Pollen Vertical Transportation Above Paris, France, up to 150 m Using the Beenose Instrument on the Tourist Attraction “Ballon de Paris” in 2024
Abstract
1. Introduction
2. Materials and Methods
2.1. Measurements Conditions
2.2. Beenose Instrument and Data Processing
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- ANSES. Etat des Connaissances sur L’impact Sanitaire Lié à L’exposition de la Population Générale aux Pollen Présents Dans L’air Ambiant. Anses. Saisine n2011-SA-0151. 2014. Available online: https://www.anses.fr/fr/system/files/AIR2011sa0151Ra.pdf (accessed on 18 June 2025). (In French)
- Savouré, M.; Bousquet, J.; Jaakkola, J.J.K.; Jaakkola, M.S.; Jacquemin, B.; Nadif, R. Worldwide Prevalence of Rhinitis in Adults: A Review of Definitions and Temporal Evolution. Clinic. Translat. Allergy 2022, 12, e12130. [Google Scholar]
- Renard, J.-B.; Lefèvre, S.; Glévarec, G. Low-Cost Pollen and allergy symptoms monitoring with Beenose sampler and Livepollen App: The case study of the Metz city, France, during spring 2023. Atmosphere 2025, 16, 271. [Google Scholar] [CrossRef]
- Renard, J.-B.; El Azari, H.; Lauthier, J.; Surcin, J. Spatial Variation of Airborne Pollen Concentrations Locally around Brussels City, Belgium, during a Field Campaign in 2022–2023, Using the Automatic Sensor Beenose. Sensors 2024, 24, 3731. [Google Scholar] [CrossRef] [PubMed]
- Oteros, J.; García-Mozo, H.; Alcázar, P.; Belmonte, J.; Bermejo, D.; Boi, M.; Cariñanos, P.; de la Guardia, C.D.; Fernández-González, D.; González-Minero, F.; et al. A new method for determining the sources of airborne particles. J. Environ. Manag. 2015, 155, 212–218. [Google Scholar] [CrossRef]
- Arritt, R.W.; Clark, C.A.; Goggi, A.S.; Sanchez, H.L.; Westgate, M.E.; Riese, J.M. Lagrangian numerical simulations of canopy air flow effects on maize pollen dispersal. Field. Crops. Res. 2007, 102, 151–162. [Google Scholar] [CrossRef]
- Efstathiou, C.; Isukapalli, S.; Georgopoulos, P. A mechanistic modeling system for estimating large scale emissions and transport of pollen and co-allergens. Atmos Environ. 2011, 45, 2260–2276. [Google Scholar] [CrossRef]
- Zhang, R.; Duhl, T.; Salam, M.T.; House4, J.M.; Flagan, R.C.; Avol, E.L.; Gilliland, F.D.; Guenther, A.; Chung, S.H.; Lamb, B.K.; et al. Development of a regional-scale pollen emission and transport modeling framework for investigating the impact of climate change on allergic airway disease. Biogeosciences 2014, 11, 1461–1478. [Google Scholar] [CrossRef]
- Skjøth, C.A.; Kurganskiy, A.; Grundström, M.; Werner, M.; Adams-Groom, B. Air Pollution Affecting Pollen Concentrations through Radiative Feedback in the Atmosphere. Atmosphere 2021, 12, 1376. [Google Scholar] [CrossRef]
- Kartz, D.S.W.; Batterman, S.A. Urban-scale variation in pollen concentrations: A single station is insufficient to characterize daily exposure. Aerobiologia 2020, 36, 417–431. [Google Scholar] [CrossRef]
- Sofiev, M.; Siljamo, P.; Ranta, H.; Rantio-Lehtimaki, A. Towards numerical forecasting of long-range air transport of birch pollen: Theoretical considerations and a feasibility study. Int. J. Biometeorol. 2006, 50, 392–402. [Google Scholar] [CrossRef]
- Sofiev, M.; Siljamo, P.; Valkama, I.; Ilvonen, M.; Kukkonen, J. A dispersion modelling system SILAM and its evaluation against ETEX data. Atmos. Environ. 2006, 40, 674–685. [Google Scholar] [CrossRef]
- Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 2nd ed.; Wiley Interscience: New York, NY, USA, 2006. [Google Scholar]
- Sofiev, M.; Belmonte, J.; Gehrig, R.; Izquierdo, R.; Smith, M.; Dahl, Å.; Siljamo, P. Airborne Pollen Transport. Allergenic Pollen. A Review of the Production, Release, Distribution and Health Impacts; Sofiev, M., Bergman, K.C., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 127–159. [Google Scholar]
- Cariñanos, P.; Ruiz-Peñuela, S.; Casans, A.; Cazorla, A.; Rejano, F.; Ontiveros, A.; Ortiz-Amezcua, P.; Guerrero-Rascado, J.L.; Olmo, F.J.; Alados-Arboledas, L.; et al. Assessment of potential sources of airborne pollen in a high-mountain mediterranean natural environment. Atmos. Environ. 2025, 340, 120917. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, J.; Xiang, S.; Zhang, Y.; Wang, Y.; Ge, W.; Hu, J.; Wan, Y.; Wang, X.; Liu, Y.; et al. Evaluation of the Street Canyon Level Air Pollution Distribution Pattern in a Typical City Block in Baoding, China. Int. J. Environ. Res. Public Health 2022, 19, 10432. [Google Scholar] [CrossRef] [PubMed]
- Rojo, J.; Oteros, J.; Pérez-Badia, R.; Cervigón, P.; Ferencova, Z.; Gutiérrez-Bustillo, A.M.; Bergmann, K.-C.; Oliver, G.; Thibaudon, M.; Albertini, R.; et al. Near-ground effect of height on pollen exposure. Environ. Res. 2019, 174, 160–169. [Google Scholar] [CrossRef]
- Charalampopoulos, A.; Damialis, A.; Lazarina, M.; Halley, J.M.; Vokou, D. Spatiotemporal assessment of airborne pollen in the urban environment: The pollenscape of Thessaloniki as a case study. Atmos. Environ. 2021, 247, 118185. [Google Scholar] [CrossRef]
- de Weger, L.A.; Molster, F.; de Raat, K.; den Haan, J.; Romein, J.; van Leeuwen, W.; de Groot, H.; Mostert, M.; Hiemstra, P.S. A new portable sampler to monitor pollen at street level in the environment of patients. Sci. Total Environ. 2020, 741, 40404. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://paris1900.lartnouveau.com/paris15/le_parc_andre_citroen.htm (accessed on 18 June 2025).
- Renard, J.-B.; Michoud, V.; Giacomoni, J. Vertical Profiles of Pollution Particle Concentrations in the Boundary Layer above Paris (France) from the Optical Aerosol Counter LOAC Onboard a Touristic Balloon. Sensors 2020, 20, 1111. [Google Scholar] [CrossRef]
- Renard, J.B.; Dulac, F.; Berthet, G.; Lurton, T.; Vignelles, D.; Jégou, F.; Tonnelier, T.; Jeannot, M.; Couté, B.; Akiki, R. LOAC: A light aerosols counter for ground-based and balloon measurements of the size distribution and of the main nature of atmospheric particles, 1. Principle of measurements and instrument evaluation. Atmos. Meas. Tech. 2016, 9, 1721–1742. [Google Scholar] [CrossRef]
- Lurton, T.; Renard, J.-B.; Vignelles, D.; Jeannot, M.; Akiki, R.; Mineau, J.-L.; Tonnelier, T. Light scattering at small angles by atmospheric irregular particles; modelling and laboratory measurements. Atmos. Meas. Tech. 2014, 7, 931–939. [Google Scholar] [CrossRef]
- Renard, J.-B.; El Azari, H.; Richard, J.; Lauthier, J.; Surcin, J. Towards an Automatic Pollen Detection System in Ambient Air Using Scattering Functions in the Visible Domain. Sensors 2022, 22, 4984. [Google Scholar] [CrossRef]
- Renard, J.-B.; Geffrin, J.-M.; Tobon Valencia, V.; Tortel, H.; Ménard, F.; Rannou, P.; Milli, J.; Berthet, G. Number of independent measurements required to obtain reliable mean scattering properties of irregular particles having a small size parameter, using microwave analogy measurements. J. Quant. Spect. Rad. Trans. 2021, 272, 107718. [Google Scholar] [CrossRef]
- Valipour Shokouhi, B.; de Hoogh, K.; Gehrig, R.; Eeftens, M. Estimation of historical daily airborne pollen concentrations across Switzerland using a spatio temporal random forest model. Sci. Tot. Environ. 2024, 906, 167286. [Google Scholar] [CrossRef]
- Hirst, J.M. An automatic volumetric spore trap. Ann. Appl. Biol. 1952, 39, 257–265. [Google Scholar] [CrossRef]
- Oteros, J.; Buters, J.; Laven, G.; Röseler, S.; Wachter, R.; Schmidt-Weber, C.; Hofmann, F. Errors in determining the flow rate of Hirst-type pollen traps. Aerobiologia 2017, 33, 201–210. [Google Scholar] [CrossRef]
- Adamov, S.; Lemonis, N.; Clot, B.; Crouzy, B.; Gehrig, R.; Graber, M.J.; Sallin, C.; Tummon, F. On the measurement uncertainty of Hirst-type volumetric pollen and spore samplers. Aerobiologia 2021, 40, 77–91. [Google Scholar] [CrossRef]
- Samad, A.; Vogt, U.; Panta, A.; Uprety, D. Vertical distribution of particulate matter, black carbon and ultra-fine particles in Stuttgart, Germany. Atmos. Pollut. Res. 2020, 11, 1441–1450. [Google Scholar] [CrossRef]
- Liu, H.; Pan, X.; Lei, S.; Zhang, Y.; Du, A.; Yao, W.; Tang, G.; Wang, T.; Xin, J.; Li, J.; et al. Vertical distribution of black carbon and its mixing state in the urban boundary layer in summer. Atmos. Chem. Phys. 2023, 23, 7225–7239. [Google Scholar] [CrossRef]
- Schramm, P.J.; Brown, C.L.; Saha, S.; Conlon, K.C.; Manangan, A.P.; Bell, J.E.; Hess, J.J. A systematic review of the effects of temperature and precipitation on pollen concentrations and season timing, and implications for human health. Int. J. Biometeorol. 2021, 65, 1615–1628. [Google Scholar] [CrossRef]
- Santiago, J.P.; Sharkey, T.D. Pollen development at high temperature and role of carbon and nitrogen metabolites. Plant Cell Environ. 2019, 42, 2759–2775. [Google Scholar] [CrossRef]
- Zhang, Y.; Steiner, A.L. Projected climate-driven changes in pollen emission season length and magnitude over the continental United States. Nat. Commun. 2022, 13, 1234. [Google Scholar] [CrossRef]
- Available online: https://globalwindatlas.info/en/area/France/Ile-de-France (accessed on 18 June 2025).
Tree Pollens | Grass Pollens |
---|---|
acer negundo | Ambroisia |
alder | anthoxanthum |
birch | odoratum |
cypress | artemisia Vulgaris |
fraxinus | chenopodium album |
hazelnut | dactylis |
juniper | elymus repens |
oak | fescue |
olive | parietaria judaica |
platanus | phleum pratense |
populus nigra | plantain |
tilia cordata | rumex acetosella |
urtica dioica | |
velvetgrass |
From Mean Value Curve | From Most Probable Curve | Altitude Difference | |
---|---|---|---|
Spring, first layer | 19% | 25% | 30 m |
Spring, second layer | 11% | 14% | 30 m |
Summer, first layer | 8% | 20% | 30 m |
Summer, second layer | 2% | 0% | 60 m |
Autumn, whole profile | 6% | 5% | 120 m |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Renard, J.-B.; Lauthier, J.; Giacomoni, J. Pollen Vertical Transportation Above Paris, France, up to 150 m Using the Beenose Instrument on the Tourist Attraction “Ballon de Paris” in 2024. Atmosphere 2025, 16, 795. https://doi.org/10.3390/atmos16070795
Renard J-B, Lauthier J, Giacomoni J. Pollen Vertical Transportation Above Paris, France, up to 150 m Using the Beenose Instrument on the Tourist Attraction “Ballon de Paris” in 2024. Atmosphere. 2025; 16(7):795. https://doi.org/10.3390/atmos16070795
Chicago/Turabian StyleRenard, Jean-Baptiste, Johann Lauthier, and Jérôme Giacomoni. 2025. "Pollen Vertical Transportation Above Paris, France, up to 150 m Using the Beenose Instrument on the Tourist Attraction “Ballon de Paris” in 2024" Atmosphere 16, no. 7: 795. https://doi.org/10.3390/atmos16070795
APA StyleRenard, J.-B., Lauthier, J., & Giacomoni, J. (2025). Pollen Vertical Transportation Above Paris, France, up to 150 m Using the Beenose Instrument on the Tourist Attraction “Ballon de Paris” in 2024. Atmosphere, 16(7), 795. https://doi.org/10.3390/atmos16070795