Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,622)

Search Parameters:
Keywords = vegetable drying

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2580 KB  
Article
Variation in Soil Microbial Carbon Utilization Patterns Along a Forest Successional Series in a Degraded Wetland of the Sanjiang Plain
by Zhaorui Liu, Wenmiao Pu, Kaiquan Zhang, Rongze Luo, Xin Sui and Mai-He Li
Diversity 2026, 18(1), 48; https://doi.org/10.3390/d18010048 - 16 Jan 2026
Abstract
The Sanjiang Plain hosts the largest freshwater wetland in Northeastern China and plays a critical role in regional climate stability. However, climate change and human activities have degraded the wetland, forming a successional gradient from the original flooded wetland to dry shrub and [...] Read more.
The Sanjiang Plain hosts the largest freshwater wetland in Northeastern China and plays a critical role in regional climate stability. However, climate change and human activities have degraded the wetland, forming a successional gradient from the original flooded wetland to dry shrub and forest vegetation with a lower ground water level. This degradation has altered soil microbial structure and functions, reducing ecological and socio-economic benefits. Along this successional gradient, we used Biolog-ECO plates combined with soil enzyme assays (catalase, urease, sucrase, and acid phosphatase) to assess the dynamics of microbial carbon metabolic activity, measured by average well color development (AWCD). The results showed a systematic decline in AWCD values with advancing succession, revealing a pronounced reduction in overall microbial metabolic activity during wetland degradation. This trend correlated with loss of soil moisture, organic carbon, and nitrogen nutrients. Microbial communities in early successional wetland stages (i.e., original natural wetland and wetland edge) preferred labile carbon sources (e.g., carbohydrates, amino acids), while forested stages favored relatively more structural (e.g., polymers, phenolic compounds). These findings indicate that vegetation succession regulates microbial carbon metabolism by modifying soil physicochemical properties, providing insights for wetland restoration. Full article
(This article belongs to the Special Issue Microbial Diversity in Different Environments)
Show Figures

Figure 1

33 pages, 4147 KB  
Article
Effects of Management and Climatic Variability on Indicator Species and Biomass Production in Carpathian Mountain Grasslands
by Ioana Ghețe, Borlea Mihaela, Claudiu Șerban and Alexandru Ghețe
Plants 2026, 15(2), 269; https://doi.org/10.3390/plants15020269 - 15 Jan 2026
Abstract
Carpathian mountain grasslands are increasingly affected by management intensification and climatic variability, with consequences for species composition and ecosystem functioning. This study assessed the long-term effects of a mineral fertilization gradient and interannual climatic variability on indicator species dynamics and biomass production in [...] Read more.
Carpathian mountain grasslands are increasingly affected by management intensification and climatic variability, with consequences for species composition and ecosystem functioning. This study assessed the long-term effects of a mineral fertilization gradient and interannual climatic variability on indicator species dynamics and biomass production in a semi-natural high-nature-value (HNV) grassland in the Apuseni Mountains, based on a 17-year field experiment. Increasing fertilization intensity promoted a clear shift from species-rich oligotrophic communities toward simplified mesotrophic and eutrophic grassland types, accompanied by a decline in indicator species richness and the increasing dominance of competitive grasses. Biomass production increased consistently along the fertilization gradient. Climate-driven effects were assessed using unfertilized control plots, allowing management effects to be disentangled from interannual climatic variability. Variations in temperature and precipitation influenced floristic composition and productivity across the years, highlighting the sensitivity of mountain grasslands to short-term climatic fluctuations. Multivariate analyses revealed increasing vegetation homogenization under high fertilization and distinct year-to-year shifts in species composition under unfertilized conditions. These results emphasize the vulnerability of Carpathian HNV grasslands to both nutrient enrichment and climatic variability, and underline the need for climate-adaptive, biodiversity-oriented management strategies. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

16 pages, 1740 KB  
Article
Optimization of Conditions for Ethyl Acetate Extraction of Mono-, Di-, Triglycerides and Free Fatty Acids from Soapstock Using Response Surface Methodology
by Svetlana Zhizhkun, Lauma Laipniece and Igors Astrausks
ChemEngineering 2026, 10(1), 16; https://doi.org/10.3390/chemengineering10010016 - 14 Jan 2026
Abstract
Soapstock (SS), a by-product of vegetable oil refining, is a promising source of a mixture of mono-, di-, triglycerides, and free fatty acids (MDTG-FFA), a valuable feedstock for biodiesel production. In this study, the selective extraction of MDTG-FFA from SS using green solvents [...] Read more.
Soapstock (SS), a by-product of vegetable oil refining, is a promising source of a mixture of mono-, di-, triglycerides, and free fatty acids (MDTG-FFA), a valuable feedstock for biodiesel production. In this study, the selective extraction of MDTG-FFA from SS using green solvents (ethyl acetate, ethyl formate, methyl acetate, isopropyl acetate, and isobutanol) was investigated. Ethyl acetate showed the highest efficiency, allowing the elimination of the phosphatide (PL) precipitation step with acetone. The process optimization was carried out by response surface methodology with central composite design. Statistical analysis confirmed the significance of the obtained models: F-values were 4.55 (p = 0.013) for MDTG-FFA and 9.62 (p = 0.00074) for PL. Regression analysis revealed a good fit of the experimental data with quadratic models for MDTG-FFA and PL, with coefficients of determination (R2) of 0.804 and 0.897, respectively. The optimum extraction parameters were a solvent-to-dry-matter-of-SS ratio 5:1, time 10.2 min, and initial extraction temperature 21.7 °C. Under these conditions, maximum MDTG-FFA yields of 12.6% and 13.4% were achieved for the two batches of SS, respectively, with minimum PL yields of 0.02% and 0.1%. The obtained MDTG-FFA extracts rich in free fatty acids represent a promising feedstock for biodiesel production. The proposed method provides a rational, resource-efficient, and environmentally preferable extraction of valuable components from SS. Full article
(This article belongs to the Topic Green and Sustainable Chemical Processes)
Show Figures

Figure 1

32 pages, 9835 KB  
Article
Microbial Synergy Between Azospirillum brasilense and Glomus iranicum Promotes Root Biomass and Grain Yield in Andean Quinoa Cultivars
by Miriam Gutierrez, Eugenia Quispe-Medina, Cayo García-Blásquez Morote, José Antonio Quispe-Tenorio, Héctor Cántaro-Segura, Luis Díaz-Morales and Daniel Matsusaka
Appl. Microbiol. 2026, 6(1), 12; https://doi.org/10.3390/applmicrobiol6010012 - 13 Jan 2026
Viewed by 77
Abstract
Quinoa (Chenopodium quinoa Willd.) is a strategic crop for climate-smart agriculture in the Andes, yet yield gains are constrained by soil degradation and low-input systems. We tested whether synergistic bioinoculation with a plant growth-promoting rhizobacterium (Azospirillum brasilense) and an arbuscular [...] Read more.
Quinoa (Chenopodium quinoa Willd.) is a strategic crop for climate-smart agriculture in the Andes, yet yield gains are constrained by soil degradation and low-input systems. We tested whether synergistic bioinoculation with a plant growth-promoting rhizobacterium (Azospirillum brasilense) and an arbuscular mycorrhizal fungus (Glomus iranicum var. tenuihypharum) enhances root function and grain productivity under field conditions. A split-plot RCBD was conducted in Ayacucho, Peru (2735 m a.s.l.) using four cultivars, Blanca de Junín (BJ), INIA 441 Señor del Huerto (SH), INIA 415 Pasankalla (RP) and INIA 420 Negra Collana (NC) and four treatments: uninoculated control, Azospirillum, Glomus and co-inoculation. Vegetative, root and yield traits were quantified; ANOVA, Tukey/Dunnett contrasts, correlations and PCA were applied. Co-inoculation consistently outperformed single inoculants, increasing root diameter, length, branching, dry weight and volume dry weight, while also enlarging panicle dimensions and raising grain weight per panicle and thousand-seed weight. Grain yield reached 4.94 ± 0.59 t ha−1 under co-inoculation, almost triple that of the control (1.71 ± 0.28 t ha−1) and about 1.5 times higher than single inoculations. Genotypic effects were pronounced; BJ and SH combined superior root biomass with higher yield, RP maximized grain size and hectoliter weight, whereas NC responded weakly. Significant genotype × treatment interactions indicated cultivar-dependent microbiome benefits. Correlation and PCA linked root biomass and stem/panicle architecture to yield formation, positioning co-inoculation along trait vectors associated with belowground vigor and productivity. These results demonstrate a robust microbial synergy that translates root gains into yield, supporting co-inoculation as a scalable, low-input strategy for sustainable intensification of quinoa in highland agroecosystems. Full article
Show Figures

Figure 1

13 pages, 1183 KB  
Article
Valorization of Lettuce (Lactuca sativa L.) as an Unexploited Source of Natural Insoluble Dietary Fiber Through Integrated Cultivation Conditions and Freeze-Drying Optimization
by Augustina Sandina Tronac, Simona Marcu Spinu, Mihaela Dragoi Cudalbeanu, Carmen Laura Cimpeanu and Alina Ortan
Fibers 2026, 14(1), 10; https://doi.org/10.3390/fib14010010 - 12 Jan 2026
Viewed by 83
Abstract
Human health is profoundly influenced by external factors, with stress being a primary contributor. In this context, the digestive system is particularly susceptible. The prevalence of diseases affecting the small intestine and colon is increasing. Consequently, insoluble plant fibers, such as cellulose and [...] Read more.
Human health is profoundly influenced by external factors, with stress being a primary contributor. In this context, the digestive system is particularly susceptible. The prevalence of diseases affecting the small intestine and colon is increasing. Consequently, insoluble plant fibers, such as cellulose and hemicellulose, play a crucial role in promoting intestinal transit and maintaining colon health. Lettuce is a widely consumed leafy vegetable with high nutritional value and has been intensively studied through hydroponic cultivation. This study aims to optimize the cultivation conditions and freeze-drying process of Lugano and Carmesi lettuce varieties (Lactuca sativa L.) by identifying the optimal growth conditions, freeze-drying duration, and sample surface area in order to achieve an optimal percentage of insoluble fibers. Carmesi and Lugano varieties were selected based on their contrasting growth characteristics and leaf morphology, allowing to assess whether treatments and processing conditions have consistent effects on different types of lettuce. The optimal freeze-drying parameters were determined to include a 48 h freeze-drying period, a maximum sample surface area of 144 cm2, and growth under combined conditions of supplementary oxygenation and LED light exposure. The optimal fiber composition, cellulose (21.61%), hemicellulose (11.84%) and lignin (1.36%), was found for the Lugano variety, which exhibited lower lignin and higher cellulose contents than the Carmesi variety. The quantification of hemicellulose, cellulose and lignin was performed using the well-known NDF, ADF and ADL methods. Therefore, optimized freeze-dried lettuce powder, particularly from the Lugano variety, presents a high-value functional ingredient for enriching foods and developing nutritional supplements aimed at digestive health. Full article
Show Figures

Figure 1

17 pages, 857 KB  
Article
Life Cycle Assessment of Laboratory Analytical Workflows for Microplastics Quantification in Environmental Matrices: Sargassum and Seagrass Approach
by Ramón Fernando Colmenares-Quintero, Laura Stefania Corredor-Muñoz, Juan Carlos Colmenares-Quintero and Sara Piedrahita-Rodriguez
Processes 2026, 14(2), 258; https://doi.org/10.3390/pr14020258 - 12 Jan 2026
Viewed by 121
Abstract
Microplastic quantification in marine vegetated ecosystems remains analytically demanding, yet little is known about the environmental footprint of the laboratory procedures required to isolate and measure these particles. This study applies Life Cycle Assessment (LCA) to laboratory analytical workflows for microplastics quantification, focusing [...] Read more.
Microplastic quantification in marine vegetated ecosystems remains analytically demanding, yet little is known about the environmental footprint of the laboratory procedures required to isolate and measure these particles. This study applies Life Cycle Assessment (LCA) to laboratory analytical workflows for microplastics quantification, focusing exclusively on sample preparation and analytical procedures rather than natural environmental absorption or fate processes, in two ecologically relevant matrices: (i) pelagic algae (Sargassum) and (ii) seagrass biomass. Using the openLCA 2.5 and the ReCiPe Midpoint (H) v1.13 methods, the analysis integrates foreground inventories of digestion, filtration, drying, and spectroscopic identification, combined with background datasets from OzLCI2019, ELCD 3.2 and USDA. Results show substantially higher impacts for the algae scenario, particularly for climate change, human toxicity, ionising radiation and particulate matter formation, largely driven by longer digestion times, increased reagent use and higher energy demand during sample pre-treatment. Conversely, the seagrass scenario exhibited lower burdens per functional unit due to reduced organic complexity and shorter laboratory processing requirements. These findings highlight the importance of matrix-specific methodological choices and the influence of background datasets on impact profiles. This study provides the first benchmark for the environmental performance of microplastic analytical workflows and underscores the need for harmonised, low-impact laboratory protocols to support sustainable monitoring of microplastic pollution in marine ecosystems. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Figure 1

24 pages, 2964 KB  
Article
Unveiling the Genomic Architecture of Phenotypic Plasticity Using Multiple GWAS Approaches Under Contrasting Conditions of Water Availability: A Model for Barley
by Sebastián Arenas and Andrés J. Cortés
Int. J. Mol. Sci. 2026, 27(2), 652; https://doi.org/10.3390/ijms27020652 - 8 Jan 2026
Viewed by 246
Abstract
Phenotypic plasticity is a key mechanism by which crops adjust to fluctuating environmental conditions, yet its genetic basis under drought remains poorly characterized in barley (Hordeum vulgare). We hypothesized that phenotypic plasticity under drought is controlled by a distinct, trait-specific genetic [...] Read more.
Phenotypic plasticity is a key mechanism by which crops adjust to fluctuating environmental conditions, yet its genetic basis under drought remains poorly characterized in barley (Hordeum vulgare). We hypothesized that phenotypic plasticity under drought is controlled by a distinct, trait-specific genetic architecture that can be detected using complementary plasticity metrics and genome-wide association studies (GWAS). Here, we examined data from 1277 spring barley genotypes grown under well-watered and water-limited conditions to quantify plastic responses across two developmental traits (i.e., heading time, and maturity) and seven productivity-related traits (i.e., total dry matter, plant grain yield, grain number, grain weight, harvest index, vegetative dry weight, and grain-filling period). The experimental design, based on contrasting water regimes across a large diversity panel, allowed robust assessment of genotype-by-environment interactions. We combined five complementary plasticity estimators with four independent GWAS approaches to resolve the genomic architecture underlying trait-specific plasticity. Environmental effects dominated variation in yield-related traits, whereas developmental traits remained more genetically determined. The different plasticity metrics captured distinct but partially overlapping response dimensions, and their integration greatly increased the robustness of association signals. A total of 239 high-confidence SNPs obtained for top traits, those associated across metrics and methods, were enriched in coding regions and mapped to genes involved in osmoregulation, carbohydrate metabolism, hormonal pathways, and ion transport. A total of 27 high-confidence SNPs were located in coding regions, showing genotype-specific differences in the magnitude and even direction of phenotypic plasticity. These loci exhibited opposite allelic effects across water regimes, consistent with context-dependent antagonistic pleiotropy. The fact that candidate alleles for the plastic response modulate environmental sensitivity differently highlights that drought resilience arises from environment-contingent genetic architectures. Overall, these results provide a comprehensive framework for dissecting plasticity and identify concrete genomic targets for indirect selection targeting crop resilience with improved performance under increasingly variable water availability. Full article
(This article belongs to the Special Issue Abiotic Stress Tolerance and Genetic Diversity in Plants, 2nd Edition)
Show Figures

Figure 1

18 pages, 4523 KB  
Article
Remote Sensing of Nematode Stress in Coffee: UAV-Based Multispectral and Thermal Imaging Approaches
by Daniele de Brum, Gabriel Araújo e Silva Ferraz, Luana Mendes dos Santos, Felipe Augusto Fernandes, Marco Antonio Zanella, Patrícia Ferreira Ponciano Ferraz, Willian César Terra, Vicente Paulo Campos, Thieres George Freire da Silva, Ênio Farias de França e Silva and Alexsandro Oliveira da Silva
AgriEngineering 2026, 8(1), 22; https://doi.org/10.3390/agriengineering8010022 - 8 Jan 2026
Viewed by 195
Abstract
Early and non-destructive detection of plant-parasitic nematodes is critical for implementing site-specific management in coffee production systems. This study evaluated the potential of unmanned aerial vehicle (UAV) multispectral and thermal imaging, combined with textural analysis, to detect Meloidogyne exigua infestation in Coffea arabica [...] Read more.
Early and non-destructive detection of plant-parasitic nematodes is critical for implementing site-specific management in coffee production systems. This study evaluated the potential of unmanned aerial vehicle (UAV) multispectral and thermal imaging, combined with textural analysis, to detect Meloidogyne exigua infestation in Coffea arabica (Topázio variety). Field surveys were conducted in two contrasting seasons (dry and rainy), and nematode incidence was identified and quantified by counting root galls. Vegetation indices (NDVI, GNDVI, NGRDI, NDRE, OSAVI), individual spectral bands, canopy temperature, and Haralick texture features were extracted from UAV-derived imagery and correlated with gall counts. Under the conditions of this experiment, strong correlations were observed between gall number and the red spectral band in both seasons (R > 0.60), while GNDVI (dry season) and NGRDI (rainy season) showed strong negative correlations with gall density. Thermal imaging revealed moderate positive correlations with infestation levels during the dry season, indicating potential for early stress detection when foliar symptoms were absent. Texture metrics from the red and green bands further improved detection capacity, particularly with a 3 × 3 pixel window at 135°. These results demonstrate that UAV-based multispectral and thermal imaging, enhanced by texture analysis, can provide reliable early indicators of nematode infestation in coffee. Full article
Show Figures

Figure 1

13 pages, 646 KB  
Article
Quality Assessment and Physicochemical Characteristics of Commercial Frozen Vegetable Blends Available on the Polish Market
by Joanna Markowska, Anna Drabent and Natalia Grzybowska
Foods 2026, 15(2), 224; https://doi.org/10.3390/foods15020224 - 8 Jan 2026
Viewed by 138
Abstract
Frozen vegetables are increasingly valued for their nutritional stability and year-round availability. This study provides a comprehensive assessment of twenty commercially available frozen vegetable blends obtained from retail markets in Poland. Analyses included physicochemical parameters, instrumental measurements of texture, color (CIEL*a*b*), and evaluation [...] Read more.
Frozen vegetables are increasingly valued for their nutritional stability and year-round availability. This study provides a comprehensive assessment of twenty commercially available frozen vegetable blends obtained from retail markets in Poland. Analyses included physicochemical parameters, instrumental measurements of texture, color (CIEL*a*b*), and evaluation of technological quality. The pH values ranged from 4.40 to 7.46, total acidity from 0.034 to 0.322 g/100 g, and dry matter content from 5.02 to 42.97%. The observed variability was mainly attributable to vegetable type and remained consistent with values reported for fresh produce, indicating that industrial freezing largely preserves chemical characteristics. Texture differed markedly between vegetable types, with hardness values ranging from 6 to nearly 100 N, while color parameters remained within typical ranges for blanched and frozen vegetables, suggesting effective pigment stability and enzyme inactivation. In contrast, substantial variability was observed in technological quality. Mechanical fragmentation exceeded acceptable limits in 30% of samples, and complete clumping of vegetable pieces (100%) was observed. Additional defects included frostbite and color deviations, and health-condition defects were observed. These results highlight considerable heterogeneity in frozen vegetable blends and emphasize the need for stricter control of raw materials, processing conditions, and cold-chain management to ensure consistent quality and consumer safety. Full article
(This article belongs to the Section Food Quality and Safety)
Show Figures

Figure 1

32 pages, 8817 KB  
Article
Geospatial Assessment and Modeling of Water–Energy–Food Nexus Optimization for Sustainable Paddy Cultivation in the Dry Zone of Sri Lanka: A Case Study in the North Central Province
by Awanthi Udeshika Iddawela, Jeong-Woo Son, Yeon-Kyu Sonn and Seung-Oh Hur
Water 2026, 18(2), 152; https://doi.org/10.3390/w18020152 - 6 Jan 2026
Viewed by 380
Abstract
This study presents a geospatial assessment and modeling of the water–energy–food (WEF) nexus to enrich the sustainable paddy cultivation of the North Central Province (NCP) of Sri Lanka in the Dry Zone. Increasing climatic variability and limited resources have raised concerns about the [...] Read more.
This study presents a geospatial assessment and modeling of the water–energy–food (WEF) nexus to enrich the sustainable paddy cultivation of the North Central Province (NCP) of Sri Lanka in the Dry Zone. Increasing climatic variability and limited resources have raised concerns about the need for efficient resource management to restore food security globally. The study analyzed the three components of the WEF nexus for their synergies and trade-offs using GIS and remote sensing applications. The food productivity potential was derived using the Normalized Difference Vegetation Index (NDVI), Soil Organic Carbon (SOC), soil type, and land use, whereas water availability was assessed using the Normalized Difference Water Index (NDWI), Soil Moisture Index (SMI), and rainfall data. Energy potential was mapped using WorldClim 2.1 datasets on solar radiation and wind speed and the proximity to the national grid. Scenario modeling was conducted through raster overlay analysis to identify zones of WEF constraints and synergies such as low food–low water areas and high energy–low productivity areas. To ensure the accuracy of the created model, Pearson correlation analysis was used to internally validate between hotspot layers (representing extracted data) and scenario layers (representing modeled outputs). The results revealed a strong positive correlation (r = 0.737), a moderate positive correlation for energy (r = 0.582), and a positive correlation for food (r = 0.273). Those values were statistically significant at p > 0.001. These results confirm the internal validity and accuracy of the model. This study further calculated the total greenhouse gas (GHG) emissions from paddy cultivation in NCP as 1,070,800 tCO2eq yr−1, which results in an emission intensity of 5.35 tCO2eq ha−1 yr−1, with CH4 contributing around 89% and N2O 11%. This highlights the importance of sustainable cultivation in mitigating agricultural emissions that contribute to climate change. Overall, this study demonstrates a robust framework for identifying areas of resource stress or potential synergy under the WEF nexus for policy implementation, to promote climate resilience and sustainable paddy cultivation, to enhance the food security of the country. This model can be adapted to implement similar research work in the future as well. Full article
(This article belongs to the Section Water Resources Management, Policy and Governance)
Show Figures

Figure 1

17 pages, 2944 KB  
Article
Prolonged Dry Periods Associated with Riparian Vegetation Growth and Channel Simplification
by Michael Nones and Yiwei Guo
Hydrology 2026, 13(1), 21; https://doi.org/10.3390/hydrology13010021 - 6 Jan 2026
Viewed by 155
Abstract
Climate change is impacting rivers worldwide, with a reduction in normal flow conditions in temperate regions like Poland. Such changes might have a significant influence on riparian vegetation and channel planform dynamics. To better understand how these changes impact the river morphology, this [...] Read more.
Climate change is impacting rivers worldwide, with a reduction in normal flow conditions in temperate regions like Poland. Such changes might have a significant influence on riparian vegetation and channel planform dynamics. To better understand how these changes impact the river morphology, this research focuses on a 250 km-long reach of the Polish Vistula River and investigates variations of monthly maximum discharges and vegetation conditions over the period 1984–2023 by means of Landsat satellite images. These satellite data were handled via Google Earth Engine, looking at a common index such as the Normalized Difference Vegetation Index, considered as a proxy of vegetation coverage variations. Results point out an increase in the median NDVI over the study area from 0.2 in 1984 to 0.3 in 2023, connected with a reduction of monthly discharge from around 920 m3/s to 880 m3/s. This suggests that changes in flow discharge are associated with a process of riparian vegetation growth, leading to a reduction of planform and bars dynamics and closure of secondary channels (i.e., oversimplification). This is particularly evident over the last couple of decades, during which water availability has decreased significantly, as more humid years in the middle of the study period are now no longer existing, with an observed decrease in the maximum monthly discharge during the last 20 years, likely connected with a more severe impact of climate change. This reduction in flooding events allows more time for vegetation to establish on river bars and banks, eventually creating new islands and causing the observed oversimplification of the active channel. In summary, using the Vistula River as an exemplary case study, this research suggests that prolonged dry periods, more common in recent decades due to climate change, might impact large rivers located in temperate climates, favouring the development of vegetation on exposed sandbars, eventually resulting in a less dynamic active channel. Full article
Show Figures

Figure 1

19 pages, 2089 KB  
Article
Effect of Silicon on Early Root and Shoot Phenotypes of Rice in Hydroponic and Soil Systems
by Kabita Poudel, Amit Ghimire, Minju Kwon, Mbembo Blaise wa Mbembo and Yoonha Kim
Plants 2026, 15(2), 176; https://doi.org/10.3390/plants15020176 - 6 Jan 2026
Viewed by 542
Abstract
Silicon (Si) application is recognized for its beneficial roles in crop growth. This study examines the effects of two forms: zeolite and sodium metasilicate (SMS), on rice under hydroponic (EP I) and soil (EP II) conditions. Four treatments were used at the early [...] Read more.
Silicon (Si) application is recognized for its beneficial roles in crop growth. This study examines the effects of two forms: zeolite and sodium metasilicate (SMS), on rice under hydroponic (EP I) and soil (EP II) conditions. Four treatments were used at the early stage of rice: 4 ppm and 2 ppm of Si from zeolite, 4 ppm of Si from SMS, and a control. In EP I, only 4 ppm of SMS significantly improved root traits: total root length (36%), surface area (34%), root volume (23%), tips (46%), and forks (34%) by day seven compared to the control. Zeolite-based Si had minimal effects, except on the average diameter. However, in EP II, all Si forms enhanced root traits: total root length (50–73%), surface area (51–58%), average diameter (32–50%), root volume (54–72%), tips (29–68%) and increased shoot and root dry weights by 19–24% and 79–106%, respectively, compared to the control. In EP II, starting from the first and fifth day of treatment, the Si applied groups showed a significant increase in photosynthetic traits and vegetative indices, respectively. On the last day of treatment, particularly for 2 ppm of Si zeolite, the electron transport rate increased by 5 times, the apparent transpiration by 3 times, total conductance and stomatal conductance by around 50%, normalized difference vegetative index by 6–8%, and photochemical reflectance index by 14–33%. These results suggest that the effectiveness of Si is highly dependent on the growth medium and the type of Si, with soil enabling better Si availability, uptake, and physiological response compared to hydroponics. The superior performance of zeolite in EP II indicates its potential as a slow-release Si source that enhances root development and photosynthetic efficiency over time. Thus, it is concluded that zeolite has more potential in soil, and soluble silicon sources should be selected in hydroponics. Full article
Show Figures

Figure 1

23 pages, 15684 KB  
Article
XGBoost-Based Susceptibility Model Exhibits High Accuracy and Robustness in Plateau Forest Fire Prediction
by Chuang Yang, Ping Yao, Qiuhua Wang, Shaojun Wang, Dong Xing, Yanxia Wang and Ji Zhang
Forests 2026, 17(1), 74; https://doi.org/10.3390/f17010074 - 6 Jan 2026
Viewed by 126
Abstract
Forest fire susceptibility prediction is essential for effective management, yet considerable uncertainty persists under future climate change, especially in climate-sensitive plateau regions. This study integrated MODIS fire data with climatic, topographic, vegetation, and anthropogenic variables to construct an Extreme Gradient Boosting (XGBoost) model [...] Read more.
Forest fire susceptibility prediction is essential for effective management, yet considerable uncertainty persists under future climate change, especially in climate-sensitive plateau regions. This study integrated MODIS fire data with climatic, topographic, vegetation, and anthropogenic variables to construct an Extreme Gradient Boosting (XGBoost) model for the Yunnan Plateau, a region highly prone to forest fires. Compared with Support Vector Machine and Random Forest models, XGBoost showed superior ability to capture nonlinear relationships and delivered the best performance, achieving an AUC of 0.907 and an overall accuracy of 0.831. The trained model was applied to climate projections under SSP1-2.6, SSP2-4.5, and SSP5-8.5 to assess future fire susceptibility. Results indicated that high-susceptibility periods primarily occur in winter and spring, driven by minimum temperature, average temperature, and precipitation. High-susceptibility areas are concentrated in dry-hot valleys and mountain basins with elevated temperatures and dense human activity. Under future climate scenarios, both the probability and spatial extent of forest fires are projected to increase, with a marked expansion after 2050, especially under SSP5-8.5. Although the XGBoost model demonstrates strong generalizability for plateau regions, uncertainties remain due to static vegetation, coarse anthropogenic data, and differences among climate models. Full article
(This article belongs to the Section Natural Hazards and Risk Management)
Show Figures

Figure 1

26 pages, 8912 KB  
Article
A Novel Leuconostoc mesenteroides Direct-Vat-Set Starter with High Nitrite-Degrading Activity for Safe and High-Quality Fermentation of Chinese Dongbei Suancai
by Xiaoou Zhao, Ruochen Huang, Luobing Zhao, Lei Wang, Yunhui Zhao, Xin Zhang, Xiangshu Jin, Duojia Wang and Xiaoxiao Liu
Fermentation 2026, 12(1), 30; https://doi.org/10.3390/fermentation12010030 - 5 Jan 2026
Viewed by 252
Abstract
Dongbei suancai is a popular traditional fermented vegetable in Northeast China. However, the conventional production methods often lead to nitrite accumulation and quality fluctuations, which to some extent constrain the development towards health and scale. To address this, a novel Direct-Vat-Set (DVS) starter [...] Read more.
Dongbei suancai is a popular traditional fermented vegetable in Northeast China. However, the conventional production methods often lead to nitrite accumulation and quality fluctuations, which to some extent constrain the development towards health and scale. To address this, a novel Direct-Vat-Set (DVS) starter was developed based on L. mesenteroides AA001, a strain isolated from traditional fermented foods and possessing high nitrite-degrading capability. By optimizing the culture medium and cryoprotectant formulation, the cell density and freeze-drying survival rate were significantly enhanced. Crucially, the freeze-drying process did not impair the core degradation function of the strain, with the nitrite degradation rate remaining above 90%. The DVS starter was applied to Dongbei suancai fermentation, effectively inhibiting nitrite accumulation while simultaneously increasing organic acid content and optimizing the proportion of essential amino acids. It simultaneously suppressed the growth of undesirable bacteria and, under low-temperature conditions, steered the microbial community toward metabolic activities, ensuring the controllability and safety of the fermentation process. Therefore, inoculation with the L. mesenteroides AA001 DVS starter effectively inhibits nitrite accumulation, enabling a highly efficient, stable, and clean fermentation process that significantly improves the quality of Dongbei suancai. Full article
Show Figures

Figure 1

17 pages, 1552 KB  
Article
Selenium Biofortification and an Ecklonia maxima-Based Seaweed Extract Jointly Compose Curly Endive Drought Stress Tolerance in a Soilless System
by Beppe Benedetto Consentino, Fabiana Mancuso, Lorena Vultaggio, Pietro Bellitto, Georgia Ntatsi, Claudio Cannata, Gaetano Giuseppe La Placa, Rosario Paolo Mauro, Salvatore La Bella and Leo Sabatino
Plants 2026, 15(1), 170; https://doi.org/10.3390/plants15010170 - 5 Jan 2026
Viewed by 209
Abstract
Vegetable cultivation is currently facing complex challenges related to climate change, with negative repercussions on plant performance. In this scenario, the employment of eco-friendly agronomic tools capable of boosting plant tolerance to abiotic stresses is fundamental. Among them, the use of non-microbial biostimulants, [...] Read more.
Vegetable cultivation is currently facing complex challenges related to climate change, with negative repercussions on plant performance. In this scenario, the employment of eco-friendly agronomic tools capable of boosting plant tolerance to abiotic stresses is fundamental. Among them, the use of non-microbial biostimulants, such as seaweed extracts (SwEs), and microelements, like selenium (Se), is considered an efficient approach to overcome abiotic stresses. In this experiment, the performance of chicory plants cultivated under three different irrigation levels (100%, 75% or 50% of substrate water holding capacity) and treated with SwE, Se or their combination (SwE + Se) was evaluated. The results revealed that drought stress significantly decreased growth, productivity and relative water content but increased soluble solid content, dry matter percentage, and proline and malondialdehyde concentrations. The application of Swe, Se or Swe + Se enhanced growth, productive features and soluble solid content and reduced dry matter percentage, proline and malondialdehyde compared to the control. Based on our results, Se and SwE combined application could be a valuable approach to face moderate drought stress on curly endive plants and improve productive and quality traits. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Graphical abstract

Back to TopTop