Capillary Rise and Salt Weathering in Spain: Impacts on the Degradation of Calcareous Materials in Historic Monuments †
Abstract
1. Introduction
2. Energy State and Hydraulic Conductivity
3. Water Movement in Soil
- Soil texture and structure: Coarse-textured soils, such as sands, facilitate rapid infiltration. Soils with stable aggregates and granular structure also tend to have higher infiltration rates;
- Organic matter content: Increases aggregate stability and protects soil structure by reducing the impact of raindrops;
- Depth to bedrock or impermeable layers: Shallow soils limit the volume of infiltration compared to deeper profiles;
- Initial soil moisture content: Infiltration is slower in already saturated soils;
- Soil temperature: Warmer soils generally allow faster infiltration due to lower viscosity and enhanced biological activity.
- -
- Very low (<0.25 cm h−1): Typical of clay-rich, compacted soils;
- -
- Low (0.25–1.25 cm h−1): Found in shallow or degraded soils with low organic matter;
- -
- Medium (1.25–2.5 cm h−1): Observed in loamy soils with moderate structure;
- -
- High (>2.5 cm h−1): Associated with sandy or silty loam soils with deep profiles.
4. Soluble Salts and Capillary Rise
5. Efflorescence and Subflorescence
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Blake, J. On Defining the Cultural Heritage. Int. Comp. Law Q. 2000, 49, 61–85. [Google Scholar] [CrossRef]
- Vale, L. Architecture, Power and National Identity, 2nd ed.; Routledge: London, UK, 2014; p. 336. [Google Scholar] [CrossRef]
- Lardinois, S. Contemporary Architecture in the Historic Environment: Recent International Perspectives. Change Over Time 2017, 7, 252–271. [Google Scholar] [CrossRef]
- Bullen, P.A.; Love, P.E.D. Adaptive reuse of heritage buildings. Struct. Surv. 2011, 295, 411–421. [Google Scholar] [CrossRef]
- Meskell, L. States of Conservation: Protection, Politics, and Pacting within UNESCO’s World Heritage Committee. Anthropol. Q. 2014, 87, 217–243. [Google Scholar] [CrossRef]
- Charola, A.E. Salts in the deterioration of porous materials: An overview. J. Am. Inst. Conserv. 2000, 39, 327–343. [Google Scholar] [CrossRef]
- Doehne, E. Salt weathering: A selective review. In Natural Stone, Weathering Phenomena, Conservation Strategies and Case Studies; Siegesmund, S., Weiss, T., Vollbrecht, A., Eds.; Geological Society of London: London, UK, 2002; Special Publications 205; pp. 51–64. [Google Scholar] [CrossRef]
- Shaw, E.M.; Beven, K.J.; Chappell, N.A.; Lamb, R. Hydrology in Practice, 4th ed.; CRC Press: London, UK, 2017; p. 560. [Google Scholar] [CrossRef]
- Porta, J.; López-Acevedo, M.; Poch, R.M. Edafología: Uso y Protección de Suelos, 4th ed.; Mundi-Prensa: Madrid, Spain, 2019; p. 625. [Google Scholar]
- Afif-Khouri, E.; Lozano-Martínez, A.; López de Rego, J.I.; López-Gallego, B.; Forjan-Castro, R. Capillary rise of soluble salts and its effect on the degradation of calcareous material used in historical monuments. In Proceedings of the 10th Euro-American Congress REHABEND 2024 on Construction Pathology, Rehabilitation Technology and Heritage Management, Gijón, Spain, 7–10 May 2024. [Google Scholar]
- Lehmann, P.; Assouline, S.; Or, D. Characteristic lengths affecting evaporative drying of porous media. Phys. Rev. E 2008, 77, 056309. [Google Scholar] [CrossRef]
- Porta, J.; Reguerín, M.; Roquero, C. Edafología Para la Agricultura y el Medio Ambiente, 3rd ed.; Mundi-Prensa: Madrid, Spain, 2003; p. 929. [Google Scholar]
- Espinosa-Marzal, R.M.; Scherer, G.W. Impact of in-pore salt crystallization on transport properties. Environ. Earth Sci. 2013, 69, 2657–2669. [Google Scholar] [CrossRef]
- Ruiz-Agudo, E.; Ibañez-Velasco, A.; Ruiz-Agudo, C.; Bonilla-Correa, S.; Elert, K.; Rodríguez-Navarro, C. Damage of porous building stone by sodium carbonate crystallization and the effect of crystallization modifiers. Constr. Build. Mater. 2024, 411, 134591. [Google Scholar] [CrossRef]
- Godts, S.; Orr, S.A.; Steiger, M.; Stahlbuhk, A.; De Kock, T.; Desarnaud, J.; De Clercq, H.; Cnudde, V. Salt mixtures in stone weathering. Sci. Rep. 2023, 13, 13306. [Google Scholar] [CrossRef]
- Maurício, A.M.; Pacheco, A.M.; Brito, P.S.; Castro, B.; Figueiredo, C.; Aires-Barros, L. An ionic conductivity-based methodology for monitoring salt systems in monuments stones. J. Cult. Herit. 2005, 6, 287–293. [Google Scholar] [CrossRef]
- Sesana, E.; Gagnon, A.S.; Ciantelli, C.; Cassar, J.; Hughes, J.J. Climate change impacts on cultural heritage: A literature review. Wiley Interdiscip. Rev. Clim. Chang. 2021, 12, e710. [Google Scholar] [CrossRef]
- Foulks, W.G. (Ed.) Historic Building Façades: The Manual for Maintenance and Rehabilitation; John Wiley & Sons: New York, NY, USA, 1997; p. 224. [Google Scholar]
- Zedef, V.; Kocak, K.; Doyen, A.; Ozsen, H.; Kekec, B. Effect of salt crystallization on stones of historical buildings and monuments, Konya, Central Turkey. Build. Environ. 2007, 42, 1453–1457. [Google Scholar] [CrossRef]
- Tuller, M.; Or, D.; Hillel, D. Retention of water in soil and the soil water characteristic curve. In Encyclopedia of Soils in the Environment; Hillel, D., Ed.; Elsevier: Oxford, UK, 2004; Volume 4, pp. 278–289. [Google Scholar]
- Hillel, D. Introduction to Environmental Soil Physics, 1st ed.; Academic Press: San Diego, CA, USA, 2003; p. 498. [Google Scholar]
- Assouline, S.; Or, D. Conceptual and parametric representation of soil hydraulic properties: A review. Vadose Zone J. 2013, 12, vzj2013.07.0121. [Google Scholar] [CrossRef]
- Gallage, C.P.K.; Uchimura, T. Effects of dry density and grain size distribution on soil-water characteristic curves of sandy soils. Soils Found. 2010, 50, 161–172. [Google Scholar] [CrossRef]
- Carter, M.R.; Gregorich, E.G. Soil Sampling and Methods of Analysis, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2007; p. 1261. [Google Scholar]
- Youngs, E.G. Hydraulic conductivity of saturated soils. In Soil and Environmental Analysis, 2nd ed.; Smith, K.A., Ed.; CRC Press: Boca Raton, FL, USA, 2000; pp. 153–194. [Google Scholar] [CrossRef]
- Gray, W.G.; Miller, C.T. Examination of Darcy’s law for flow in porous media with variable porosity. Environ. Sci. Technol. 2004, 38, 5895–5901. [Google Scholar] [CrossRef]
- Dexter, A.R.; Czyż, E.A.; Gaţe, O.P. Soil structure and the saturated hydraulic conductivity of subsoils. Soil Tillage Res. 2004, 79, 185–189. [Google Scholar] [CrossRef]
- Mohanty, B.P.; Zhu, J. Effective hydraulic parameters in horizontally and vertically heterogeneous soils for steady-state land–atmosphere interaction. J. Hydrometeorol. 2007, 8, 715–729. [Google Scholar] [CrossRef]
- Shokri, N.; Hassani, A.; Sahimi, M. Multi-scale soil salinization dynamics from global to pore scale: A review. Rev. Geophys. 2024, 62, e2023RG000804. [Google Scholar] [CrossRef]
- Benavente, D.; Cueto, N.; Martínez-Martínez, J.; García del Cura, M.A.; Cañaveras, J.C. The influence of petrophysical properties on the salt weathering of porous building rocks. Environ. Geol. 2007, 52, 215–224. [Google Scholar] [CrossRef]
- Benavente, D.; Martínez-Martínez, J.; Cueto, N.; García-del-Cura, M.A. Salt weathering in dual-porosity building dolostones. Eng. Geol. 2007, 94, 215–226. [Google Scholar] [CrossRef]
- Salvini, S. Deterioration of Carbonate Rocks and Vulnerability of Cultural Heritage in a Changing Climate. Ph.D. Thesis, Universidad de Padua, Padua, Italy, 2017; p. 149. Available online: https://hdl.handle.net/20.500.14242/176739 (accessed on 2 May 2025).
- Hu, T.; Brimblecombe, P.; Zhang, Z.; Song, Y.; Liu, S.; Zhu, Y.; Duan, J.; Cao, J.; Zhang, D. Capillary rise induced salt deterioration on ancient wall paintings at the Mogao Grottoes. Sci. Total Environ. 2023, 881, 163476. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Rui, Y.; Zhao, Y. Degradation of Strength and Stiffness of Sandstones Caused by Wetting-Drying Cycles: The Role of Mineral Composition. Geofluids 2021, 3483506. [Google Scholar] [CrossRef]
- Rodriguez-Navarro, C.; Doehne, E. Salt weathering: Influence of evaporation rate, supersaturation and crystallization pattern. Earth Surf. Process. Landf. 1999, 24, 191–209. [Google Scholar] [CrossRef]
- Sato, M.; Hattanji, T. A laboratory experiment on salt weathering by humidity change: Salt damage induced by deliquescence and hydration. Prog. Earth Planet. Sci. 2018, 5, 84. [Google Scholar] [CrossRef]
- Morillas, H.; Maguregui, M.; Gallego-Cartagena, E.; Marcaida, I.; Carral, N.; Madariaga, J.M. The influence of marine environment on the conservation state of Built Heritage: An overview study. Sci. Total Environ. 2020, 745, 140899. [Google Scholar] [CrossRef]
- Lorenzo-González, M.A.; Herrero, J.; Castañeda, C. A heritage dataset of soil and water salinity in Bardenas, Spain. Data Brief 2024, 52, 110469. [Google Scholar] [CrossRef] [PubMed]
- Narasimhan, T.N. Darcy’s law and unsaturated flow. Vadose Zone J. 2004, 3, 1059. [Google Scholar] [CrossRef]
- Mazor, E. Chemical and Isotopic Groundwater Hydrology, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2003; p. 352. [Google Scholar] [CrossRef]
- Radcliffe, D.E.; Rasmussen, T.C.; Warrick, A.W. Soil water movement. In Soil Physics Companion; Warrick, A.E., Ed.; CRC Press: Boca Raton, FL, USA, 2002; pp. 85–126. [Google Scholar] [CrossRef]
- Morbidelli, R.; Saltalippi, C.; Flammini, A.; Govindaraju, R.S. Role of slope on infiltration: A review. J. Hydrol. 2018, 557, 878–886. [Google Scholar] [CrossRef]
- Patle, G.T.; Sikar, T.T.; Rawat, K.S.; Singh, S.K. Estimation of infiltration rate from soil properties using regression model for cultivated land. Geol. Ecol. Landsc. 2019, 3, 1–13. [Google Scholar] [CrossRef]
- Rawls, W.J.; Ahuja, L.R.; Brakensiek, D.L.; Shirmohammadi, A. Infiltration and soil water movement. In Handbook of Hydrology, 1st ed.; Maidment, D.R., Ed.; McGraw-Hill Inc.: New York, NY, USA, 1992; pp. 5.1–5.51. [Google Scholar]
- Espinosa-Marzal, R.M.; Scherer, G.W. Mechanisms of damage by salt. Geol. Soc. Lond. Spec. Publ. 2010, 331, 61–77. [Google Scholar] [CrossRef]
- Ondrasek, G.; Rengel, Z. Environmental salinization processes: Detection, implications & solutions. Sci. Total Environ. 2021, 754, 142432. [Google Scholar] [CrossRef] [PubMed]
- Flinch, J.F.; Soto, J.I. Structure and Alpine tectonic evolution of a salt canopy in the western Betic Cordillera (Spain). Mar. Pet. Geol. 2022, 143, 105782. [Google Scholar] [CrossRef]
- Zaman, M.; Shahid, S.A.; Heng, L. Guideline for Salinity Assessment, Mitigation and Adaptation Using Nuclear and Related Techniques, 1st ed.; Springer Nature: Cham, Switzerland, 2018; p. 164. [Google Scholar] [CrossRef]
- Aragüés, R.; Cerdá, A. Salinidad de aguas y suelos en la agricultura de regadío. In Agricultura Sostenible, 1st ed.; Jiménez, R., Lamo de Espinosa, J., Eds.; Mundi-Prensa: Madrid, Spain, 1998; pp. 249–274. [Google Scholar]
- Cuccuru, S.; Mameli, P.; Mariani, A.; Meloni, P.; Oggiano, G. Contrasting decay of historical building stone: Relationships between petrophysical features and frontal polymerization treatment suitability on medieval buildings of north Sardinia, Italy. Bull. Eng. Geol. Environ. 2019, 78, 1669–1682. [Google Scholar] [CrossRef]
- Cardell, C.; Delalieux, F.; Roumpopoulos, K.; Moropoulou, A.; Auger, F.; Van Grieken, R. Salt-induced decay in calcareous stone monuments and buildings in a marine environment in SW France. Constr. Build. Mater. 2003, 17, 165–179. [Google Scholar] [CrossRef]
- Cappai, M.; Casti, M.; Pia, G. Monitoring and preservation of stone cultural heritage using a fuzzy model for predicting salt crystallisation damage. Sci. Rep. 2024, 14, 22671. [Google Scholar] [CrossRef]
- Flatt, R.; Mohamed, N.A.; Caruso, F.; Derluyn, H.; Desarnaud, J.; Lubelli, B.; Espinosa-Marzal, R.M.; Pel, L.; Rodriguez-Navarro, C.; Scherer, G.W.; et al. Predicting Salt Damage in Practice: A Theoretical Insight into Laboratory Tests. RILEM Tech. Lett. 2017, 2, 108–118. [Google Scholar] [CrossRef]
- Godts, S.; Orr, S.A.; Desarnaud, J.; Steiger, M.; Wilhelm, K.; De Clercq, H.; Cnudde, V.; De Kock, T. NaCl-related weathering of stone: The importance of kinetics and salt mixtures in environmental risk assessment. Herit. Sci. 2021, 9, 44. [Google Scholar] [CrossRef]
- Benavente, D.; del Cura, M.G.; Bernabéu, A.; Ordóñez, S. Quantification of salt weathering in porous stones using an experimental continuous partial immersion method. Eng. Geol. 2001, 59, 313–325. [Google Scholar] [CrossRef]
- UNE41805-5: 2009 I.N. Building Diagnosis-Part 5-Pathological Study of the Structure of the Building-Masonry Units. Available online: https://www.une.org/encuentra-tu-norma/busca-tu-norma/norma?c=N0044198 (accessed on 3 February 2025).
- Siedel, H. Salt efflorescence as indicator for sources of damaging salts on historic buildings and monuments: A statistical approach. Environ. Earth Sci. 2018, 77, 572. [Google Scholar] [CrossRef]
- Sawdy, A.; Price, C. Salt damage at Cleeve Abbey, England: Part I: A comparison of theoretical predictions and practical observations. J. Cult. Herit. 2005, 6, 125–135. [Google Scholar] [CrossRef]
- Zehnder, K.; Schoch, O. Efflorescence of mirabilite, epsomite and gypsum traced by automated monitoring on-site. J. Cult. Herit. 2009, 10, 319–330. [Google Scholar] [CrossRef]
- Zhang, Y.; Cui, D.; Liu, S.; Li, B.; Guo, H. Types and sources of salts causing exfoliation and efflorescence in stone relics at Yongling Mausoleum. NPJ Herit. Sci. 2025, 13, 61. [Google Scholar] [CrossRef]
- Arnold, A.; Zehnder, K. Monitoring Wall Paintings Affected by Soluble Salts. In The Conservation of Wall Paintings: Proceedings of a Symposium Organized by the Courtauld Institute of Art and the Getty Conservation Institute, London, UK, 13–16 July 1987; Cather, S., Ed.; Getty Conservation Institute: Marina del Rey, CA, USA, 1991; pp. 103–136. [Google Scholar]
- Naillon, A.; Joseph, P.; Prat, M. Ion transport and precipitation kinetics as key aspects of stress generation on pore walls induced by salt crystallization. Phys. Rev. Lett. 2018, 120, 034502. [Google Scholar] [CrossRef]
- Maurício, A.; Figueiredo, C.; Alves, C.; Pereira, M. Non-destructive microtomography-based imaging and measuring laboratory-induced degradation of travertine, a random heterogeneous geomaterial used in urban heritage. Environ. Earth Sci. 2013, 69, 1471–1480. [Google Scholar] [CrossRef]
- Naillon, A.; Joseph, P.; Prat, M. Direct observation of pore collapse and tensile stress generation on pore wall due to salt crystallization. arXiv 2019, arXiv:1901.07338. [Google Scholar] [CrossRef] [PubMed]
- Michette, M.; Lorenz, R.; Ziegert, C. Clay barriers for protecting historic buildings from ground moisture intrusion. Herit. Sci. 2017, 5, 1–11. [Google Scholar] [CrossRef]
- Gil-Muñoz, M.T.; Pérez-García, P.P. An in situ experimental study of the hydric behaviour of a section at the western stretch in the medieval wall in Ávila. Ge-Conservacion 2021, 19, 280–291. [Google Scholar] [CrossRef]
- Ortiz, R.; Ortiz, P.; Martín, J.M.; Vázquez, M.A. A new approach to the assessment of flooding and dampness hazards in cultural heritage, applied to the historic centre of Seville (Spain). Sci. Total Environ. 2016, 551–552, 546–555. [Google Scholar] [CrossRef]
- Menéndez, B. Non-destructive techniques applied to monumental stone conservation. In Non-Destructive Testing; García Márquez, F.P., Papaelias, M., Zaman, N., Eds.; InTech: Rijeka, Croatia, 2016; pp. 175–196. [Google Scholar] [CrossRef]
- Osman, A.; Moropoulou, A.; Lampropoulos, K. (Eds.) Advanced Nondestructive and Structural Techniques for Diagnosis, Redesign and Health Monitoring for the Preservation of Cultural Heritage: Selected Works from the TMM-CH 2023; Springer Nature: Cham, Switzerland, 2023; Volume 33, p. 239. [Google Scholar] [CrossRef]
- Kogou, S.; Li, Y.; Cheung, C.S.; Han, X.N.; Liggins, F.; Shahtahmassebi, G.; Thickett, D.; Liang, H. Ground-Based Remote Sensing and Machine Learning for in Situ and Noninvasive Monitoring and Identification of Salts and Moisture in Historic Buildings. Anal. Chem. 2025, 97, 5008–5013. [Google Scholar] [CrossRef]
- Blaschke, O.; Brand, F.; Drese, K.S. Quantification of Humidity and Salt Detection in Historical Building Materials via Broadband Radar Measurement. Sensors 2023, 23, 4616. [Google Scholar] [CrossRef]
- Pappalardo, G.; Mineo, S.; Caliò, D.; Bognandi, A. Evaluation of natural stone weathering in heritage building by infrared thermography. Heritage 2022, 5, 2594–2614. [Google Scholar] [CrossRef]
- Wang, X.; Cheng, Y.; Zhang, R.; Zhang, Y.; Huang, J.; Yan, H. Non-Destructive Assessment of Stone Heritage Weathering Types Based on Machine Learning Method Using Hyperspectral Data. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2024, XLVIII–1, 713–719. [Google Scholar] [CrossRef]
- Ren, Y.; Liu, F. A Novel Hyperspectral Salt Assessment Model for Weathering in Architectural Ruins. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2024, X–2, 201–208. [Google Scholar] [CrossRef]
- Přikryl, R.; Snížek, P. Critical assessment of the “non-destructiveness” of Schmidt hammer test on monumental sandstones: A microscopic and microstructural approach. J. Cult. Herit. 2023, 59, 247–254. [Google Scholar] [CrossRef]
- Zheng, Y.; Cheng, P.; Li, Z.; Fan, C.; Wen, J.; Yu, Y.; Jia, L. Efficient removal of gaseous elemental mercury by Fe-UiO-66@ BC composite adsorbent: Performance evaluation and mechanistic elucidation. Sep. Purif. Technol. 2025, 372, 133463. [Google Scholar] [CrossRef]
Non-Saline | Slightly Saline | Saline | Highly Saline | |
---|---|---|---|---|
EC (dS m−1) | <0.35 | 0.35–0.65 | 0.65–1.15 | >1.15 |
Non-sodic | Slightly sodic | Sodic | Highly sodic | |
ESP (%) | <7 | 7–15 | 15–30 | >30 |
Class | Presence in Soils | Solubility (g L−1) |
---|---|---|
Chlorides | ||
Sodium | Common | 264 |
Magnesium | Common | 353 |
Calcium | Very low | 400–500 |
Potassium | Low | 344 |
Sulfates | ||
Sodium | Common | f(t) 1 |
Magnesium | Common | 262 |
Potassium | Low | f(t) 2 |
Sodium carbonate | Sodic soils | 178 |
Sodium bicarbonate | Sodic soils | 262 |
Nitrates | Very low | High |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Afif-Khouri, E.; Lozano-Martínez, A.; Rego, J.I.L.d.; López-Gallego, B.; Forjan-Castro, R. Capillary Rise and Salt Weathering in Spain: Impacts on the Degradation of Calcareous Materials in Historic Monuments. Buildings 2025, 15, 2285. https://doi.org/10.3390/buildings15132285
Afif-Khouri E, Lozano-Martínez A, Rego JILd, López-Gallego B, Forjan-Castro R. Capillary Rise and Salt Weathering in Spain: Impacts on the Degradation of Calcareous Materials in Historic Monuments. Buildings. 2025; 15(13):2285. https://doi.org/10.3390/buildings15132285
Chicago/Turabian StyleAfif-Khouri, Elías, Alfonso Lozano-Martínez, José Ignacio López de Rego, Belén López-Gallego, and Rubén Forjan-Castro. 2025. "Capillary Rise and Salt Weathering in Spain: Impacts on the Degradation of Calcareous Materials in Historic Monuments" Buildings 15, no. 13: 2285. https://doi.org/10.3390/buildings15132285
APA StyleAfif-Khouri, E., Lozano-Martínez, A., Rego, J. I. L. d., López-Gallego, B., & Forjan-Castro, R. (2025). Capillary Rise and Salt Weathering in Spain: Impacts on the Degradation of Calcareous Materials in Historic Monuments. Buildings, 15(13), 2285. https://doi.org/10.3390/buildings15132285