Effect of Silicon on Early Root and Shoot Phenotypes of Rice in Hydroponic and Soil Systems
Abstract
1. Introduction
2. Results
2.1. Results for EP I
Effect of Si on the Root Phenotypes
2.2. Results for EP II
2.2.1. Effects of Si on the Root Phenotypes
2.2.2. Effect of Si on Seedling Dry Weight and Tiller Numbers
2.2.3. Effect of Si on Photosynthetic Traits and Vegetative Indices
2.2.4. Correlation Analysis Among the Indices
3. Discussion
4. Materials and Methods
4.1. Plant Materials and Seedlings Establishment
4.2. Si Treatments and Experimental Design
4.3. Root Phenotypic Trait Measurement
4.4. Photosynthetic Traits and Vegetative Indices Measurement
4.5. Dry Weight and Number of Tillers Measurement
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| Si | Silicon |
| RGB | Red, green, and blue |
| VIs | Vegetative indices |
| GSW | Stomatal conductance to water vapor |
| GTW | Total conductance to water vapors |
| ETR | Electron transport rate |
| E-apparent | Apparent transpiration |
| NDVI | Normalized difference vegetative index |
| PRI | Photochemical reflectance index |
| TRL | Total root length |
| SA | Surface area |
| RV | Root volume |
| AD | Average diameter |
| SMS | Sodium metasilicate |
References
- Abdo, A.I.; Tian, M.; Shi, Z.; Sun, D.; Abdel-Fattah, M.K.; Zhang, J.; Wei, H.; Abdeen, M.A. Carbon footprint of global rice production and consumption. J. Clean. Prod. 2024, 474, 143560. [Google Scholar] [CrossRef]
- Carcea, M. Value of wholegrain rice in a healthy human nutrition. Agriculture 2021, 11, 720. [Google Scholar] [CrossRef]
- Zhao, M.; Xiao, X.; Jin, D.; Zhai, L.; Li, Y.; Yang, Q.; Xing, F.; Qiao, W.; Yan, X.; Tang, Q. Composition and Biological Activity of Colored Rice—A Comprehensive Review. Foods 2025, 14, 1394. [Google Scholar] [CrossRef]
- Van Ngo, T.; Kunyanee, K.; Luangsakul, N. Insight into the nutritional, physicochemical, functional, antioxidative properties and in vitro gastrointestinal digestibility of selected Thai rice: Comparative and multivariate studies. Curr. Res. Nutr. Food Sci. J. 2024, 8, 100735. [Google Scholar] [CrossRef] [PubMed]
- Duan, S.; Ai, H.; Liu, S.; Zhou, A.; Cao, Y.; Huang, X. Functional nutritional rice: Current progresses and future prospects. Front. Plant Sci. 2024, 15, 1488210. [Google Scholar] [CrossRef]
- Verma, D.K.; Srivastav, P.P. Bioactive compounds of rice (Oryza sativa L.): Review on paradigm and its potential benefit in human health. Trends Food Sci. Technol. 2020, 97, 355–365. [Google Scholar] [CrossRef]
- Sudan, J.; Urwat, U.; Farooq, A.; Pakhtoon, M.M.; Zaffar, A.; Naik, Z.A.; Batool, A.; Bashir, S.; Mansoor, M.; Sofi, P.A. Explicating genetic architecture governing nutritional quality in pigmented rice. PeerJ 2023, 11, e15901. [Google Scholar] [CrossRef]
- Ashfaq, W.; Brodie, G.; Fuentes, S.; Pang, A.; Gupta, D. Silicon improves root system and canopy physiology in wheat under drought stress. Plant Soil 2024, 502, 279–296. [Google Scholar]
- Li, R.; Sun, Y.; Wang, H.; Wang, H. Advances in understanding silicon transporters and the benefits to silicon-associated disease resistance in plants. Appl. Sci. 2022, 12, 3282. [Google Scholar] [CrossRef]
- Cataldo, E.; Salvi, L.; Paoli, F.; Fucile, M.; Masciandaro, G.; Manzi, D.; Masini, C.M.; Mattii, G.B. Application of zeolites in agriculture and other potential uses: A review. Agronomy 2021, 11, 1547. [Google Scholar] [CrossRef]
- Eroglu, N.; Emekci, M.; Athanassiou, C.G. Applications of natural zeolites on agriculture and food production. J. Sci. Food Agric. 2017, 97, 3487–3499. [Google Scholar] [CrossRef] [PubMed]
- Ramesh, K.; Biswas, A.K.; Patra, A.K. Zeolitic farming. Indian J. Agron. 2015, 60, 185–191. [Google Scholar] [CrossRef]
- Tayade, R.; Ghimire, A.; Khan, W.; Lay, L.; Attipoe, J.Q.; Kim, Y. Silicon as a smart fertilizer for sustainability and crop improvement. Biomolecules 2022, 12, 1027. [Google Scholar] [CrossRef] [PubMed]
- Mitani-Ueno, N.; Yamaji, N.; Huang, S.; Yoshioka, Y.; Miyaji, T.; Ma, J.F. A silicon transporter gene required for healthy growth of rice on land. Nat. Commun. 2023, 14, 6522. [Google Scholar] [CrossRef]
- Ma, J.F.; Takahashi, E. Soil, Fertilizer, and Plant Silicon Research in Japan; Elsevier: Amsterdam, The Netherlands, 2002. [Google Scholar]
- Kaur, H.; Greger, M. A review on Si uptake and transport system. Plants 2019, 8, 81. [Google Scholar] [CrossRef]
- Tripathi, P.; Subedi, S.; Khan, A.L.; Chung, Y.-S.; Kim, Y. Silicon effects on the root system of diverse crop species using root phenotyping technology. Plants 2021, 10, 885. [Google Scholar] [CrossRef]
- Li, A.; Zhu, L.; Xu, W.; Liu, L.; Teng, G. Recent advances in methods for in situ root phenotyping. PeerJ 2022, 10, e13638. [Google Scholar] [CrossRef]
- Li, L.; Zhang, Q.; Huang, D. A review of imaging techniques for plant phenotyping. Sensors 2014, 14, 20078–20111. [Google Scholar] [CrossRef]
- Humplík, J.F.; Lazár, D.; Husičková, A.; Spíchal, L. Automated phenotyping of plant shoots using imaging methods for analysis of plant stress responses–a review. Plant Methods 2015, 11, 29. [Google Scholar] [CrossRef]
- Atkinson, J.A.; Pound, M.P.; Bennett, M.J.; Wells, D.M. Uncovering the hidden half of plants using new advances in root phenotyping. Curr. Opin. Biotechnol. 2019, 55, 1–8. [Google Scholar] [CrossRef]
- Seethepalli, A.; Guo, H.; Liu, X.; Griffiths, M.; Almtarfi, H.; Li, Z.; Liu, S.; Zare, A.; Fritschi, F.B.; Blancaflor, E.B. RhizoVision crown: An integrated hardware and software platform for root crown phenotyping. Plant Phenomics 2020, 2020, 3074916. [Google Scholar] [CrossRef] [PubMed]
- He, X.-h.; Si, J.-h.; Zhou, D.-m.; Wang, C.-l.; Zhao, C.-y.; Jia, B.; Qin, J.; Zhu, X.-l. Leaf chlorophyll parameters and photosynthetic characteristic variations with stand age in a typical desert species (Haloxylon ammodendron). Front. Plant Sci. 2022, 13, 967849. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Huang, L.; Zuo, Q.; Shi, J. Assessing the Potential for Photochemical Reflectance Index to Improve the Relationship between Solar-Induced Chlorophyll Fluorescence and Gross Primary Productivity in Crop and Soybean. Atmosphere 2024, 15, 463. [Google Scholar] [CrossRef]
- Adjah, K.L.; Asante, M.D.; Frei, M.; Toure, A.; Aziadekey, M.; Wu, L.; Wairich, A.; Gamenyah, D.D.; Yadav, S. Leaf reflectance and physiological attributes monitoring differentiate rice cultivars under drought-stress and non-stress conditions. Cogent Food Agric. 2025, 11, 2453086. [Google Scholar]
- Yan, G.; Jiang, L.; Liu, Y. Remote Sensing Identification of Major Crops and Trade-Off of Water and Land Utilization of Oasis in Altay Prefecture. Land 2025, 14, 1426. [Google Scholar] [CrossRef]
- Omia, E.; Bae, H.; Park, E.; Kim, M.S.; Baek, I.; Kabenge, I.; Cho, B.-K. Remote sensing in field crop monitoring: A comprehensive review of sensor systems, data analyses and recent advances. Remote Sens. 2023, 15, 354. [Google Scholar] [CrossRef]
- Tola, E.; Al-Gaadi, K.A.; Madugundu, R.; Zeyada, A.M.; Edrris, M.K.; Edrees, H.F.; Mahjoop, O. The use of spectral vegetation indices to evaluate the effect of grafting and salt concentration on the growth performance of different tomato varieties grown hydroponically. Horticulturae 2025, 11, 368. [Google Scholar] [CrossRef]
- Chung, Y.S.; Kim, K.-S.; Hamayun, M.; Kim, Y. Silicon confers soybean resistance to salinity stress through regulation of reactive oxygen and reactive nitrogen species. Front. Plant Sci. 2020, 10, 1725. [Google Scholar] [CrossRef]
- Chung, Y.S.; Kim, S.-H.; Park, C.-W.; Na, C.-I.; Kim, Y. Treatment with silicon fertilizer induces changes in root morphological traits in soybean (Glycine max L.) during early growth. J. Crop Sci. Biotechnol. 2020, 23, 445–451. [Google Scholar]
- Tripathi, P.; Na, C.-I.; Kim, Y. Effect of silicon fertilizer treatment on nodule formation and yield in soybean (Glycine max L.). Eur. J. Agron. 2021, 122, 126172. [Google Scholar] [CrossRef]
- Tripathi, P.; Tayade, R.; Mun, B.-G.; Yun, B.-W.; Kim, Y. Silicon application differentially modulates root morphology and expression of PIN and YUCCA family genes in soybean (Glycine max L.). Front. Plant Sci. 2022, 13, 842832. [Google Scholar] [CrossRef]
- Barão, L. The use of Si-based fertilization to improve agricultural performance. J. Soil Sci. Plant Nutr. 2023, 23, 1096–1108. [Google Scholar] [CrossRef]
- Constantinescu-Aruxandei, D.; Lupu, C.; Oancea, F. Siliceous natural nanomaterials as biorationals—Plant protectants and plant health strengtheners. Agronomy 2020, 10, 1791. [Google Scholar] [CrossRef]
- Colella, C. Recent advances in natural zeolite applications based on external surface interaction with cations and molecules. Stud. Surf. Sci. Catal. 2007, 170, 2063–2073. [Google Scholar]
- Król, M. Natural vs. Synthetic zeolites. Crystals 2020, 10, 622. [Google Scholar] [CrossRef]
- Grilli, E.; Ganga, A.; Salvestrini, S. Modelling the kinetics of elements release from a zeolitic-rich tuff. Environments 2020, 7, 41. [Google Scholar] [CrossRef]
- Akhmetzhanova, D.; Sabitov, A.; Doszhanov, Y.; Atamanov, M.; Saurykova, K.; Zhumazhanov, A.; Atamanova, T.; Kerimkulova, A.; Velasco, L.F.; Zhumagalieva, A. Zeolites and Activated Carbons in Hydroponics: A Systematic Review of Mechanisms, Performance Metrics, Techno-Economic Analysis and Life-Cycle Assessment. Sustainability 2025, 17, 10977. [Google Scholar] [CrossRef]
- Mondal, M.; Biswas, B.; Garai, S.; Sarkar, S.; Banerjee, H.; Brahmachari, K.; Bandyopadhyay, P.K.; Maitra, S.; Brestic, M.; Skalicky, M. Zeolites enhance soil health, crop productivity and environmental safety. Agronomy 2021, 11, 448. [Google Scholar] [CrossRef]
- Xiubin, H.E.; Zhanbin, H. Zeolite application for enhancing water infiltration and retention in loess soil. Resour. Conserv. Recycl. 2001, 34, 45–52. [Google Scholar]
- Noori, M.; Zendehdel, M.; Ahmadi, A. Using natural zeolite for the improvement of soil salinity and crop yield. Toxicol. Environ. Chem. 2006, 88, 77–84. [Google Scholar] [CrossRef]
- Li, W.; Zhang, J.; Song, S.; Liang, Y.; Sun, B.; Wu, Y.; Mao, X.; Lin, Y. Combination of artificial zeolite and microbial fertilizer to improve mining soils in an arid area of Inner Mongolia, China. J. Arid Land 2023, 15, 1067–1083. [Google Scholar]
- Verma, K.K.; Song, X.-P.; Liang, Q.; Huang, H.-R.; Bhatt, R.; Xu, L.; Chen, G.-L.; Li, Y.-R. Unlocking the role of silicon against biotic stress in plants. Front. Plant Sci. 2024, 15, 1430804. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.F.; Yamaji, N. A cooperative system of silicon transport in plants. Trends Plant Sci. 2015, 20, 435–442. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Mushtaq, M.; Sudhakaran, S.; Thakral, V.; Raturi, G.; Bansal, R.; Kumar, V.; Vats, S.; Shivaraj, S.M.; Deshmukh, R. Silicon Uptake, Transport, and Accumulation in Plants; Wiley Online Library: Hoboken, NJ, USA, 2023; pp. 205–226. [Google Scholar]
- Song, A.; Li, P.; Fan, F.; Li, Z.; Liang, Y. The effect of silicon on photosynthesis and expression of its relevant genes in rice (Oryza sativa L.) under high-zinc stress. PLoS ONE 2014, 9, e113782. [Google Scholar] [CrossRef]
- Pilon, C.; Soratto, R.P.; Broetto, F.; Fernandes, A.M. Foliar or soil applications of silicon alleviate water-deficit stress of potato plants. Agron. J. 2014, 106, 2325–2334. [Google Scholar]
- Verma, K.K.; Song, X.-P.; Li, D.-M.; Singh, M.; Rajput, V.D.; Malviya, M.K.; Minkina, T.; Singh, R.K.; Singh, P.; Li, Y.-R. Interactive role of silicon and plant–rhizobacteria mitigating abiotic stresses: A new approach for sustainable agriculture and climate change. Plants 2020, 9, 1055. [Google Scholar] [CrossRef]
- Panda, S.; Das, A.; Das, A.B.; Panda, S.K. Silicon amendment escalates cellular Si deposition and antioxidant enzyme defense against Scirpophaga incertulas (Walker) Attack in Rice. Silicon 2024, 16, 2285–2301. [Google Scholar] [CrossRef]
- Jiang, H.; Song, Z.; Su, Q.-W.; Wei, Z.-H.; Li, W.-C.; Jiang, Z.-X.; Tian, P.; Wang, Z.-H.; Yang, X.; Yang, M.-Y. Transcriptomic and metabolomic reveals silicon enhances adaptation of rice under dry cultivation by improving flavonoid biosynthesis, osmoregulation, and photosynthesis. Front. Plant Sci. 2022, 13, 967537. [Google Scholar] [CrossRef]
- Yue, L.; Wang, J.; Cao, X.; Wang, C.; Ma, C.; Chen, F.; Cheng, B.; Feng, Y.; Wang, Z.; Xing, B. Silica nanomaterials promote rice tillering and yield by regulating rhizosphere processes, nitrogen uptake, and hormone pathways. ACS Sustain. Chem. Eng. 2023, 11, 16650–16660. [Google Scholar] [CrossRef]
- Jiang, H.; Li, W.; Jiang, Z.; Li, Y.; Shen, X.; Nuo, M.; Zhang, H.; Xue, B.; Zhao, G.; Tian, P. Silicon enhanced phosphorus uptake in rice under dry cultivation through root organic acid secretion and energy distribution in low phosphorus conditions. Front. Plant Sci. 2025, 16, 1544893. [Google Scholar] [CrossRef]
- Sun, Y.; Xie, J.; Hou, H.; Li, M.; Wang, Y.; Wang, X. Effects of zeolite on physiological characteristics and grain quality in rice under alternate wetting and drying irrigation. Water 2023, 15, 2406. [Google Scholar] [CrossRef]
- Li, Y.; Zheng, J.; Wu, Q.; Lin, W.; Gong, X.; Chen, Y.; Chen, T.; Siddique, K.H.M.; Chi, D. Zeolite alleviates potassium deficiency and improves lodging-related stem morphological characteristics and grain yield in rice. Crop Pasture Sci. 2021, 72, 407–415. [Google Scholar] [CrossRef]
- Lawson, T.; Blatt, M.R. Stomatal size, speed, and responsiveness impact on photosynthesis and water use efficiency. Plant Physiol. 2014, 164, 1556–1570. [Google Scholar] [CrossRef] [PubMed]
- Kozlov, A.V.; Kulikova, A.H.; Uromova, I.P. Mobility of silicon, fertility of sod-podzolic soil, bioaccumulation of silicon and yields of agricultural crops under the influence of zeolite. Sel’skokhozyaistvennaya Biol. 2021, 56, 183–198. [Google Scholar] [CrossRef]
- Osman, K.T. Sandy soils. In Management of Soil Problems; Springer: Berlin/Heidelberg, Germany, 2018; pp. 37–65. [Google Scholar]
- Kim, Y.-H.; Khan, A.L.; Kim, D.-H.; Lee, S.-Y.; Kim, K.-M.; Waqas, M.; Jung, H.-Y.; Shin, J.-H.; Kim, J.-G.; Lee, I.-J. Silicon mitigates heavy metal stress by regulating P-type heavy metal ATPases, Oryza sativa low silicon genes, and endogenous phytohormones. BMC Plant Biol. 2014, 14, 13. [Google Scholar] [CrossRef]
- Park, Y.-G.; Park, S.-M.; Na, C.-I.; Kim, Y. Identification of optimal concentration of silicon application and its roles in uptake of essential nutrients in soybean (Glycine max L.). J. Crop Sci. Biotechnol. 2019, 22, 1–10. [Google Scholar] [CrossRef]







| Traits | Source | DF | Type III SS | Mean Square | F Value | Pr > F |
|---|---|---|---|---|---|---|
| TRL | Tre | 3 | 690,146.406 | 230,048.8021 | 44.16 | <0.0001 |
| Rep | 2 | 39,626.1723 | 19,813.0861 | 3.8 | 0.0242 | |
| Error | 174 | 906,483.503 | 5209.6753 | |||
| RV | Tre | 3 | 6.45307648 | 2.15102549 | 33.37 | <0.0001 |
| Rep | 2 | 0.12150165 | 0.06075083 | 0.94 | 0.3916 | |
| Error | 174 | 11.2159784 | 0.06445965 | |||
| AD | Tre | 3 | 0.05959097 | 0.01986366 | 6.8 | 0.0002 |
| Rep | 2 | 0.00396271 | 0.00198135 | 0.68 | 0.5087 | |
| Error | 174 | 0.50807265 | 0.00291996 | |||
| Tips | Tre | 3 | 8,767,979.63 | 2,922,659.88 | 20 | <0.0001 |
| Rep | 2 | 2,520,019.31 | 1,260,009.65 | 8.62 | 0.0003 | |
| Error | 174 | 25,282,230.1 | 146,140.06 | |||
| Forks | Tre | 3 | 18,660,454.3 | 6,220,151.44 | 32.37 | <0.0001 |
| Rep | 2 | 796,286.88 | 398,143.44 | 2.07 | 0.129 | |
| Error | 174 | 33,432,739.8 | 192,142.18 | |||
| SA | Tre | 3 | 10,691.8502 | 3563.95007 | 59.85 | <0.0001 |
| Rep | 2 | 345.0447 | 172.52235 | 2.9 | 0.0578 | |
| Error | 174 | 10,361.3085 | 59.54775 |
| Traits | Source | DF | Type III SS | Mean Square | F Value | Pr > F |
|---|---|---|---|---|---|---|
| Length | Treatment | 3 | 10,397,967.3 | 3,465,989.1 | 13.92 | <0.0001 |
| Replication | 3 | 744,366.87 | 248,122.29 | 1 | 0.3961 | |
| AD | Treatment | 3 | 5.24376431 | 1.74792144 | 12.45 | <0.0001 |
| Replication | 3 | 0.11579006 | 0.03859669 | 0.27 | 0.8435 | |
| RV | Treatment | 3 | 666.742904 | 222.247635 | 22.29 | <0.0001 |
| Replication | 3 | 32.5281679 | 10.8427226 | 1.09 | 0.3562 | |
| Tips | Treatment | 3 | 28,386,725.9 | 9,462,241.98 | 12.45 | <0.0001 |
| Replication | 3 | 1,612,419.36 | 537,473.12 | 0.71 | 0.5491 | |
| SA | Treatment | 3 | 283,129.051 | 94,376.3502 | 14.66 | <0.0001 |
| Replication | 3 | 21,945.1376 | 7315.0459 | 1.14 | 0.3363 | |
| Forks | Treatment | 3 | 696,596,338 | 232,198,779 | 15.58 | <0.0001 |
| Replication | 3 | 35,920,130.2 | 11,973,376.7 | 0.8 | 0.4937 |
| Traits | Source | DF | Type III SS | Mean Square | F Value | Pr > F |
|---|---|---|---|---|---|---|
| Root dry weight | Treatment | 3 | 0.93364094 | 0.31121365 | 9.1 | <0.0001 |
| Replication | 3 | 0.02191286 | 0.00730429 | 0.21 | 0.8869 | |
| Shoot dry weight | Treatment | 3 | 0.57344606 | 0.19114869 | 3.91 | 0.01 |
| Replication | 3 | 0.06291333 | 0.02097111 | 0.43 | 0.7323 | |
| Tiller number | Treatment | 3 | 9.01242 | 3.00414 | 4.23 | 0.0066 |
| Replication | 3 | 0.93101 | 0.31034 | 0.44 | 0.7268 |
| Traits | Source | DF | Type III SS | Mean Square | F Value | Pr > F |
|---|---|---|---|---|---|---|
| ETR | Treatment | 3 | 375,813.828 | 125,271.276 | 11.85 | <0.0001 |
| Replication | 3 | 76,235.56 | 25,411.853 | 2.4 | 0.072 | |
| Trt days | 7 | 613,617.15 | 87,659.593 | 14.75 | <0.0001 | |
| Trt days × Trt | 21 | 877,765.004 | 41,798.334 | 7.03 | <0.0001 | |
| Error | 100 | 1,057,290.785 | 10,572.908 | |||
| GTW | Treatment | 3 | 1.13995168 | 0.37998389 | 26.37 | <0.0001 |
| Replication | 3 | 0.08283356 | 0.02761119 | 1.92 | 0.1318 | |
| Trt days | 7 | 613,617.15 | 87,659.593 | 14.75 | <0.0001 | |
| Trt days × Trt | 21 | 877,765.004 | 41,798.334 | 7.03 | <0.0001 | |
| Error | 100 | 1.44075466 | 0.01440755 | |||
| E-apparent | Treatment | 3 | 337.249913 | 112.416638 | 72.71 | <0.0001 |
| Replication | 3 | 31.0774833 | 10.3591611 | 6.7 | 0.0004 | |
| Trt days | 7 | 960.584067 | 137.226295 | 126.19 | <0.0001 | |
| Trt days × Trt | 21 | 856.4905664 | 40.7852651 | 37.5 | <0.0001 | |
| Error | 100 | 154.6144675 | 1.5461447 | |||
| GSW | Treatment | 3 | 2.2432758 | 0.7477586 | 24.28 | <0.0001 |
| Replication | 3 | 0.19021098 | 0.06340366 | 2.06 | 0.1105 | |
| Trt days | 7 | 2.0805672 | 0.29722389 | 40.84 | <0.0001 | |
| Trt days × Trt | 21 | 0.81260932 | 0.03869568 | 5.32 | <0.0001 | |
| Error | 100 | 3.07918007 | 0.0307918 | |||
| NDVI | Treatment | 3 | 0.0236345 | 0.0078782 | 1.84 | 0.142 |
| Replication | 3 | 0.02271317 | 0.00757106 | 1.77 | 0.1554 | |
| Trt days | 7 | 0.33190381 | 0.04741483 | 21.39 | <0.0001 | |
| Trt days × Trt | 21 | 0.14013621 | 0.00667315 | 3.01 | <0.0001 | |
| Error | 152 | 0.75597914 | 0.00497355 | |||
| PRI | Treatment | 3 | 0.00030608 | 0.00010203 | 0.71 | 0.5487 |
| Replication | 3 | 0.00086383 | 0.00028794 | 2 | 0.1167 | |
| Trt days | 7 | 0.00866467 | 0.00123781 | 17.01 | <0.0001 | |
| Trt days × Trt | 21 | 0.00962351 | 0.00045826 | 6.3 | <0.0001 | |
| Error | 152 | 0.02190846 | 0.00014413 |
| SN | Treatments | Si Concentration | Description |
|---|---|---|---|
| 1 | Control | Not applicable | Normal water in EP I and Hyponex solution in EP II |
| 2 | T1 | 4 ppm of Si from zeolite | 1 mL of Eco Full Care in 1 L of water |
| 3 | T2 | 2 ppm of Si from zeolite | 0.5 mL of Eco Full Care in 1 L of water |
| 4 | T3 | 4 ppm of Si from SMS | 1 mL of Si stock solution in 1 L of water |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Poudel, K.; Ghimire, A.; Kwon, M.; Mbembo, M.B.w.; Kim, Y. Effect of Silicon on Early Root and Shoot Phenotypes of Rice in Hydroponic and Soil Systems. Plants 2026, 15, 176. https://doi.org/10.3390/plants15020176
Poudel K, Ghimire A, Kwon M, Mbembo MBw, Kim Y. Effect of Silicon on Early Root and Shoot Phenotypes of Rice in Hydroponic and Soil Systems. Plants. 2026; 15(2):176. https://doi.org/10.3390/plants15020176
Chicago/Turabian StylePoudel, Kabita, Amit Ghimire, Minju Kwon, Mbembo Blaise wa Mbembo, and Yoonha Kim. 2026. "Effect of Silicon on Early Root and Shoot Phenotypes of Rice in Hydroponic and Soil Systems" Plants 15, no. 2: 176. https://doi.org/10.3390/plants15020176
APA StylePoudel, K., Ghimire, A., Kwon, M., Mbembo, M. B. w., & Kim, Y. (2026). Effect of Silicon on Early Root and Shoot Phenotypes of Rice in Hydroponic and Soil Systems. Plants, 15(2), 176. https://doi.org/10.3390/plants15020176

