Impact of Rootstocks and Training Systems on Secondary Metabolites in the Skins and Pulp of Vitis labrusca and Brazilian Hybrid Grapes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design and Treatments
2.2. Sample Collection and Preparation
2.3. Biochemical Analyses of Grape Skins and Pulps
2.4. Total Phenolic Compounds
2.5. Total Flavonoids
2.6. Total Monomeric Anthocyanins
2.7. Antioxidant Activity
2.8. Phenolic Compounds in Grape Skins by Ultra-High-Performance Liquid Chromatography (UHPLC)
2.9. Statistical Analyses
3. Results
3.1. Grape Vines Vitis labrusca—‘Bordô’
3.2. Grape Vines Vitis labrusca—‘Isabel’
3.3. Principal Component Analysis (PCA) of Vitis labrusca Grapevines
3.4. Hybrid Vines—‘IAC 138-22 Máximo’
3.5. Hybrid Vines—‘BRS Violeta’
3.6. Principal Component Analysis (PCA) of Hybrid Vines
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xia, E.-Q.; Deng, G.-F.; Guo, Y.-J.; Li, H.-B. Biological activities of polyphenols from grapes. Int. J. Mol. Sci. 2010, 11, 622–646. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Martinson, T.E.; Liu, R.H. Phytochemical profiles and antioxidant activities of wine grapes. Food Chem. 2009, 116, 332–339. [Google Scholar] [CrossRef]
- Khoo, H.E.; Azlan, A.; Tang, S.T.; Lim, S.M. Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr. Res. 2017, 61, 1361779. [Google Scholar] [CrossRef] [PubMed]
- Simonetti, L.M.; Sousa, M.C.; Moura, M.F.; da Silva Nunes, J.G.; Diamante, M.S.; da Silva, M.B.; da Silva, M.J.R.; Callili, D.; Lima, G.P.P.; Tecchio, M.A. The influence of different training systems and rootstocks on ‘Sauvignon Blanc’ grapes. Bragantia 2021, 80, e2021. [Google Scholar] [CrossRef]
- Domingues Neto, F.J.; Tecchio, M.A.; Borges, C.V.; Rodrigues, J.D.; Ono, E.O.; Lima, G.P.P.; Moura, M.F.; Hernandes, J.L.; de Souza Silva, M.; Leonel, M. Yield performance and quality assessment of Brazilian hybrid grapes influenced by rootstocks and training systems. Horticulturae 2024, 10, 909. [Google Scholar] [CrossRef]
- Cheng, J.; Wei, L.; Mei, J.; Wu, J. Effect of rootstock on phenolic compounds and antioxidant properties in berries of grape (Vitis vinifera L.) cv. ‘Red Alexandria’. Sci. Hortic. 2017, 217, 137–144. [Google Scholar] [CrossRef]
- da Costa, R.R.; Rodrigues, A.A.M.; de Vasconcelos, V.A.F.; Costa, J.P.D.; de Lima, M.A.C. Trellis systems, rootstocks and season influence on the phenolic composition of ‘Chenin Blanc’ grape. Sci. Agric. 2020, 77, e20180207. [Google Scholar] [CrossRef]
- Heller-Fuenzalida, F.; Cuneo, I.F.; Kuhn, N.; Peña-Neira, Á.; Cáceres-Mella, A. Rootstock effect influences the phenolic and sensory characteristics of ‘Syrah’ grapes and wines in a Mediterranean climate. Agronomy 2023, 13, 2530. [Google Scholar] [CrossRef]
- Silva, M.J.R.; Paiva, A.P.M.; de Souza, J.F.; da Silva Padilha, C.V.; Basílio, L.S.P.; dos Santos Lima, M.; Pereira, G.E.; Corrêa, L.C.; Vianello, F.; Lima, G.P.P.; et al. Phytochemical profile of Brazilian grapes (Vitis labrusca and hybrids) grown on different rootstocks. PLoS ONE 2022, 17, e0275489. [Google Scholar] [CrossRef]
- Downey, M.O.; Dokoozlian, N.K.; Krstic, M.P. Cultural practice and environmental impacts on the flavonoid composition of grapes and wine: A review of recent research. Am. J. Enol. Vitic. 2006, 57, 257–268. [Google Scholar] [CrossRef]
- Domingues Neto, F.J.; Pimentel Junior, A.; Modesto, L.R.; Moura, M.F.; Putti, F.F.; Boaro, C.S.F.; Ono, E.O.; Rodrigues, J.D.; Tecchio, M.A. Photosynthesis, biochemical and yield performance of grapevine hybrids in two rootstock and trellis height. Horticulturae 2023, 9, 596. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A., Jr. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Popova, M.; Bankova, V.; Butovska, D.; Petkov, V.; Nikolova-Damyanova, B.; Sabatini, A.G.; Marcazzan, G.L.; Bogdanov, S. Validated methods for the quantification of biologically active constituents of poplar-type propolis. Phytochem. Anal. 2004, 15, 235–240. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.B.; Rodrigues, L.F.O.S.; Rossi, T.C.; Vieira, M.C.S.; Minatel, I.O.; Lima, G.P.P. Effects of boiling and oil or vinegar on pickled jurubeba (Solanum paniculatum L.) fruit. Afr. J. Biotechnol. 2016, 15, 125–133. [Google Scholar] [CrossRef]
- Giusti, M.M.; Wrolstad, R.E. Characterization and measurement of anthocyanins by UV-visible spectroscopy. Curr. Protoc. Food Anal. Chem. 2001, F1.2.1–F1.2.13. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT—Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Natividade, M.M.P.; Corrêa, L.C.; de Souza, S.V.C.; Pereira, G.E.; de Oliveira Lima, L.C. Simultaneous analysis of 25 phenolic compounds in grape juice for HPLC: Method validation and characterization of São Francisco Valley samples. Microchem. J. 2013, 110, 665–674. [Google Scholar] [CrossRef]
- Domingues Neto, F.J.; Pimentel Junior, A.; Borges, C.V.; Rodrigues, J.D.; Figueira, R.; Moura, M.F.; Minatel, I.O.; Nunes, A.; Lima, G.P.P.; Tecchio, M.A. Polyphenolic profile and antioxidant activity of whole grape juices from Vitis labrusca and Brazilian hybrid grapes in two training systems. Antioxidants 2024, 13, 1132. [Google Scholar] [CrossRef]
- Silva, M.J.R.; Vedoato, B.T.F.; Lima, G.P.P.; Moura, M.F.; Coser, G.M.A.G.; Watanabe, C.Y.; Tecchio, M.A. Phenolic compounds and antioxidant activity of red and white grapes on different rootstocks. Afr. J. Biotechnol. 2017, 16, 664–671. [Google Scholar] [CrossRef]
- Suriano, S.; Alba, V.; Di Gennaro, D.; Suriano, M.S.; Savino, M.; Tarricone, L. Genotype/rootstocks effect on the expression of anthocyanins and flavans in grapes and wines of Greco Nero n. (Vitis vinifera L.). Sci. Hortic. 2016, 209, 309–315. [Google Scholar] [CrossRef]
- Kurt-Celebi, A.; Colak, N.; Hayirlioglu-Ayaz, S.; Kostadinović Veličkovska, S.; Ilieva, F.; Esatbeyoglu, T.; Ayaz, F.A. Accumulation of Phenolic Compounds and Antioxidant Capacity during Berry Development in Black ‘Isabel’ Grape (Vitis vinifera L. x Vitis labrusca L.). Molecules 2020, 25, 3845. [Google Scholar] [CrossRef]
- Nixdorf, S.L.; Hermosín-Gutiérrez, I. Brazilian red wines made from the hybrid grape cultivar Isabel: Phenolic composition and antioxidant capacity. Anal. Chim. Acta 2010, 659, 208–215. [Google Scholar] [CrossRef] [PubMed]
- Silva, J.K.; Cazarin, C.B.B.; Correa, L.C.; Batista, Â.G.; Furlan, C.P.B.; Biasoto, A.C.T.; Pereira, G.E.; de Camargo, A.C.; Maróstica Junior, M.R. Bioactive compounds of juices from two Brazilian grape cultivars. J. Sci. Food Agric. 2016, 96, 1990–1996. [Google Scholar] [CrossRef] [PubMed]
- Pantelić, M.M.; Dabić Zagorac, D.Č.; Davidović, S.M.; Todić, S.R.; Bešlić, Z.S.; Gašić, U.M.; Tešić, Ž.L.; Natić, M.M. Identification and quantification of phenolic compounds in berry skin, pulp, and seeds in 13 grapevine varieties grown in Serbia. Food Chem. 2016, 211, 243–252. [Google Scholar] [CrossRef]
- Castellanos-Gallo, L.; Ballinas-Casarrubias, L.; Espinoza-Hicks, J.C.; Hernández-Ochoa, L.R.; Muñoz-Castellanos, L.N.; Zermeño-Ortega, M.R.; Borrego-Loya, A.; Salas, E. Grape pomace valorization by extraction of phenolic polymeric pigments: A review. Processes 2022, 10, 469. [Google Scholar] [CrossRef]
- Karastergiou, A.; Gancel, A.-L.; Jourdes, M.; Teissedre, P.-L. Valorization of grape pomace: A review of phenolic composition, bioactivity, and therapeutic potential. Antioxidants 2024, 13, 1131. [Google Scholar] [CrossRef]
- Zoratti, L.; Karppinen, K.; Luengo Escobar, A.; Häggman, H.; Jaakola, L. Light-controlled flavonoid biosynthesis in fruits. Front. Plant Sci. 2014, 5, 534. [Google Scholar] [CrossRef]
- Fernandes, P.A.R.; Coimbra, M.A. The antioxidant activity of polysaccharides: A structure-function relationship overview. Carbohydr. Polym. 2023, 314, 120965. [Google Scholar] [CrossRef]
- Kumar, K.; Debnath, P.; Singh, S.; Kumar, N. An overview of plant phenolics and their involvement in abiotic stress tolerance. Stresses 2023, 3, 570–585. [Google Scholar] [CrossRef]
- Kumar, N.; Goel, N. Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnol. Rep. 2019, 24, e00370. [Google Scholar] [CrossRef] [PubMed]
- Barraza-Garza, G.; Pérez-León, J.A.; Castillo-Michel, H.; de la Rosa, L.A.; Martinez-Martinez, A.; Cotte, M.; Alvarez-Parrilla, E. Antioxidant effect of phenolic compounds (PC) at different concentrations in IEC-6 cells: A spectroscopic analysis. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 227, 117570. [Google Scholar] [CrossRef] [PubMed]
- Nisa, R.U.; Nisa, A.U.; Tantray, A.Y.; Shah, A.H.; Jan, A.T.; Shah, A.A.; Wani, I.A. Plant phenolics with promising therapeutic applications against skin disorders: A mechanistic review. J. Agric. Food Res. 2024, 16, 101090. [Google Scholar] [CrossRef]
- Rudrapal, M.; Khairnar, S.J.; Khan, J.; Dukhyil, A.B.; Ansari, M.A.; Alomary, M.N.; Alshabrmi, F.M.; Palai, S.; Deb, P.K.; Devi, R. Dietary polyphenols and their role in oxidative stress-induced human diseases: Insights into protective effects, antioxidant potentials and mechanism(s) of action. Front. Pharmacol. 2022, 13, 806470. [Google Scholar] [CrossRef]
- Deka, H.; Choudhury, A.; Dey, B.K. An overview on plant derived phenolic compounds and their role in treatment and management of diabetes. J. Pharmacopunct. 2022, 25, 199–208. [Google Scholar] [CrossRef]
- Huang, J.; Xie, M.; He, L.; Song, X.; Cao, T. Chlorogenic acid: A review on its mechanisms of anti-inflammation, disease treatment, and related delivery systems. Front. Pharmacol. 2023, 14, 1218015. [Google Scholar] [CrossRef]
- Rebello, L.P.G.; Lago-Vanzela, E.S.; Barcia, M.T.; Ramos, A.M.; Stringheta, P.C.; Da-Silva, R.; Castillo-Muñoz, N.; Gómez-Alonso, S.; Hermosín-Gutiérrez, I. Phenolic composition of the berry parts of hybrid grape cultivar BRS Violeta (BRS Rubea×IAC 1398-21) using HPLC–DAD–ESI-MS/MS. Food Res. Int. 2013, 54, 354–366. [Google Scholar] [CrossRef]
- Barcia, M.T.; Pertuzatti, P.B.; Gómez-Alonso, S.; Godoy, H.T.; Hermosín-Gutiérrez, I. Phenolic composition of grape and winemaking by-products of Brazilian hybrid cultivars BRS Violeta and BRS Lorena. Food Chem. 2014, 159, 95–105. [Google Scholar] [CrossRef]
- Pommer, C.V.; Passos, I.R.S.; Terra, M.M.; Pires, E.J.P. Variedades de Videira para o Estado de São Paulo; Instituto Agronômico: Campinas, Brazil, 1997. [Google Scholar]
- Simão, S. Tratado de Fruticultura; FEALQ: Piracicaba, Brazil, 1998. [Google Scholar]
Variable | Trellis | Rootstock | CV (%) | |
---|---|---|---|---|
‘IAC 766 Campinas’ | ‘106-8 Mgt’ | |||
Skin | ||||
TF (mg 100 g−1) | Low | 85.98 ± 9.93 aA | 78.58 ± 4.45 bA | 7.15 |
High | 81.23 ± 3.12 aB | 95.88 ± 4.60 aA | ||
TMA (mg 100 g−1) | Low | 513.66 ± 21.91 bA | 569.96 ± 52.99 bA | 6.33 |
High | 835.01 ± 38.32 aA | 680.04 ± 44.79 aB | ||
DPPH (mmol g−1) | Low | 17.33 ± 3.07 bA | 20.03 ± 0.84 aA | 9.04 |
High | 22.67 ± 1.35 aA | 20.15 ± 1.08 aA | ||
TPC (mg 100 g−1) | Low | 679.80 ± 41.41 bA | 719.59 ± 39.64 aA | 7.00 |
High | 956.12 ± 49.11 aA | 804.17 ± 56.06 aB | ||
Pulp | ||||
TF (mg 100 g−1) | Low | 0.76 ± 0.07 bB | 0.89 ± 0.03 aA | 5.78 |
High | 0.92 ± 0.01 aA | 0.72 ± 0.05 bB | ||
TMA (mg 100 g−1) | Low | 4.92 ± 0.24 aB | 5.59 ± 0.34 aA | 5.51 |
High | 5.32 ± 0.25 aA | 3.84 ± 0.22 bB | ||
DPPH (mmol g−1) | Low | 1.12 ± 0.03 bA | 0.35 ± 0.02 aB | 21.85 |
High | 2.02 ± 0.42 aA | 0.36 ± 0.02 aB |
Variable | Trellis | Rootstock | CV (%) | ||
---|---|---|---|---|---|
Low | High | ‘IAC 766 Campinas’ | ‘106-8 Mgt’ | ||
Skin | |||||
FRAP (mmol Fe kg−1) | 257.10 ± 27.23 a | 285.20 ± 37.12 a | 258.31 ± 41.21 a | 284.00 ± 22.25 a | 11.63 |
Pulp | |||||
TPC (mg 100 g−1) | 33.40 ± 10.66 a | 40.57 ± 9.05 a | 42.76 ± 6.55 a | 31.21 ± 10.29 b | 20.97 |
FRAP (mmol Fe kg−1) | 14.42 ± 1.59 a | 14.60 ± 3.22 a | 16.15 ± 1.74 a | 12.87 ± 1.93 b | 9.64 |
Compounds * | Trellis | Rootstock | CV (%) | |
---|---|---|---|---|
‘IAC 766 Campinas’ | ‘106-8 Mgt’ | |||
Anthocyanins | ||||
Malvidin-3,5-diglycoside | Low | 133.51 ± 3.47 bA | 134.06 ± 2.08 bA | 1.73 |
High | 150.18 ± 2.95 aB | 157.33 ± 2.02 aA | ||
Delphinidin-3-O-glucoside | Low | 18.02 ± 0.15 bA | 16.71 ± 0.001 bB | 0.55 |
High | 20.24 ± 0.17 aA | 18.54 ± 0.02 aB | ||
Cyanidin-3-O-glucoside | Low | 1.65 ± 0.02 bA | 1.59 ± 0.01 bA | 2.27 |
High | 2.21 ± 0.07 aA | 1.85 ± 0.04 aB | ||
Peonidin-3-O-glucoside | Low | 1.28 ± 0.03 bA | 1.01 ± 0.01 bB | 1.10 |
High | 1.37 ± 0.01 aA | 1.14 ± 0.001 aB | ||
Malvidin-3-O-glucoside | Low | 7.74 ± 0.05 aA | 6.56 ± 0.01 bB | 1.05 |
High | 7.41 ± 0.13 bB | 7.90 ± 0.06 aA | ||
Flavonol | ||||
Rutin | Low | 8.67 ± 0.16 bA | 6.76 ± 0.10 bB | 1.41 |
High | 9.59 ± 0.13 aA | 9.64 ± 0.11 aA | ||
Phenolic acids | ||||
Caffeic acid | Low | 2.52 ± 0.05 bA | 2.50 ± 0.04 bA | 2.19 |
High | 4.29 ± 0.07 aB | 4.51 ± 0.09 aA | ||
Chlorogenic acid | Low | 3.39 ± 0.05 bA | 3.13 ± 0.02 bB | 1.09 |
High | 4.17 ± 0.02 aA | 3.93 ± 0.04 aB | ||
p-coumaric acid | Low | 0.44 ± 0.001 aA | 0.44 ± 0.001 bA | 0.65 |
High | 0.44 ± 0.001 aB | 0.45 ± 0.001 aA | ||
t-ferulic acid | Low | 1.19 ± 0.001 bA | 1.18 ± 0.001 aB | 0.22 |
High | 1.20 ± 0.001 aA | 1.17 ± 0.001 bB | ||
Total | Low | 178.42 ± 3.99 bA | 173.96 ± 2.28 bA | 1.52 |
High | 201.11 ± 3.40 aA | 206.48 ± 2.38 aA |
Variable | Trellis | Rootstock | CV (%) | ||
---|---|---|---|---|---|
Low | High | ‘IAC 766 Campinas’ | ‘106-8 Mgt’ | ||
Skin | |||||
TF (mg 100 g−1) | 32.41 ± 4.56 a | 31.99 ± 4.56 a | 35.21 ± 3.79 a | 29.19 ± 2.58 b | 9.93 |
DPPH (mmol g−1) | 5.19 ± 0.80 b | 7.05 ± 1.39 a | 5.85 ± 1.42 a | 6.39 ± 1.54 a | 19.31 |
FRAP (mmol Fe kg−1) | 85.78 ± 2.52 b | 94.65 ± 1.79 a | 89.80 ± 5.80 a | 90.63 ± 4.53 a | 2.52 |
TPC (mg 100 g−1) | 293.35 ± 17.46 b | 379.58 ± 36.32 a | 352.95 ± 59.51 a | 319.98 ± 41.36 b | 6.49 |
Pulp | |||||
TF (mg 100 g−1) | 0.42 ± 0.02 b | 0.53 ± 0.08 a | 0.44 ± 0.07 b | 0.51 ± 0.08 a | 8.90 |
DPPH (mmol g−1) | 0.53 ± 0.13 a | 0.46 ± 0.16 a | 0.53 ± 0.09 a | 0.46 ± 0.16 a | 23.87 |
Variable | Trellis | Rootstock | CV (%) | |
---|---|---|---|---|
‘IAC 766 Campinas’ | ‘106-8 Mgt’ | |||
Skin | ||||
TMA (mg 100 g−1) | Low | 96.49 ± 2.56 bB | 122.17 ± 0.78 bA | 1.30 |
High | 166.02 ± 1.03 aA | 127.86 ± 1.72 aB | ||
Pulp | ||||
TPC (mg 100 g−1) | Low | 16.68 ± 1.26 bA | 16.89 ± 0.85 aA | 9.18 |
High | 20.19 ± 1.82 aA | 16.46 ± 2.18 aB | ||
TMA (mg 100 g−1) | Low | 0.23 ± 0.03 bA | 0.18 ± 0.03 aB | 17.65 |
High | 0.38 ± 0.07 aA | 0.18 ± 0.01 aB | ||
FRAP (mmol Fe kg−1) | Low | 5.77 ± 0.60 bA | 4.89 ± 0.66 aB | 9.82 |
High | 8.94 ± 0.64 aA | 5.14 ± 0.53 aB |
Compounds * | Trellis | Rootstock | CV (%) | |
---|---|---|---|---|
‘IAC 766 Campinas’ | ‘106-8 Mgt’ | |||
Anthocyanins | ||||
Malvidin-3,5-diglycoside | Low | 9.43 ± 0.08 bA | 5.88 ± 0.15 bB | 1.35 |
High | 12.32 ± 0.19 aA | 8.49 ± 0.05 aB | ||
Delphinidin-3-O-glucoside | Low | 14.97 ± 0.02 bA | 14.36 ± 0.07 bB | 0.28 |
High | 15.83 ± 0.04 aA | 14.68 ± 0.001 aB | ||
Cyanidin-3-O-glucoside | Low | 1.64 ± 0.01 bA | 0.80 ± 0.03 aB | 1.70 |
High | 1.72 ± 0.04 aA | 0.74 ± 0.01 bB | ||
Peonidin-3-O-glucoside | Low | 9.61 ± 0.01 bA | 7.07 ± 0.23 bB | 1.33 |
High | 10.46 ± 0.11 aA | 8.09 ± 0.02 aB | ||
Malvidin-3-O-glucoside | Low | 19.72 ± 0.08 bA | 12.95 ± 0.32 bB | 0.79 |
High | 22.09 ± 0.30 aA | 20.34 ± 0.03 aB | ||
Flavonol | ||||
Rutin | Low | 8.58 ± 0.01 bB | 9.89 ± 0.19 aA | 1.03 |
High | 10.24 ± 0.11 aA | 9.00 ± 0.01 bB | ||
Phenolic acids | ||||
3-hydroxytyrosol acid | Low | 0.02 ± 0.001 bA | 0.03 ± 0.01 aA | 11.77 |
High | 0.04 ± 0.01 aA | 0.03 ± 0.01 aA | ||
Caffeic acid | Low | 0.72 ± 0.01 aB | 0.80 ± 0.01 aA | 0.69 |
High | 0.67 ± 0.01 bA | 0.68 ± 0.01 bA | ||
Chlorogenic acid | Low | 2.39 ± 0.01 bA | 2.40 ± 0.01 aB | 0.33 |
High | 2.42 ± 0.01 aA | 2.38 ± 0.01 bB | ||
p-coumaric acid | Low | 0.42 ± 0.001 aA | 0.40 ± 0.001 aB | 1.35 |
High | 0.40 ± 0.001 bA | 0.40 ± 0.001 aA | ||
t-cinnamic acid | Low | 1.16 ± 0.001 bA | 1.14 ± 0.001 bB | 0.48 |
High | 1.17 ± 0.001 aA | 1.16 ± 0.001 aA | ||
t-ferulic acid | Low | 1.18 ± 0.001 aA | 1.16 ± 0.001 bB | 0.25 |
High | 1.16 ± 0.01 bB | 1.17 ± 0.001 aA | ||
Total | Low | 68.68 ± 0.01 bA | 55.74 ± 1.00 bB | 0.72 |
High | 77.31 ± 0.70 aA | 66.01 ± 0.06 aB |
Variable | Trellis | Rootstock | CV (%) | |
---|---|---|---|---|
‘IAC 766 Campinas’ | ‘106-8 Mgt’ | |||
Skin | ||||
TF (mg 100 g−1) | Low | 116.12 ± 18.33 aA | 95.07 ± 5.99 bA | 15.31 |
High | 116.06 ± 11.48 aA | 136.23 ± 27.49 aA | ||
TPC (mg 100 g−1) | Low | 930.89 ± 3.64 bA | 904.34 ± 1.65 bB | 1.07 |
High | 1059.67 ± 18.30 aA | 986.80 ± 8.89 aB | ||
TMA (mg 100 g−1) | Low | 653.17 ± 38.79 aA | 435.78 ± 23.45 bB | 9.35 |
High | 646.10 ± 35.12 aA | 605.89 ± 30.56 aA | ||
DPPH (mmol g−1) | Low | 14.27 ± 0.69 bB | 22.44 ± 2.00 bA | 8.84 |
High | 24.49 ± 3.11 aA | 25.58 ± 0.74 aA | ||
Pulp | ||||
TMA (mg 100 g−1) | Low | 1.29 ± 0.14 bB | 2.66 ± 0.27 aA | 14.69 |
High | 2.06 ± 0.54 aB | 2.64 ± 0.15 aA |
Variable | Trellis | Rootstock | CV (%) | ||
---|---|---|---|---|---|
Low | High | ‘IAC 766 Campinas’ | ‘106-8 Mgt’ | ||
Skin | |||||
FRAP (Mmol Fe kg−1) | 280.80 ± 25.85 a | 281.02 ± 27.15 a | 257.56 ± 11.89 b | 304.26 ± 4.26 a | 3.35 |
Pulp | |||||
TF (mg 100 g−1) | 1.01 ± 0.22 b | 1.31 ± 0.44 a | 1.36 ± 0.43 a | 0.95 ± 0.08 b | 22.92 |
TPC (mg 100 g−1) | 16.96 ± 3.33 a | 12.78 ± 2.07 b | 13.68 ± 3.79 a | 16.06 ± 2.73 a | 17.66 |
DPPH (mmol g−1) | 0.30 ± 0.13 a | 0.25 ± 0.13 b | 0.39 ± 0.04 a | 0.16 ± 1.15 b | 10.79 |
FRAP (mmol Fe kg−1) | 8.55 ± 3.99 b | 9.70 ± 3.99 a | 12.89 ± 0.04 a | 5.35 ± 0.63 b | 8.08 |
Compounds * | Trellis | Rootstock | CV (%) | |
---|---|---|---|---|
‘IAC 766 Campinas’ | ‘106-8 Mgt’ | |||
Anthocyanins | ||||
Malvidin-3.5-diglycoside | Low | 108.73 ± 0.98 aB | 152.45 ± 0.57 aA | 0.44 |
High | 106.10 ± 0.89 bB | 146.22 ± 0.26 bA | ||
Delphinidin-3-O-glucoside | Low | 23.60 ± 0.18 bB | 34.61 ± 0.15 aA | 0.70 |
High | 27.13 ± 0.26 aB | 30.22 ± 0.08 bA | ||
Cyanidin-3-O-glucoside | Low | 1.50 ± 0.20 aB | 2.32 ± 0.05 aA | 5.61 |
High | 1.44 ± 0.02 aB | 1.96 ± 0.02 bA | ||
Peonidin-3-O-glucoside | Low | 2.37 ± 0.03 bB | 3.51 ± 0.01 aA | 1.09 |
High | 3.18 ± 0.04 aB | 3.25 ± 0.03 bA | ||
Malvidin-3-O-glucoside | Low | 28.79 ± 0.14 bB | 43.91 ± 0.28 aA | 0.46 |
High | 33.41 ± 0.15 aB | 42.68 ± 0.12 bA | ||
Flavonol | ||||
Rutin | Low | 16.37 ± 0.20 bB | 29.07 ± 0.29 aA | 0.35 |
High | 18.11 ± 0.10 aB | 28.32 ± 0.18 bA | ||
Phenolic acids | ||||
3-hydroxytyrosol acid | Low | 0.09 ± 0.01 bA | 0.09 ± 0.01 bA | 7.31 |
High | 0.04 ± 0.001 aB | 0.13 ± 0.001 aA | ||
Caffeic acid | Low | 1.05 ± 0.001 bB | 1.38 ± 0.001 aA | 0.28 |
High | 1.46 ± 0.01 aA | 0.91 ± 0.001 bB | ||
Chlorogenic acid | Low | 2.70 ± 0.04 bB | 3.30 ± 0.04 aA | 1.29 |
High | 3.43 ± 0.04 aA | 2.90 ± 0.03 bB | ||
p-coumaric acid | Low | 0.45 ± 0.001 bB | 0.48 ± 0.001 aA | 0.71 |
High | 0.47 ± 0.001 aA | 0.46 ± 0.001 bB | ||
t-cinnamic acid | Low | 1.21 ± 0.01 bB | 1.29 ± 0.001 aA | 0.38 |
High | 1.22 ± 0.001 aB | 1.25 ± 0.01 bA | ||
t-ferulic acid | Low | 1.20 ± 0.01 aB | 1.23 ± 0.01 aA | 0.31 |
High | 1.20 ± 0.001 aB | 1.22 ± 0.01 bA | ||
Flavan-3-ol | ||||
Catechin | Low | 1.15 ± 0.01 bB | 2.42 ± 0.33 aA | 8.90 |
High | 2.76 ± 0.06 aA | 1.63 ± 0.02 bB | ||
Total | Low | 186.78 ± 1.07 bB | 272.29 ± 1.40 aA | 0.30 |
High | 195.94 ± 1.40 aB | 258.18 ± 0.05 bA |
Variable | Trellis | Rootstock | CV (%) | ||
---|---|---|---|---|---|
Low | High | ‘IAC 766 Campinas’ | ‘106-8 Mgt’ | ||
Skin | |||||
TF (mg 100 g−1) | 119.02 ± 31.10 b | 167.97 ± 17.23 a | 130.57 ± 34.75 b | 156.42 ± 32.31 a | 15.21 |
DPPH (mmol g−1) | 40.99 ± 7.26 a | 39.89 ± 4.06 a | 43.84 ± 3.11 a | 37.04 ± 5.82 b | 12.08 |
Pulp | |||||
DPPH (Mmol g−1) | 0.60 ± 0.14 b | 0.72 ± 0.04 a | 0.63 ± 0.14 a | 0.68 ± 0.08 a | 15.66 |
Variable | Trellis | Rootstock | CV (%) | |
---|---|---|---|---|
‘IAC 766 Campinas’ | ‘106-8 Mgt’ | |||
Skin | ||||
TPC (mg 100 g−1) | Low | 1080.44 ± 8.80 bB | 1518.77 ± 23.45 bA | 1.81 |
High | 1505.97 ± 40.27 aB | 1600.34 ± 20.77 aA | ||
TMA (mg 100 g−1) | Low | 815.67 ± 13.85 bB | 1330.77 ± 49.62 aA | 6.88 |
High | 1296.57 ± 47.90 aA | 1410.81 ± 46.89 aA | ||
FRAP (Mmol Fe kg−1) | Low | 513.80 ± 10.63 bB | 637.40 ± 6.49 aA | 1.36 |
High | 569.74 ± 3.32 aB | 639.87 ± 9.51 aA | ||
Pulp | ||||
TF (mg 100 g−1) | Low | 0.85 ± 0.15 bA | 0.94 ± 0.04 aA | 9.51 |
High | 1.00 ± 0.06 aA | 0.86 ± 0.07 aB | ||
TPC (mg 100 g−1) | Low | 41.29 ± 13.94 aA | 24.17 ± 2.04 aB | 24.98 |
High | 26.36 ± 3.21 bA | 24.30 ± 1.24 aA | ||
TMA (mg 100 g−1) | Low | 1.28 ± 0.31 bA | 0.91 ± 0.04 aB | 14.82 |
High | 1.85 ± 0.13 aA | 0.51 ± 0.02 bB | ||
FRAP (Mmol Fe kg−1) | Low | 13.28 ± 0.69 bB | 16.57 ± 0.82 bA | 4.41 |
High | 18.31 ± 1.01 aA | 19.12 ± 0.18 aA |
Compounds * | Trellis | Rootstock | CV (%) | |
---|---|---|---|---|
‘IAC 766 Campinas’ | ‘106-8 Mgt’ | |||
Anthocyanins | ||||
Malvidin-3,5-diglycoside | Low | 539.06 ± 14.69 bA | 93.38 ± 3.82 bB | 2.08 |
High | 665.00 ± 1.47 aA | 117.81 ± 0.28 aB | ||
Delphinidin-3-O-glucoside | Low | 218.52 ± 5.32 bA | 177.01 ± 9.64 bB | 3.68 |
High | 256.48 ± 0.70 aA | 198.85 ± 17.90 aB | ||
Cyanidin-3-O-glucoside | Low | 194.72 ± 3.44 bA | 164.24 ± 11.96 bB | 3.93 |
High | 246.87 ± 1.55 aA | 199.44 ± 6.59 aB | ||
Peonidin-3-O-glucoside | Low | 26.04 ± 0.64 bA | 0.58 ± 0.01 aB | 2.39 |
High | 37.67 ± 0.27 aA | 0.60 ± 0.001 aB | ||
Malvidin-3-O-glucoside | Low | 2.01 ± 0.01 bB | 2.30 ± 0.03 bA | 0.80 |
High | 2.05 ± 0.001 aB | 2.43 ± 0.04 aA | ||
Flavonol | ||||
Rutin | Low | 10.91 ± 0.25 bA | 10.01 ± 0.10 bB | 0.96 |
High | 13.26 ± 0.03 aB | 15.31 ± 0.03 aA | ||
Phenolic acids | ||||
3-hydroxytyrosol acid | Low | 0.21 ± 0.02 bB | 0.26 ± 0.001 aA | 4.45 |
High | 0.26 ± 0.01 aA | 0.27 ± 0.01 aA | ||
Caffeic acid | Low | 1.92 ± 0.04 aA | 1.84 ± 0.06 bB | 1.68 |
High | 1.21 ± 0.001 bB | 2.17 ± 0.001 aA | ||
Chlorogenic acid | Low | 4.34 ± 0.04 aA | 3.72 ± 0.05 bB | 0.97 |
High | 3.49 ± 0.03 bB | 4.33 ± 0.001 aA | ||
p-coumaric acid | Low | 0.64 ± 0.001 bA | 0.59 ± 0.001 bB | 0.45 |
High | 0.66 ± 0.001 aB | 0.69 ± 0.001 aA | ||
t-innamic acid | Low | 1.22 ± 0.001 bA | 1.19 ± 0.01 aB | 0.57 |
High | 1.24 0.001 aA | 1.17 ± 0.001 bB | ||
t-ferulic acid | Low | 1.16 ± 0.001 bA | 1.17 ± 0.01 aA | 0.55 |
High | 1.19 ± 0.001 aA | 1.17 0.001 aB | ||
Total | Low | 804.62 ± 20.96 bA | 290.63 ± 13.66 bB | 1.72 |
High | 981.00 ± 2.51 aA | 343.37 ± 17.60 aB |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Domingues Neto, F.J.; Tecchio, M.A.; Cunha, S.R.; Monteiro, H.S.A.; Figueira, R.; Nunes, A.; Rodrigues, J.D.; Ono, E.O.; Moura-Furlan, M.F.; Lima, G.P.P. Impact of Rootstocks and Training Systems on Secondary Metabolites in the Skins and Pulp of Vitis labrusca and Brazilian Hybrid Grapes. Plants 2025, 14, 1766. https://doi.org/10.3390/plants14121766
Domingues Neto FJ, Tecchio MA, Cunha SR, Monteiro HSA, Figueira R, Nunes A, Rodrigues JD, Ono EO, Moura-Furlan MF, Lima GPP. Impact of Rootstocks and Training Systems on Secondary Metabolites in the Skins and Pulp of Vitis labrusca and Brazilian Hybrid Grapes. Plants. 2025; 14(12):1766. https://doi.org/10.3390/plants14121766
Chicago/Turabian StyleDomingues Neto, Francisco José, Marco Antonio Tecchio, Silvia Regina Cunha, Harleson Sidney Almeida Monteiro, Ricardo Figueira, Aline Nunes, João Domingos Rodrigues, Elizabeth Orika Ono, Mara Fernandes Moura-Furlan, and Giuseppina Pace Pereira Lima. 2025. "Impact of Rootstocks and Training Systems on Secondary Metabolites in the Skins and Pulp of Vitis labrusca and Brazilian Hybrid Grapes" Plants 14, no. 12: 1766. https://doi.org/10.3390/plants14121766
APA StyleDomingues Neto, F. J., Tecchio, M. A., Cunha, S. R., Monteiro, H. S. A., Figueira, R., Nunes, A., Rodrigues, J. D., Ono, E. O., Moura-Furlan, M. F., & Lima, G. P. P. (2025). Impact of Rootstocks and Training Systems on Secondary Metabolites in the Skins and Pulp of Vitis labrusca and Brazilian Hybrid Grapes. Plants, 14(12), 1766. https://doi.org/10.3390/plants14121766