Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (186)

Search Parameters:
Keywords = urban stormwater planning

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 3193 KiB  
Perspective
The First Thirty Years of Green Stormwater Infrastructure in Portland, Oregon
by Michaela Koucka, Cara Poor, Jordyn Wolfand, Heejun Chang, Vivek Shandas, Adrienne Aiona, Henry Stevens, Tim Kurtz, Svetlana Hedin, Steve Fancher, Joshua Lighthipe and Adam Zucker
Sustainability 2025, 17(15), 7159; https://doi.org/10.3390/su17157159 - 7 Aug 2025
Abstract
Over the past 30 years, the City of Portland, Oregon, USA, has emerged as a national leader in green stormwater infrastructure (GSI). The initial impetus for implementing sustainable stormwater infrastructure in Portland stemmed from concerns about flooding and water quality in the city’s [...] Read more.
Over the past 30 years, the City of Portland, Oregon, USA, has emerged as a national leader in green stormwater infrastructure (GSI). The initial impetus for implementing sustainable stormwater infrastructure in Portland stemmed from concerns about flooding and water quality in the city’s two major rivers, the Columbia and the Willamette. Heavy rainfall often led to combined sewer overflows, significantly polluting these waterways. A partial solution was the construction of “The Big Pipe” project, a large-scale stormwater containment system designed to filter and regulate overflow. However, Portland has taken a more comprehensive and long-term approach by integrating sustainable stormwater management into urban planning. Over the past three decades, the city has successfully implemented GSI to mitigate these challenges. Low-impact development strategies, such as bioswales, green streets, and permeable surfaces, have been widely adopted in streetscapes, pathways, and parking areas, enhancing both environmental resilience and urban livability. This perspective highlights the history of the implementation of Portland’s GSI programs, current design and performance standards, and challenges and lessons learned throughout Portland’s recent history. Innovative approaches to managing runoff have not only improved stormwater control but also enhanced green spaces and contributed to the city’s overall climate resilience while addressing economic well-being and social equity. Portland’s success is a result of strong policy support, effective integration of green and gray infrastructure, and active community involvement. As climate change intensifies, cities need holistic, adaptive, and community-centered approaches to urban stormwater management. Portland’s experience offers valuable insights for cities seeking to expand their GSI amid growing concerns about climate resilience, equity, and aging infrastructure. Full article
Show Figures

Figure 1

19 pages, 1952 KiB  
Article
Strategic Planning for Nature-Based Solutions in Heritage Cities: Enhancing Urban Water Sustainability
by Yongqi Liu, Jiayu Zhao, Rana Muhammad Adnan Ikram, Soon Keat Tan and Mo Wang
Water 2025, 17(14), 2110; https://doi.org/10.3390/w17142110 - 15 Jul 2025
Viewed by 385
Abstract
Nature-Based Solutions (NBSs) offer promising pathways to enhance ecological resilience and address urban water challenges, particularly in heritage cities where conventional gray infrastructure often fails to balance environmental needs with cultural preservation. This study proposes a strategic framework for the integration of NBSs [...] Read more.
Nature-Based Solutions (NBSs) offer promising pathways to enhance ecological resilience and address urban water challenges, particularly in heritage cities where conventional gray infrastructure often fails to balance environmental needs with cultural preservation. This study proposes a strategic framework for the integration of NBSs into historic urban landscapes by employing Internal–External (IE) matrix modeling and an impact–uncertainty assessment, grounded in a structured evaluation of key internal strengths and weaknesses, as well as external opportunities and threats. The Internal Factor Evaluation (IFE) score of 2.900 indicates a favorable internal environment, characterized by the multifunctionality of NBS and their ability to reconnect urban populations with nature. Meanwhile, the External Factor Evaluation (EFE) score of 2.797 highlights moderate support from policy and public awareness but identifies barriers such as funding shortages and interdisciplinary coordination. Based on these findings, two strategies are developed: an SO (Strength–Opportunity) strategy, promoting community-centered and policy-driven NBS design, and a WO (Weakness–Opportunity) strategy, targeting resource optimization through legal support and cross-sectoral collaboration. This study breaks new ground by transforming theoretical NBS concepts into actionable, culturally sensitive planning tools that enable decision-makers to navigate the unique challenges of implementing adaptive stormwater and environmental management in historically constrained urban environments. Full article
Show Figures

Figure 1

25 pages, 1049 KiB  
Review
The Occurrence and Removal of Microplastics from Stormwater Using Green Infrastructure
by Anna Kwarciak-Kozłowska and Magdalena Madeła
Water 2025, 17(14), 2089; https://doi.org/10.3390/w17142089 - 13 Jul 2025
Viewed by 719
Abstract
Microplastics (MPs) are becoming an increasingly common pollutant in the aquatic environment, including stormwater. This is a serious problem, as stormwater is becoming an essential transport route for MPs from urban areas to surface waters. Rainwater flowing from roofs, roads, and other impermeable [...] Read more.
Microplastics (MPs) are becoming an increasingly common pollutant in the aquatic environment, including stormwater. This is a serious problem, as stormwater is becoming an essential transport route for MPs from urban areas to surface waters. Rainwater flowing from roofs, roads, and other impermeable surfaces contains a variety of plastic particles originating from tire abrasion or waste disposal. This article presents an overview of current research on the occurrence of MPs in stormwater. The potential of selected green infrastructure solutions—particularly bioretention systems, constructed wetlands, and permeable pavements—for their reduction is assessed. Individual solutions present how the change in filter material, selection of vegetation, or the method of conducting the process (e.g., direction of stormwater flow in constructed wetlands) affects their effectiveness. The potential of green infrastructure is also compared with the traditional gray solution of sewage management in cities. This article emphasizes the importance of integrating such solutions in spatial planning as an effective tool to combat climate change and limit the spread of microplastics in the environment. Full article
(This article belongs to the Special Issue Novel Methods in Wastewater and Stormwater Treatment)
Show Figures

Figure 1

26 pages, 33866 KiB  
Article
Three-Dimensional Multitemporal Game Engine Visualizations for Watershed Analysis, Lighting Simulation, and Change Detection in Built Environments
by Heikki Kauhanen, Toni Rantanen, Petri Rönnholm, Osama Bin Shafaat, Kaisa Jaalama, Arttu Julin and Matti Vaaja
ISPRS Int. J. Geo-Inf. 2025, 14(7), 265; https://doi.org/10.3390/ijgi14070265 - 5 Jul 2025
Viewed by 530
Abstract
This study explores the reuse of high-resolution 3D spatial datasets for multiple urban analyses within a game engine environment, aligning with circular economy principles in sustainable urban planning. The work is situated in two residential test areas in Finland, where watershed analysis, lighting [...] Read more.
This study explores the reuse of high-resolution 3D spatial datasets for multiple urban analyses within a game engine environment, aligning with circular economy principles in sustainable urban planning. The work is situated in two residential test areas in Finland, where watershed analysis, lighting simulation, and change detection were conducted using data acquired through drone photogrammetry and terrestrial laser scanning. These datasets were processed and visualized using Unreal Engine 5.5, enabling the interactive, multitemporal exploration of urban phenomena. The results demonstrate how a single photogrammetric dataset—originally captured for visual or structural purposes—can serve a broad range of analytical functions, such as simulating seasonal lighting conditions, modeling stormwater runoff, and visualizing spatial changes over time. The study highlights the importance of capturing data at a resolution that satisfies the most demanding intended use, while allowing simpler analyses to benefit simultaneously. Reflections on game engine capabilities, data quality thresholds, and user interactivity underline the feasibility of integrating such tools into citizen participation, housing company decision making, and urban governance. The findings advocate for a circular data approach in urban planning, reducing redundant fieldwork and supporting sustainable data practices through multi-purpose digital twins and spatial simulations. Full article
Show Figures

Figure 1

23 pages, 5920 KiB  
Article
A Coupled Coordination and Network-Based Framework for Optimizing Green Stormwater Infrastructure Deployment: A Case Study in the Guangdong–Hong Kong–Macao Greater Bay Area
by Jiayu Zhao, Yichun Chen, Rana Muhammad Adnan Ikram, Haoyu Xu, Soon Keat Tan and Mo Wang
Appl. Sci. 2025, 15(13), 7271; https://doi.org/10.3390/app15137271 - 27 Jun 2025
Viewed by 259
Abstract
Green Stormwater Infrastructure (GSI), as a nature-based solution, has gained widespread recognition for its role in mitigating urban flood risks and enhancing resilience. Equitable spatial distribution of GSI remains a pressing challenge, critical to harmonizing urban hydrological systems and maintaining ecological balance. However, [...] Read more.
Green Stormwater Infrastructure (GSI), as a nature-based solution, has gained widespread recognition for its role in mitigating urban flood risks and enhancing resilience. Equitable spatial distribution of GSI remains a pressing challenge, critical to harmonizing urban hydrological systems and maintaining ecological balance. However, the complexity of matching GSI supply with urban demand has limited comprehensive spatial assessments. This study introduces a quantitative framework to identify priority zones for GSI deployment and to evaluate supply–demand dynamics in the Guangdong–Hong Kong–Macao Greater Bay Area (GBA) using a coupled coordination simulation model. Clustering and proximity matrix analysis were applied to map spatial relationships across districts and to reveal underlying mismatches. Findings demonstrate significant spatial heterogeneity: over 90% of districts show imbalanced supply–demand coupling. Four spatial clusters were identified based on levels of GSI disparity. Economically advanced urban areas such as Guangzhou and Shenzhen showed high demand, while peripheral regions like Zhaoqing and Huizhou were characterized by oversupply and misaligned allocation. These results provide a systematic understanding of GSI distribution patterns, highlight priority intervention areas, and offer practical guidance for large-scale, equitable GSI planning. Full article
Show Figures

Figure 1

17 pages, 753 KiB  
Article
Blue–Green Infrastructure Effectiveness for Urban Stormwater Management: A Multi-Scale Residential Case Study
by Joanna Boguniewicz-Zabłocka and Ewelina Łukasiewicz
Land 2025, 14(7), 1340; https://doi.org/10.3390/land14071340 - 24 Jun 2025
Viewed by 618
Abstract
Climate change, urbanization, and extreme weather events such as heavy rainfall and drought present major challenges for urban water management. This paper proposes a framework to evaluate the effectiveness of blue–green infrastructure (BGI) as a sustainable stormwater management solution across different residential development [...] Read more.
Climate change, urbanization, and extreme weather events such as heavy rainfall and drought present major challenges for urban water management. This paper proposes a framework to evaluate the effectiveness of blue–green infrastructure (BGI) as a sustainable stormwater management solution across different residential development scales. Two contrasting case studies are examined: a small terraced housing catchment and a large housing estate. A multi-criteria analysis (MCA) supports a structured comparison of BGI effectiveness, while a complementary SWOT analysis informs strategic implementation approaches. The results demonstrate the practical applicability of the framework and underscore that successful stormwater management requires both innovative technologies and reform in urban planning governance. This study offers valuable insights into building climate-resilient cities. Full article
(This article belongs to the Special Issue Urban Ecosystem Services: 6th Edition)
Show Figures

Figure 1

20 pages, 2051 KiB  
Article
Assessing the Validity of a Green Infrastructure Conceptual Framework for Urban Transport Planning: Insights for Building Resilient Cities
by Frances Ifeoma Ukonze, Antoni Moore, Greg Leonard and Ben Daniel
Sustainability 2025, 17(13), 5697; https://doi.org/10.3390/su17135697 - 20 Jun 2025
Cited by 1 | Viewed by 401
Abstract
Green Infrastructure (GI) has increasingly been recognised as a crucial strategy for enhancing urban resilience, particularly in urban transportation systems facing the challenges of climate change. Although several conceptual frameworks for GI planning have been proposed, empirical studies examining their application in urban [...] Read more.
Green Infrastructure (GI) has increasingly been recognised as a crucial strategy for enhancing urban resilience, particularly in urban transportation systems facing the challenges of climate change. Although several conceptual frameworks for GI planning have been proposed, empirical studies examining their application in urban transport planning contexts remain limited. This study aims to validate a recently developed GI conceptual framework by evaluating its applicability in urban transportation systems. A structured questionnaire was administered to 94 participants in Aotearoa New Zealand comprising urban planners, engineers, architects, policymakers, and academics involved in transportation and sustainability planning with special focus on GI. The framework was assessed across key dimensions including the perceived benefits of GI in transportation, stakeholder and collaborative practices barriers to implementation, and indicators of perceived effectiveness. The results confirm that the stakeholders’ perceptions of GI are significantly aligned with the dimensions of the conceptual framework, reinforcing its validity in assessing GI effectiveness. Key findings highlight a disconnect between stakeholders’ general familiarity with GI and their understanding of its multifunctional benefits beyond stormwater management. Also, the prevalence of multidisciplinary collaboration suggests that additional interdisciplinary and transdisciplinary approaches are required for more holistic GI planning. This study recommends that the conceptual framework be considered for city adaptation to GI integration, and to do so effectively, these knowledge and cooperation gaps must be addressed Full article
Show Figures

Figure 1

21 pages, 838 KiB  
Article
The Green Blueprint: Designing Future Cities with Urban Green Infrastructure and Ecosystem Services in the UK
by Anosh Nadeem Butt and Carolina Rigoni
Land 2025, 14(6), 1306; https://doi.org/10.3390/land14061306 - 19 Jun 2025
Viewed by 884
Abstract
Urbanisation in the context of climate change and rapid population growth presents an urgent need for innovative and sustainable urban planning. This study introduces the Green Blueprint, an original, spatially grounded, and evidence-informed conceptual framework designed to systematically embed ecosystem services into the [...] Read more.
Urbanisation in the context of climate change and rapid population growth presents an urgent need for innovative and sustainable urban planning. This study introduces the Green Blueprint, an original, spatially grounded, and evidence-informed conceptual framework designed to systematically embed ecosystem services into the planning, governance, and design of resilient and equitable cities in the United Kingdom. Unlike existing research that typically treats Urban Green Infrastructure (UGI) as a discrete intervention or evaluates its benefits in isolation, the Green Blueprint integrates cross-sectoral governance, multifunctional land use, and participatory planning into a coherent, scalable model for urban resilience. Developed through a qualitative, interpretivist methodology and critical documentary analysis of secondary data including policy documents, academic literature, and case studies from London, Manchester, and Sheffield, this framework highlights how embedding ecosystem services such as carbon sequestration, stormwater management, biodiversity enhancement, and public health into the urban fabric can support long-term climate adaptation and social equity. Rather than serving as a review, this paper advances a novel theoretical contribution through empirical synthesis and thematic cross-case comparison. It further identifies enabling governance structures and implementation pathways to support policy innovation and practical application. This study contributes a transferable planning template for cities aiming to achieve systemic UGI integration, offering clear value for scholars, practitioners, and policymakers engaged in sustainable urban development in the Anthropocene. Full article
Show Figures

Figure 1

20 pages, 3135 KiB  
Article
Dynamics of Runoff Quantity in an Urbanizing Catchment: Implications for Runoff Management Using Nature-Based Retention Wetland
by Lihoun Teang, Kim N. Irvine, Lloyd H. C. Chua and Muhammad Usman
Hydrology 2025, 12(6), 141; https://doi.org/10.3390/hydrology12060141 - 6 Jun 2025
Viewed by 1045
Abstract
Rapid suburbanization can alter catchment flow regime and increase stormwater runoff, posing threats to sensitive ecosystems. Applications of Nature-based Solutions (NbS) have increasingly been adopted as part of integrated water management efforts to tackle the hydrological impact of urbanization with co-benefits for improved [...] Read more.
Rapid suburbanization can alter catchment flow regime and increase stormwater runoff, posing threats to sensitive ecosystems. Applications of Nature-based Solutions (NbS) have increasingly been adopted as part of integrated water management efforts to tackle the hydrological impact of urbanization with co-benefits for improved urban resilience, sustainability, and community well-being. However, the implementation of NbS can be hindered by gaps in performance assessment. This paper introduces a physically based dynamic modeling approach to assess the performance of a nature-based storage facility designed to capture excess runoff from an urbanizing catchment (Armstrong Creek catchment) in Geelong, Australia. The study adopts a numerical modelling approach, supported by extensive field monitoring of water levels over a 2.5-year period. The model provides a decision support tool for Geelong local government in managing stormwater runoff to protect Lake Connewarre, a Ramsar-listed wetland under the Port Phillip Bay (Western Shoreline) and Bellarine Peninsula. Runoff is currently managed via a set of operating rules governing gate operations that prevents flows into the ecological sensitive downstream waterbody from December to April (drier periods in summer and most of autumn). Comparison with observed water level data at three monitoring stations for a continuous simulation period of May 2022 to October 2024 demonstrates satisfactory to excellent model performance (NSE: 0.55–0.79, R2: 0.80–0.89, ISE rating: excellent). Between 1670 × 103 m3 and 2770 × 103 m3 of runoff was intercepted by the nature-based storage facility, representing a 56–70% reduction in stormwater discharge into Lake Connewarre. Our model development underscores the importance of understanding and incorporating user interventions (gate operations and emergency pumping) from the standard operation plan to better manage catchment runoff. As revealed by the seasonal flow analysis for consecutive years, adaptive runoff management practices, capable of responding to rainfall variability, should be incorporated. Full article
Show Figures

Figure 1

38 pages, 13026 KiB  
Article
Green Infrastructure for Reintegrating Fragmented Urban Fabrics: Multiscale Methodology Using Space Syntax and Hydrologic Modeling
by Raul Alfredo Granados Aragonez, Anna Martinez Duran and Xavier Martin
Urban Sci. 2025, 9(6), 208; https://doi.org/10.3390/urbansci9060208 - 4 Jun 2025
Cited by 1 | Viewed by 1511
Abstract
Green infrastructure (GI) plays a critical role in addressing urban fragmentation and flood vulnerability, especially in rapidly expanding cities where its optimal placement is essential to maximize social, ecological, and economic benefits. This study presents a multiscale methodology integrating spatial configuration and hydrological [...] Read more.
Green infrastructure (GI) plays a critical role in addressing urban fragmentation and flood vulnerability, especially in rapidly expanding cities where its optimal placement is essential to maximize social, ecological, and economic benefits. This study presents a multiscale methodology integrating spatial configuration and hydrological modeling to guide GI implementation in Ciudad Juárez, Mexico. The approach applies space syntax theory, fuzzy logic, and geospatial analysis across three spatial levels. At the city scale, the method evaluates street network integration and service accessibility to identify urban centers with potential for regeneration through GI. At the local scale, a 214-hectare area is analyzed using fuzzy multi-criteria decision analysis and Multiscale Geographically Weighted Regression (MGWR) to select the optimal locations for different nature-based solutions. At the microscale, spatiotemporal hydrological simulations of a 25-year return period rainfall event quantify the runoff and infiltration dynamics under different GI configurations, achieving infrastructure layouts that infiltrated over 1000 m3 of stormwater. This framework addresses the research gap on how connectivity and morphology can be combined to prioritize interventions based on flood risk data. The results offer a transferable strategy for integrating Sustainable Urban Drainage Systems (SUDSs) into complex data-scarce urban environments, supporting long-term urban resilience and multifunctional land-use planning. Full article
(This article belongs to the Special Issue Advances in Urban Spatial Analysis, Modeling and Simulation)
Show Figures

Figure 1

22 pages, 2748 KiB  
Article
Effects of Green Infrastructure Practices on Runoff and Water Quality in the Arroyo Colorado Watershed, Texas
by Pamela Mugisha and Tushar Sinha
Water 2025, 17(11), 1565; https://doi.org/10.3390/w17111565 - 22 May 2025
Viewed by 675
Abstract
Continuous use of agricultural chemicals and fertilizers, sporadic sewer overflow events, and an increase in urbanization have led to significant nutrient/pollutant loadings into the semi-arid Arroyo Colorado River basin, which is located in South Texas, U.S. Priority nutrients that require reduction include phosphorus [...] Read more.
Continuous use of agricultural chemicals and fertilizers, sporadic sewer overflow events, and an increase in urbanization have led to significant nutrient/pollutant loadings into the semi-arid Arroyo Colorado River basin, which is located in South Texas, U.S. Priority nutrients that require reduction include phosphorus and nitrogen and to mitigate issues of low dissolved oxygen, in some of its river segments. Consequently, the river’s potential to support aquatic life has been significantly reduced, thus highlighting the need for restoration. To achieve this restoration, a watershed protection plan was developed, comprising several preventive mitigation measures, including installing green infrastructure (GI) practices. However, for effective reduction of excessive nutrient loadings, there is a need to study the effects of different combinations of GI practices under current and future land use scenarios to guide decisions in implementing the cost-effective infrastructure while considering factors such as the existing drainage system, topography, land use, and streamflow. Therefore, this study coupled the Soil and Water Assessment Tool (SWAT) model with the System for Urban Stormwater Treatment and Analysis Integration (SUSTAIN) model to determine the effects of different combinations of GI practices on the reduction of nitrogen and phosphorus under changing land use conditions in three selected Arroyo Colorado subwatersheds. Two land use maps from the U.S. Geological Survey (USGS) Forecasting Scenarios of land use (FORE-SCE) model for 2050, namely, A1B and B1, were implemented in the coupled SWAT-SUSTAIN model in this study, where the urban area is projected to increase by 6% and 4%, respectively, with respect to the 2018 land use scenario. As expected, runoff, phosphorus, and nitrogen slightly increased with imperviousness. The modeling results showed that implementing either vegetated swales or wet ponds reduces flow and nutrients to meet the Total Maximum Daily Loads (TMDLs) targets, which cost about USD 1.5 million under current land use (2018). Under the 2050 future projected land use changes (A1B scenario), the cost-effective GI practice was implemented in vegetated swales at USD 1.5 million. In contrast, bioretention cells occupied the least land area to achieve the TMDL targets at USD 2 million. Under the B1 scenario of 2050 projected land use, porous pavements were most cost effective at USD 1.5 million to meet the TMDL requirements. This research emphasizes the need for collaboration between stakeholders at the watershed and farm levels to achieve TMDL targets. This study informs decision-makers, city planners, watershed managers, and other stakeholders involved in restoration efforts in the Arroyo Colorado basin. Full article
(This article belongs to the Special Issue Urban Stormwater Control, Utilization, and Treatment)
Show Figures

Figure 1

20 pages, 5116 KiB  
Review
Assessment of the Hydrological Performance of Grass Swales for Urban Stormwater Management: A Bibliometric Review from 2000 to 2023
by Xuefei Wang, Run Zhang, Qi Hu, Chuanhao Sun, Rana Muhammad Adnan Ikram, Mo Wang and Guo Cheng
Water 2025, 17(10), 1425; https://doi.org/10.3390/w17101425 - 9 May 2025
Viewed by 740
Abstract
Grass swales have emerged as a cost-effective and sustainable stormwater management solution, addressing the increasing challenges of urbanization, flooding, and water pollution. This study conducted a bibliometric analysis of 224 publications to assess research trends, key contributors, and knowledge gaps in grass swale [...] Read more.
Grass swales have emerged as a cost-effective and sustainable stormwater management solution, addressing the increasing challenges of urbanization, flooding, and water pollution. This study conducted a bibliometric analysis of 224 publications to assess research trends, key contributors, and knowledge gaps in grass swale applications. Findings highlighted the growing emphasis on optimizing hydrological performance, particularly in response to intensifying climate change and urban flood risks. Experimental and simulation-based studies have demonstrated that grass swale efficiency is influenced by multiple design factors, including vegetation type, substrate composition, hydraulic retention time, and slope gradient. Notably, pollutant removal efficiency varies significantly, with total suspended solids (TSS) reduced by 34.09–89.90%, chemical oxygen demand (COD) by 7.75–56.71%, and total nitrogen (TN) by 32.37–56.71%. Additionally, studies utilizing the Storm Water Management Model (SWMM) and TRAVA models have demonstrated that integrating grass swales into urban drainage systems can result in a 17% reduction in total runoff volume and peak flow attenuation. Despite these advancements, key research gaps remain, including cost-effective design strategies, long-term maintenance protocols, and integration with other green infrastructure systems. Future research should focus on developing innovative, low-cost swale designs, refining optimal vegetation selection, and assessing seasonal variations in performance. Addressing these challenges will enhance the scientific foundation for grass swale implementation, ensuring their sustainable integration into climate-resilient urban planning. Full article
Show Figures

Figure 1

13 pages, 7302 KiB  
Article
Sustainable Stormwater Management: Runoff Impact of Urban Land Layout with Multi-Level Impervious Surface Coverage
by Zheng Yin, Gong Liu, Zhi Zheng and Xinru Li
Sustainability 2025, 17(8), 3511; https://doi.org/10.3390/su17083511 - 14 Apr 2025
Viewed by 559
Abstract
The expansion of urban impervious surfaces exacerbates flooding risks, influenced by both impervious surface coverage (ISC) and its spatial distribution. To investigate the impact of urban land use layouts on stormwater runoff, this study examined the current land use conditions in the Xinling [...] Read more.
The expansion of urban impervious surfaces exacerbates flooding risks, influenced by both impervious surface coverage (ISC) and its spatial distribution. To investigate the impact of urban land use layouts on stormwater runoff, this study examined the current land use conditions in the Xinling Bay watershed of Xiamen, China, and generalized land use into three ISC classes: impervious (I, ISC = 100%), semi-pervious (S, ISC = 50%), and pervious (P, ISC = 0%). Six spatial layouts (ISP, IPS, SIP, PIS, SPI, and PSI) were modeled using SWMM under varying rainfall intensities and land unit scales. The influence of ISC layouts on peak runoff, peak time, and total runoff was simulated. The results indicate: (1) The IPS spatial layout yields the most effective stormwater mitigation; (2) Prioritizing impervious land upstream while avoiding pervious units upstream minimizes runoff; (3) Layout effects weaken with higher rainfall intensity but strengthen with larger scales. These findings provide actionable strategies for sustainable urban planning to enhance flood resilience through spatial distribution optimization. Full article
Show Figures

Figure 1

43 pages, 26833 KiB  
Article
Estimation of Infiltration Parameters for Groundwater Augmentation in Cape Town, South Africa
by Kgomoangwato Paul Mavundla, John Okedi, Denis Kalumba and Neil Philip Armitage
Hydrology 2025, 12(4), 87; https://doi.org/10.3390/hydrology12040087 - 13 Apr 2025
Viewed by 882
Abstract
In early 2018, Cape Town, South Africa, experienced severe water shortages during the worst drought in nearly a century (2015–2017), underscoring the need to diversify water resources, including groundwater. This study evaluated infiltration rates and hydraulic properties of three representative stormwater ponds in [...] Read more.
In early 2018, Cape Town, South Africa, experienced severe water shortages during the worst drought in nearly a century (2015–2017), underscoring the need to diversify water resources, including groundwater. This study evaluated infiltration rates and hydraulic properties of three representative stormwater ponds in the Zeekoe Catchment, Cape Town, to assess their feasibility as recharge basins for transferring detained stormwater runoff into the underlying aquifer. Field infiltration data were analysed to estimate hydraulic properties, while laboratory permeability tests and material classification on 36 soil samples provided inputs for numerical modelling using HYDRUS 2-D software. Simulations estimated recharge rates and indicated wetting front movement from pond surfaces to the water table (~5.5 m depth) ranged between 15 and 140 h. The results revealed field hydraulic conductivity values of 0.3 to 19.9 cm/h, with laboratory estimates up to 103% higher due to controlled conditions. Simulated infiltration rates were 67–182% higher than field measurements, attributed to idealised assumptions. Despite these variations, ponds in the central catchment exhibited the highest infiltration rates, indicating suitability for artificial recharge. Explicit recognition of pond-specific infiltration variability significantly contributes to informed urban water security planning, enabling targeted interventions to optimise groundwater recharge initiatives. Full article
Show Figures

Figure 1

19 pages, 4387 KiB  
Article
Integrating Grey–Green Infrastructure in Urban Stormwater Management: A Multi–Objective Optimization Framework for Enhanced Resilience and Cost Efficiency
by Lie Wang, Jiayu Zhao, Ziheng Xiong, Ji’an Zhuang and Mo Wang
Appl. Sci. 2025, 15(7), 3852; https://doi.org/10.3390/app15073852 - 1 Apr 2025
Viewed by 1024
Abstract
Urban stormwater management systems are increasingly strained by rapid urbanization and climate change, yet existing planning approaches often lack holistic optimization frameworks that account for both green and grey infrastructure (GREI) under uncertain future conditions. This study introduces a multi–objective optimization framework for [...] Read more.
Urban stormwater management systems are increasingly strained by rapid urbanization and climate change, yet existing planning approaches often lack holistic optimization frameworks that account for both green and grey infrastructure (GREI) under uncertain future conditions. This study introduces a multi–objective optimization framework for Grey–Green Infrastructure (GGI), which integrates green infrastructure (GI) with GREI to enhance urban flood resilience, cost efficiency, and adaptability. The framework addresses life cycle cost (LCC), technological resilience (Tech-R), and operational resilience (Oper-R), offering a comprehensive approach to navigating the complexities of urban stormwater management. Key findings reveal that: (1) GGI systems optimized for resilience achieve a 33% improvement in Oper-R, with only a marginal increase in LCC of less than 9%, highlighting their robustness under GREI failure scenarios; (2) the integration of bioretention cells (BCs) and porous pavements (PPs) into GGI increases Tech-R by 7.1%, enhancing soil water retention and permeability, particularly in densely urbanized contexts; and (3) decentralized GGI systems exhibit superior adaptability to extreme weather events, with Design D reducing LCC to USD 53.9 M while maintaining no overflow under a 5–year rainfall event. The framework was validated in Zhujiang New Town, Guangzhou, where optimized GGI designs reduced average pipe diameters and manhole depths by 0.2–0.3 m compared to GREI–only systems, demonstrating both cost and resilience advantages. These findings provide decision–makers with a robust tool for evaluating trade–offs in stormwater infrastructure planning, advancing sustainable urban water management. Full article
Show Figures

Figure 1

Back to TopTop