4.0 times, and the maximum shear force increased 4.5 times from the smallest to the largest pile diameter. Horizontal displacements remained nearly constant, whereas vertical displacements decreased by almost 50%, indicating improved pile–soil stiffness interaction. The depth of the maximum moment shifted according to the soil stiffness, and stress concentrations were observed at the interfaces of stratified layers. The findings underline the importance of considering pile geometry and soil layering in seismic design. This study provides quantitative insights into the trade-off between displacement control and force demand in seismic pile design, contributing to safer foundation strategies in earthquake-prone regions. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

18 pages, 3225 KiB  
Article
Autonomous Tracking of Steel Lazy Wave Risers Using a Hybrid Vision–Acoustic AUV Framework
by Ali Ghasemi and Hodjat Shiri
J. Mar. Sci. Eng. 2025, 13(7), 1347; https://doi.org/10.3390/jmse13071347 - 15 Jul 2025
Viewed by 292
Abstract
Steel lazy wave risers (SLWRs) are critical in offshore hydrocarbon transport for linking subsea wells to floating production facilities in deep-water environments. The incorporation of buoyancy modules reduces curvature-induced stress concentrations in the touchdown zone (TDZ); however, extended operational exposure under cyclic environmental [...] Read more.
Steel lazy wave risers (SLWRs) are critical in offshore hydrocarbon transport for linking subsea wells to floating production facilities in deep-water environments. The incorporation of buoyancy modules reduces curvature-induced stress concentrations in the touchdown zone (TDZ); however, extended operational exposure under cyclic environmental and operational loads results in repeated seabed contact. This repeated interaction modifies the seabed soil over time, gradually forming a trench and altering the riser configuration, which significantly impacts stress patterns and contributes to fatigue degradation. Accurately reconstructing the riser’s evolving profile in the TDZ is essential for reliable fatigue life estimation and structural integrity evaluation. This study proposes a simulation-based framework for the autonomous tracking of SLWRs using a fin-actuated autonomous underwater vehicle (AUV) equipped with a monocular camera and multibeam echosounder. By fusing visual and acoustic data, the system continuously estimates the AUV’s relative position concerning the riser. A dedicated image processing pipeline, comprising bilateral filtering, edge detection, Hough transform, and K-means clustering, facilitates the extraction of the riser’s centerline and measures its displacement from nearby objects and seabed variations. The framework was developed and validated in the underwater unmanned vehicle (UUV) Simulator, a high-fidelity underwater robotics and pipeline inspection environment. Simulated scenarios included the riser’s dynamic lateral and vertical oscillations, in which the system demonstrated robust performance in capturing complex three-dimensional trajectories. The resulting riser profiles can be integrated into numerical models incorporating riser–soil interaction and non-linear hysteretic behavior, ultimately enhancing fatigue prediction accuracy and informing long-term infrastructure maintenance strategies. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

13 pages, 2769 KiB  
Article
Assessment of Vertical Redistribution of Electron Density in Ionosphere During an X-Class Solar Flare Using GNSS Data
by Susanna Bekker
Atmosphere 2025, 16(7), 825; https://doi.org/10.3390/atmos16070825 - 7 Jul 2025
Viewed by 270
Abstract
The impact of solar flares on the Earth’s ionosphere has been studied for many decades using both experimental and theoretical approaches. However, the accuracy of predicting ionospheric layer dynamics in response to variations in solar radiation remains limited. In particular, understanding the vertical [...] Read more.
The impact of solar flares on the Earth’s ionosphere has been studied for many decades using both experimental and theoretical approaches. However, the accuracy of predicting ionospheric layer dynamics in response to variations in solar radiation remains limited. In particular, understanding the vertical redistribution of charged particles in the ionosphere during flares with different spectral characteristics presents a significant challenge. In this study, a method is presented for reconstructing the temporal evolution of the vertical electron concentration (Ne) profile based on GNSS (Global Navigation Satellite Systems) measurements of total electron content along partially illuminated satellite-receiver paths. Using this method, vertical profiles of Ne were reconstructed during various phases of the X13.3-class solar flare that occurred on 6 September 2017. The resulting profiles correctly respond to the observed variations in solar extreme ultraviolet and X-ray radiation. This indicates that the method can be effectively applied to analyse other powerful solar events. Full article
(This article belongs to the Special Issue Feature Papers in Upper Atmosphere (2nd Edition))
Show Figures

Figure 1

12 pages, 2714 KiB  
Article
Pollen Vertical Transportation Above Paris, France, up to 150 m Using the Beenose Instrument on the Tourist Attraction “Ballon de Paris” in 2024
by Jean-Baptiste Renard, Johann Lauthier and Jérôme Giacomoni
Atmosphere 2025, 16(7), 795; https://doi.org/10.3390/atmos16070795 - 30 Jun 2025
Viewed by 330
Abstract
Pollen allergies represent a growing public health concern that necessitates enhancements to the network of instruments and modeling calculations in order to facilitate a more profound comprehension of pollen transportation. The Beenose instrument quantifies the light scattered by particles that traverse a laser [...] Read more.
Pollen allergies represent a growing public health concern that necessitates enhancements to the network of instruments and modeling calculations in order to facilitate a more profound comprehension of pollen transportation. The Beenose instrument quantifies the light scattered by particles that traverse a laser beam at four angles. This methodology enables the differentiation of pollen particles from other particulate matter, predominantly mineral and carbonaceous in nature, thereby facilitating the retrieval of pollen concentrations. The Beenose instrument has been installed on the tourist balloon known as “Ballon de Paris” in a large park situated in the southwest of Paris, France. The measurement period is from April to November 2024, coinciding with the pollen seasons of trees and grasses. The balloon conducts numerous flights per day, reaching an altitude of 150 m when weather conditions are conducive, which occurs approximately 58% of the time during this period. The data are averaged to produce vertical profiles with a resolution of 30 m. Concentrations of the substance decrease with altitude, although a secondary layer is observed in spring. This phenomenon may be attributed to the presence of emissions from a proximate forest situated at a higher altitude. The average decrease in concentration of 11 ± 8% per 10 m is consistent with the findings of previous studies. The long-term implementation of Beenose measurements on this tourist balloon is intended to enhance the precision of the results and facilitate the differentiation of the various parameters that can influence the vertical transportation of pollen. Full article
(This article belongs to the Section Air Quality)
Show Figures

Figure 1

16 pages, 1877 KiB  
Review
Capillary Rise and Salt Weathering in Spain: Impacts on the Degradation of Calcareous Materials in Historic Monuments
by Elías Afif-Khouri, Alfonso Lozano-Martínez, José Ignacio López de Rego, Belén López-Gallego and Rubén Forjan-Castro
Buildings 2025, 15(13), 2285; https://doi.org/10.3390/buildings15132285 - 29 Jun 2025
Viewed by 750
Abstract
The crystallization of soluble salts is one of the most significant agents of deterioration affecting porous building materials in historical architecture. This process not only compromises the physical integrity of the materials but also results in considerable aesthetic, structural, and economic consequences. Soluble [...] Read more.
The crystallization of soluble salts is one of the most significant agents of deterioration affecting porous building materials in historical architecture. This process not only compromises the physical integrity of the materials but also results in considerable aesthetic, structural, and economic consequences. Soluble salts involved in these processes may originate from geogenic sources—including soil leachate, marine aerosols, and the natural weathering of parent rocks—or from anthropogenic factors such as air pollution, wastewater infiltration, and the use of incompatible restoration materials. This study examines the role of capillary rise as a primary mechanism responsible for the vertical migration of saline solutions from the soil profile into historic masonry structures, especially those constructed with calcareous stones. It describes how water retained or sustained within the soil matrix ascends via capillarity, carrying dissolved salts that eventually crystallize within the pore network of the stone. This phenomenon leads to a variety of damage types, ranging from superficial staining and efflorescence to more severe forms such as subflorescence, microfracturing, and progressive mass loss. By adopting a multidisciplinary approach that integrates concepts and methods from soil physics, hydrology, petrophysics, and conservation science, this paper examines the mechanisms that govern saline water movement, salt precipitation patterns, and their cumulative effects on stone durability. It highlights the influence of key variables such as soil texture and structure, matric potential, hydraulic conductivity, climatic conditions, and stone porosity on the severity and progression of deterioration. This paper also addresses regional considerations by focusing on the context of Spain, which holds one of the highest concentrations of World Heritage Sites globally and where many monuments are constructed from vulnerable calcareous materials such as fossiliferous calcarenites and marly limestones. Special attention is given to the types of salts most commonly encountered in Spanish soils—particularly chlorides and sulfates—and their thermodynamic behavior under fluctuating environmental conditions. Ultimately, this study underscores the pressing need for integrated, preventive conservation strategies. These include the implementation of drainage systems, capillary barriers, and the use of compatible materials in restoration, as well as the application of non-destructive diagnostic techniques such as electrical resistivity tomography and hyperspectral imaging. Understanding the interplay between soil moisture dynamics, salt crystallization, and material degradation is essential for safeguarding the cultural and structural value of historic buildings in the face of ongoing environmental challenges and climate variability. Full article
(This article belongs to the Special Issue Selected Papers from the REHABEND 2024 Congress)
Show Figures

Figure 1

21 pages, 10526 KiB  
Article
Long-Term Spatiotemporal Variability and Source Attribution of Aerosols over Xinjiang, China
by Chenggang Li, Xiaolu Ling, Wenhao Liu, Zeyu Tang, Qianle Zhuang and Meiting Fang
Remote Sens. 2025, 17(13), 2207; https://doi.org/10.3390/rs17132207 - 26 Jun 2025
Cited by 1 | Viewed by 324
Abstract
Aerosols play a critical role in modulating the land–atmosphere energy balance, influencing regional climate dynamics, and affecting air quality. Xinjiang, a typical arid and semi-arid region in China, frequently experiences dust events and complex aerosol transport processes. This study provides a comprehensive analysis [...] Read more.
Aerosols play a critical role in modulating the land–atmosphere energy balance, influencing regional climate dynamics, and affecting air quality. Xinjiang, a typical arid and semi-arid region in China, frequently experiences dust events and complex aerosol transport processes. This study provides a comprehensive analysis of the spatiotemporal evolution and potential source regions of aerosols in Xinjiang from 2005 to 2023, based on Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol products (MCD19A2), Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) vertical profiles, ground-based PM2.5 and PM10 concentrations, MERRA-2 and ERA5 reanalysis datasets, and HYSPLIT backward trajectory simulations. The results reveal pronounced spatial and temporal heterogeneity in aerosol optical depth (AOD). In Northern Xinjiang (NXJ), AOD exhibits relatively small seasonal variation with a wintertime peak, while Southern Xinjiang (SXJ) shows significant seasonal and interannual variability, characterized by high AOD in spring and a minimum in winter, without a clear long-term trend. Dust is the dominant aerosol type, accounting for 96.74% of total aerosol content, and AOD levels are consistently higher in SXJ than in NXJ. During winter, aerosols are primarily deposited in the near-surface layer as a result of local and short-range transport processes, whereas in spring, long-range transport at higher altitudes becomes more prominent. In NXJ, air masses are primarily sourced from local regions and Central Asia, with stronger pollution levels observed in winter. In contrast, springtime pollution in Kashgar is mainly influenced by dust emissions from the Taklamakan Desert, exceeding winter levels. These findings provide important scientific insights for atmospheric environment management and the development of targeted dust mitigation strategies in arid regions. Full article
Show Figures

Graphical abstract

20 pages, 1842 KiB  
Article
Application of Unmanned Aerial Vehicle Observation for Estimating City-Scale Anthropogenic CO2 Emissions: A Case Study in Chengdu, Southwestern China
by Xingyu Xiang, Kuang Xiao, Xing Wang, Xi Wang, Xin Zheng, Xiaodie Kong, Li Zhou, Guangming Shi and Fumo Yang
Atmosphere 2025, 16(6), 713; https://doi.org/10.3390/atmos16060713 - 12 Jun 2025
Viewed by 900
Abstract
The accurate quantification of urban anthropogenic CO2 emissions is of paramount importance for comprehending regional carbon fluxes and supporting climate change mitigation strategies. This study explores the applicability of a cost-effective unmanned aerial vehicle (UAV)-based mass balance method for independent urban-scale emission [...] Read more.
The accurate quantification of urban anthropogenic CO2 emissions is of paramount importance for comprehending regional carbon fluxes and supporting climate change mitigation strategies. This study explores the applicability of a cost-effective unmanned aerial vehicle (UAV)-based mass balance method for independent urban-scale emission assessments. An integrated air–ground–satellite observation framework was established by combining UAV-based vertical CO2 profiles, ground-based observations, and ERA5 reanalysis data, and applied to quantify CO2 emissions in Chengdu, a major city in southwestern China. The UAV-derived CO2 concentration profiles were coupled with meteorological parameters to compute cross-sectional fluxes, yielding an annual emission estimate of 48.4 MtCO2, which aligns well with census-based estimations. The primary uncertainty, approximately 23.61%, stems from meteorological parameter variations, highlighting the need for improved data resolution and extended observation periods. This study demonstrates that UAV-based mass balance observations can serve as an independent and verifiable approach for urban emission estimation. Beyond supplementing existing inventories, it provides a robust reference for cross-validation, contributing to the development of more accurate and adaptive emission monitoring systems for urban climate governance. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

20 pages, 1516 KiB  
Article
Impact of Rootstocks and Training Systems on Secondary Metabolites in the Skins and Pulp of Vitis labrusca and Brazilian Hybrid Grapes
by Francisco José Domingues Neto, Marco Antonio Tecchio, Silvia Regina Cunha, Harleson Sidney Almeida Monteiro, Ricardo Figueira, Aline Nunes, João Domingos Rodrigues, Elizabeth Orika Ono, Mara Fernandes Moura-Furlan and Giuseppina Pace Pereira Lima
Plants 2025, 14(12), 1766; https://doi.org/10.3390/plants14121766 - 10 Jun 2025
Viewed by 472
Abstract
Grapes are rich in bioactive compounds, including phenolics and anthocyanins, which exhibit antioxidant properties and offer potential health benefits. The accumulation of these compounds is influenced by agronomic practices, particularly rootstock selection and training systems. This study evaluated the effects of different rootstocks [...] Read more.
Grapes are rich in bioactive compounds, including phenolics and anthocyanins, which exhibit antioxidant properties and offer potential health benefits. The accumulation of these compounds is influenced by agronomic practices, particularly rootstock selection and training systems. This study evaluated the effects of different rootstocks (‘IAC 766 Campinas’ and ‘106-8 Mgt’) and training systems (low and high vertical shoot positioning) on the polyphenolic composition and antioxidant activity in the skins and pulps of Vitis labrusca and Brazilian hybrid grapes. The analyses included total phenolics, total flavonoids, monomeric anthocyanins, and antioxidant activity (DPPH and FRAP assays), as well as the individual polyphenolic profile in grape skins. The results indicated that both rootstock and training system significantly affected the accumulation of bioactive compounds and antioxidant capacity. Grapes trained on high trellises exhibited higher concentrations of bioactive compounds, while those from low trellises showed an enhanced phenolic composition. Among Vitis labrusca varieties, ‘Bordô’ had the highest bioactive compounds, while ‘Isabel’ stood out for specific phenolic acids. In hybrid cultivars, the ‘106-8 Mgt’ rootstock boosted antioxidant compounds, while ‘IAC 766 Campinas’ enhanced flavonoid, anthocyanin, and phenolic acid levels. Malvidin-3-O-glucoside emerged as the predominant anthocyanin. These findings underscore the importance of optimizing rootstock selection and training systems to enhance the phenolic composition and antioxidant potential of grapes. Full article
Show Figures

Figure 1

27 pages, 5226 KiB  
Article
A Novel Pulsation Reflux Classifier Used for Enhanced Preconcentration Efficiency of Antimony Oxide Ore
by Dongfang Lu, Yuxin Zhang, Zhenqiang Liu, Xiayu Zheng, Yuhua Wang and Yifei Liu
Minerals 2025, 15(6), 605; https://doi.org/10.3390/min15060605 - 4 Jun 2025
Cited by 1 | Viewed by 484
Abstract
This study developed a novel pulsation-fluidized bed system, and the device was integrated into a reflux classifier to enhance the preconcentration of antimony oxide ore. The diaphragm-based pulsation device converts a stable upward water flow into a vertically alternating pulsation flow. By precisely [...] Read more.
This study developed a novel pulsation-fluidized bed system, and the device was integrated into a reflux classifier to enhance the preconcentration of antimony oxide ore. The diaphragm-based pulsation device converts a stable upward water flow into a vertically alternating pulsation flow. By precisely controlling the pulsation parameters and optimizing operational conditions, the density-based stratification of particles can be significantly enhanced, thereby improving bed layering and effectively reducing entrainment. An antimony oxide ore from flotation tailings with an Sb grade of 0.8% was used as the feed material to evaluate the performance of the pulsation reflux classifier (PRC). Under optimized conditions, the PRC produced a concentrate with an Sb grade of 5.48% and a recovery of 81.68%, corresponding to a high separation efficiency of 70.97%. The response surface statistical model revealed that the interaction between the fluidization rate and pulsation frequency significantly enhanced the Sb grade of the concentrate, while pulsation stroke was identified as the key factor influencing separation efficiency. Furthermore, the variation in bed profile parameters with changing pulsation characteristics elucidates the interplay between particle suspension, stratification, and fluid disturbances. This study demonstrates that pulsation fluidization significantly enhances the separation performance of the reflux classifier, offering a new approach for the efficient preconcentration of complex fine-grained minerals. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

19 pages, 4006 KiB  
Article
An Assessment of TROPESS CrIS and TROPOMI CO Retrievals and Their Synergies for the 2020 Western U.S. Wildfires
by Oscar A. Neyra-Nazarrett, Kazuyuki Miyazaki, Kevin W. Bowman and Pablo E. Saide
Remote Sens. 2025, 17(11), 1854; https://doi.org/10.3390/rs17111854 - 26 May 2025
Viewed by 524
Abstract
The 2020 wildfire season in the Western U.S. was historic in its intensity and impact on the land and atmosphere. This study aims to characterize satellite retrievals of carbon monoxide (CO), a tracer of combustion and signature of those fires, from two key [...] Read more.
The 2020 wildfire season in the Western U.S. was historic in its intensity and impact on the land and atmosphere. This study aims to characterize satellite retrievals of carbon monoxide (CO), a tracer of combustion and signature of those fires, from two key satellite instruments: the Cross-track Infrared Sounder (CrIS) and the Tropospheric Monitoring Instrument (TROPOMI). We evaluate them during this event and assess their synergies. These two retrievals are matched temporally, as the host satellites are in tandem orbit and spatially by aggregating TROPOMI to the CrIS resolution. Both instruments show that the Western U.S. displayed significantly higher daily average CO columns compared to the Central and Eastern U.S. during the wildfires. TROPOMI showed up to a factor of two larger daily averages than CrIS during the most intense fire period, likely due to differences in the vertical sensitivity of the two instruments and representative of near-surface CO abundance near the fires. On the other hand, there was excellent agreement between the instruments in downwind free tropospheric plumes (scatter plot slopes of 0.96–0.99), consistent with their vertical sensitivities and indicative of mostly lofted smoke. Temporally, TROPOMI CO column peaks were delayed relative to the Fire Radiative Power (FRP), and CrIS peaks were delayed with respect to TROPOMI, particularly during the intense initial weeks of September, suggesting boundary layer buildup and ventilation. Satellite retrievals were evaluated using ground-based CO column estimates from the Network for the Detection of Atmospheric Composition Change (NDACC) and the Total Carbon Column Observing Network (TCCON), showing Normalized Mean Errors (NMEs) for CrIS and TROPOMI below 32% and 24%, respectively, when compared to all stations studied. While Normalized Mean Bias (NMB) was typically low (absolute value below 15%), there were larger negative biases at Pasadena, likely associated with sharp spatial gradients due to topography and proximity to a large city, which is consistent with previous research. In situ CO profiles from AirCore showed an elevated smoke plume for 15 September 2020, highlighted consistency between TROPOMI and CrIS CO columns for lofted plumes. This study demonstrates that both CrIS and TROPOMI provide complementary information on CO distribution. CrIS’s sensitivity in the middle and lower free troposphere, coupled with TROPOMI’s effectiveness at capturing total columns, offers a more comprehensive view of CO distribution during the wildfires than either retrieval alone. By combining data from both satellites as a ratio, more detailed information about the vertical location of the plumes can potentially be extracted. This approach can enhance air quality models, improve vertical estimation accuracy, and establish a new method for assessing lower tropospheric CO concentrations during significant wildfire events. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Figure 1

17 pages, 2554 KiB  
Article
Retrieval of Dissolved Organic Carbon Storage in Plateau Lakes Based on Remote Sensing and Analysis of Driving Factors: A Case Study of Lake Dianchi
by Yufeng Yang, Wei Gao and Yuan Zhang
Remote Sens. 2025, 17(10), 1791; https://doi.org/10.3390/rs17101791 - 21 May 2025
Viewed by 400
Abstract
Dissolved organic carbon (DOC) is an essential form of carbon in lakes and has significant impact on thermal structure and carbon source-supporting food webs. Current remote sensing studies on DOC mainly focus on the retrieval of surface concentration of lakes, with limited understanding [...] Read more.
Dissolved organic carbon (DOC) is an essential form of carbon in lakes and has significant impact on thermal structure and carbon source-supporting food webs. Current remote sensing studies on DOC mainly focus on the retrieval of surface concentration of lakes, with limited understanding of three-dimensional carbon storage. This study proposes a novel vertical retrieval methodology for plateau lakes by integrating remote sensing and vertical profile analysis. Specifically, a Gaussian function-based vertical fitting model was developed to characterize DOC concentration distribution along water columns, where parameters (μ and σ) were calibrated against surface DOC concentrations retrieved from MODIS reflectance. A result-oriented storage algorithm was established by linking surface DOC concentration to DOC storage through linear relationships (R2 > 0.9), with slope and intercept functions optimized as depth-dependent equations. The mixed-layer depth (2 m) was determined through error minimization analysis of 16 vertical profiles. Applied to the eutrophic Lake Dianchi, results show significant vertical DOC variations (CV up to 101.4%) but consistent distribution patterns across profiles. Spatially, higher DOC storage occurred in central regions (80–120 g·m−2) with seasonal peaks in summer and autumn. Interannual analysis reveals wind speed and forest coverage as dominant drivers, while monthly variations correlate strongly with water temperature. This methodology advances real-time monitoring of carbon storage in deep plateau lakes, providing critical insights into lacustrine carbon cycling. Full article
(This article belongs to the Section Ecological Remote Sensing)
Show Figures

Figure 1

8 pages, 1340 KiB  
Proceeding Paper
Correlation Between Nutrient Concentration and Leaf Optical Attenuation Coefficient of Brassica Rapa (Pechay) as Measured by Time-Domain Optical Coherence Tomography System
by Tristan Dave Taeza, Mark Emmanuel Witongco, Maria Cecilia Galvez, Edgar Vallar, Mark Nickole Tabafa, James Roy Lesidan, Jumar Cadondon, Jejomar Bulan and Tatsuo Shiina
Eng. Proc. 2025, 87(1), 62; https://doi.org/10.3390/engproc2025087062 - 9 May 2025
Viewed by 451
Abstract
This study explores the relationship between nutrient concentration (NC) and epidermal thickness (d) of the leaves of hydroponically grown Brassica rapa and its attenuation coefficients (m) using portable Time-Domain Optical Coherence Tomography (TD-OCT), which is a non-invasive [...] Read more.
This study explores the relationship between nutrient concentration (NC) and epidermal thickness (d) of the leaves of hydroponically grown Brassica rapa and its attenuation coefficients (m) using portable Time-Domain Optical Coherence Tomography (TD-OCT), which is a non-invasive imaging technique that uses low-coherence interferometry to generate axial scans of plants’ leaves by measuring the time delay and intensity of backscattered light. The portable TD-OCT system in this study has an axial and lateral resolution of 7 m and 3 m, respectively, a scanning depth of 12 mm, and a 1310 nm Super Luminescent Diode (SLD). Several studies suggest that the differences in d and m are related to nutritional, physiological, and anatomical status. The study used the Kratky method, a simple non-circulating hydroponic system, to cultivate Brassica rapa with varying NC (25%, 50%, 75%, 100% (control), and 125%). Each treatment group used two plants. The TD-OCT sample probe was placed on a fixed holder and was oriented vertically so that light was directed downward onto the leaf’s surface to obtain the depth profile (A-scan). The distance between the probe and the leaf was adjusted to obtain the optimum interference signal. Five averaged A-scans were obtained per leaf on the 7th, 18th, and 21st days post nutrient exposure. The logarithm of the averaged A-scan is linearly fitted to extract m. The results showed a positive correlation between NC and m, which suggests that plants produce more chlorophyll and develop denser cells and increase m. There was no correlation obtained between NC and d. The study demonstrates the potential of TD-OCT as a non-destructive tool for assessing plant health and monitoring growth dynamics in hydroponic systems and m as a sensitive indicator of plant health as compared to d. The continued exploration of TD-OCT applications in agriculture can contribute to improving crop management strategies and promoting sustainable food production practices. Full article
(This article belongs to the Proceedings of The 5th International Electronic Conference on Applied Sciences)
Show Figures

Figure 1

15 pages, 3470 KiB  
Article
Fate of Microplastics in Deep Gravel Riverbeds: Evidence for Direct Transfer from River Water to Groundwater
by Marco Pittroff, Matthias Munz, Bernhard Valenti, Constantin Loui and Hermann-Josef Lensing
Microplastics 2025, 4(2), 26; https://doi.org/10.3390/microplastics4020026 - 8 May 2025
Viewed by 634
Abstract
Riverbed sediments act as potential retention reservoirs or transport corridors for microplastic particles (MPs) from river water to groundwater. Vertical concentration profiles of MPs, together with river water and groundwater analysis, provide insight into their fate and transport behavior in freshwater systems. However, [...] Read more.
Riverbed sediments act as potential retention reservoirs or transport corridors for microplastic particles (MPs) from river water to groundwater. Vertical concentration profiles of MPs, together with river water and groundwater analysis, provide insight into their fate and transport behavior in freshwater systems. However, such data remain scarce. This study provides a depth-specific analysis of MPs ≥ 100 µm (abundance, type, and size) in gravelly riverbed sediments down to 200 cm, along with river water and groundwater analysis. Three sediment freeze cores were collected from the Alpine Rhine, a channelized mountain stream with high flow velocities and permanent losing stream conditions. The average MP abundance in the riverbed was 3.1 ± 2.3 MP/kg (100–929 µm); in the river, 92 ± 5 MP/m3 (112–822 µm); and in the groundwater, 111 ± 6 MP/m3 (112–676 µm). The dominant polymer types in the riverbed were polypropylene (PP), polyvinyl chloride (PVC), and polyethylene terephthalate (PET) (>70%), while polyamide (PA) dominated in the river water (56%) and the groundwater (76%). The comparable MP concentration, particle sizes, and polymer types between river water and groundwater, as well as the vertical MP concentration profiles, indicate that even large MPs up to 676 µm are transported from river water to groundwater without significant retention in the gravel sediment. Full article
Show Figures

Figure 1

Back to TopTop