Three-Dimensional Multitemporal Game Engine Visualizations for Watershed Analysis, Lighting Simulation, and Change Detection in Built Environments
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.2.1. Drone Photogrammetry
2.2.2. Terrestrial Laser Scanning
2.3. Creation of Demo Environments
2.3.1. Watershed
2.3.2. Lighting
2.3.3. Change Detection
2.4. Setting up Game Engine Environments
3. Results
3.1. Watershed Results
3.2. Lighting Results
3.3. Change Detection Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lin, Y.; Yang, H.; Weihong, W.; Yehua, S.; Xin, J. Processing of Multitemporal 3D Point Cloud Data for Use in Reconstructing Historical Geographic Scenarios. Sens. Mater. 2022, 34, 4551–4568. [Google Scholar] [CrossRef]
- Liu, X.; Liang, X.; Li, X.; Xu, X.; Ou, J.; Chen, Y.; Li, S.; Wang, S.; Pei, F. A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects. Landsc. Urban Plan. 2017, 168, 94–116. [Google Scholar] [CrossRef]
- Keim, D.A.; Mansmann, F.; Schneidewind, J.; Ziegler, H.; Thomas, J. Visual Analytics: Scope and Challenges. In Visual Data Mining: Theory, Techniques and Tools for Visual Analytics; Simoff, S.J., Böhlen, M.H., Mazeika, A., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2008; pp. 76–90. [Google Scholar]
- Berger, C.; Gerke, M. Current and potential use of augmented reality in (geographic) citizen science projects: A survey. Geo-Spat. Inf. Sci. 2024, 27, 1605–1621. [Google Scholar] [CrossRef]
- Papadopoulou, E.E.; Papakonstantinou, A.; Kapogianni, N.A.; Zouros, N.; Soulakellis, N. VR multiscale geovisualization based on UAS multitemporal data: The case of geological monuments. Remote Sens. 2022, 14, 4259. [Google Scholar] [CrossRef]
- Mohd, T.K.; Bravo-Garcia, F.; Love, L.; Gujadhur, M.; Nyadu, J. Analyzing Strengths and Weaknesses of Modern Game Engines. Int. J. Comput. Theory Eng. 2023, 15, 54–60. [Google Scholar] [CrossRef]
- Würstle, P.; Padsala, R.; Santhanavanich, T.; Coors, V. Viability testing of game engine usage for visualization of 3D geospatial data with OGC standards. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2022, 10, 281–288. [Google Scholar] [CrossRef]
- Djaouti, D.; Alvarez, J.; Jessel, J.-P. Classifying serious games: The G/P/S model. In Handbook of Research on Improving Learning and Motivation Through Educational Games: Multi-Disciplinary Approaches; Felicia, P., Ed.; IGI Global: Hershey, PA, USA, 2011; pp. 118–136. [Google Scholar]
- Kontogianni, G.; Koutsaftis, C.; Skamantzari, M.; Georgopoulos, A. Utilising 3D Realistic Models in Serious Games for Cultural Heritage. Int. J. Comput. Methods Herit. Sci. (IJCMHS) 2017, 1, 21–46. [Google Scholar] [CrossRef]
- Golovina, O.; Kazanci, C.; Teizer, J.; König, M. Using serious games in virtual reality for automated close call and contact collision analysis in construction safety. In Proceedings of the 36th International Symposium on Automation and Robotics in Construction, Banff, Canada, 21–24 May 2019; pp. 967–974. [Google Scholar]
- Khoury, M.; Gibson, M.J.; Savic, D.; Chen, A.S.; Vamvakeridou-Lyroudia, L.; Langford, H.; Wigley, S. A Serious Game Designed to Explore and Understand the Complexities of Flood Mitigation Options in Urban–Rural Catchments. Water 2018, 10, 1885. [Google Scholar] [CrossRef]
- Julin, A.; Jaalama, K.; Virtanen, J.P.; Maksimainen, M.; Kurkela, M.; Hyyppä, J.; Hyyppä, H. Automated multi-sensor 3D reconstruction for the web. ISPRS Int. J. Geo-Inf. 2019, 8, 221. [Google Scholar] [CrossRef]
- Virtanen, J.P.; Daniel, S.; Turppa, T.; Zhu, L.; Julin, A.; Hyyppä, H.; Hyyppä, J. Interactive dense point clouds in a game engine. ISPRS J. Photogramm. Remote Sens. 2020, 163, 375–389. [Google Scholar] [CrossRef]
- Jeddoub, I.; Nys, G.A.; Hajji, R.; Billen, R. Data integration across urban digital twin lifecycle: A comprehensive review of current initiatives. Ann. GIS 2024, 1–20. [Google Scholar] [CrossRef]
- Lambru, C.; Morar, A.; Moldoveanu, F.; Asavei, V.; Moldoveanu, A. Comparative Analysis of Real-Time Global Illumination Techniques in Current Game Engines. IEEE Access 2021, 9, 125158–125183. [Google Scholar] [CrossRef]
- Dyrda, D.; Belloni, C. Space Foundation System: An Approach to Spatial. In Proceedings of the 2024 IEEE Conference on Games (CoG), Milano, Italy, 5–8 August 2024. [Google Scholar]
- Newell, R.; Canessa, R.; Sharma, T. Visualizing our options for coastal places: Exploring realistic immersive geovisualizations as tools for inclusive approaches to coastal planning and management. Front. Mar. Sci. 2017, 4, 290. [Google Scholar] [CrossRef]
- Lercari, N.; Jaffke, D.; Campiani, A.; Guillem, A.; McAvoy, S.; Delgado, G.J.; Bevk Neeb, A. Building cultural heritage resilience through remote sensing: An integrated approach using multi-temporal site monitoring, datafication, and Web-GL visualization. Remote Sens. 2021, 13, 4130. [Google Scholar] [CrossRef]
- Urech, P.R.; Mughal, M.O.; Bartesaghi-Koc, C. A simulation-based design framework to iteratively analyze and shape urban landscapes using point cloud modeling. Comput. Environ. Urban Syst. 2022, 91, 101731. [Google Scholar] [CrossRef]
- Mazzetto, S. A Review of Urban Digital Twins Integration, Challenges, and Future Directions in Smart City Development. Sustainability 2024, 16, 8337. [Google Scholar] [CrossRef]
- Gautier, J.; Christophe, S.; Brédif, M. Visualizing 3D climate data in urban 3D models. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2020, 43, 781–789. [Google Scholar] [CrossRef]
- Lehtola, V.V.; Koeva, M.; Oude Elberink, S.; Raposo, P.; Virtanen, J.P.; Vahdatikhaki, F.; Borsci, S. Digital twin of a city: Review of technology serving city needs. Int. J. Appl. Earth Obs. Geoinf. 2022, 114, 102915. [Google Scholar] [CrossRef]
- Virtanen, J.P.; Alander, J.; Ponto, H.; Santala, V.; Martijnse-Hartikka, R.; Andra, A.; Sillander, T. Contemporary development directions for urban digital twins. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2024, 48, 177–182. [Google Scholar] [CrossRef]
- Rantanen, T.; Julin, A.; Virtanen, J.-P.; Hyyppä, H.; Vaaja, M.T. Open Geospatial Data Integration in Game Engine for Urban Digital Twin Applications. ISPRS Int. J. Geo-Inf. 2023, 12, 310. [Google Scholar] [CrossRef]
- Bellini, A.; Tadayon, A.; Andersen, B.; Klungseth, N.J. The role of data when implementing circular strategies in the built environment: A literature review. Clean. Environ. Syst. 2024, 13, 100183. [Google Scholar] [CrossRef]
- Circular Green Blocks—HSY. Available online: https://www.hsy.fi/en/hsy/hsys-projects/project-pages/circular-green-blocks/ (accessed on 30 April 2025).
- Pearlmutter, D.; Theochari, D.; Nehls, T.; Pinho, P.; Piro, P.; Korolova, A.; Papaefthimiou, S.; Garcia-Mateo, M.C.; Calheiros, C.; Zluwa, I.; et al. Enhancing the circular economy with nature-based solutions in the built urban environment: Green building materials, systems and sites. Blue-Green Syst. 2020, 2, 46–72. [Google Scholar] [CrossRef]
- Nanite Virtualized Geometry in Unreal Engine|Unreal Engine 5.5 Documentation|Epic Developer Community. Available online: https://dev.epicgames.com/documentation/en-us/unreal-engine/nanite-virtualized-geometry-in-unreal-engine (accessed on 30 April 2025).
- Díaz-Alemán, M.D.; Amador-García, E.M.; Díaz-González, E.; de la Torre-Cantero, J. Nanite as a Disruptive Technology for the Interactive Visualisation of Cultural Heritage 3D Models: A Case Study. Heritage 2023, 6, 5607–5618. [Google Scholar] [CrossRef]
- Lumen Global Illumination and Reflections in Unreal Engine|Unreal Engine 5.5 Documentation|Epic Developer Community. Available online: https://dev.epicgames.com/documentation/en-us/unreal-engine/lumen-global-illumination-and-reflections-in-unreal-engine (accessed on 30 April 2025).
- Lumen Technical Details in Unreal Engine|Unreal Engine 5.2 Documentation|Epic Developer Community. Available online: https://dev.epicgames.com/documentation/en-us/unreal-engine/lumen-technical-details-in-unreal-engine?application_version=5.2 (accessed on 30 April 2025).
- Blueprints Visual Scripting in Unreal Engine|Unreal Engine 5.5 Documentation|Epic Developer Community. Available online: https://dev.epicgames.com/documentation/en-us/unreal-engine/blueprints-visual-scripting-in-unreal-engine (accessed on 30 April 2025).
- Ketcham, R. New watershed methods for isolating and characterizing discrete objects in 3D data sets. Tomogr. Mater. Struct. 2025, 7, 100043. [Google Scholar] [CrossRef]
- Using a Geospatially Accurate Sun—Cesium. Available online: https://cesium.com/learn/unreal/unreal-geospatially-accurate-sun/ (accessed on 30 April 2025).
- Geographically Accurate Sun Positioning Tool in Unreal Engine|Unreal Engine 5.4 Documentation|Epic Developer Community. Available online: https://dev.epicgames.com/documentation/en-us/unreal-engine/geographically-accurate-sun-positioning-tool-in-unreal-engine?application_version=5.4 (accessed on 30 April 2025).
- Cesium for Unreal—Cesium. Available online: https://cesium.com/platform/cesium-for-unreal/ (accessed on 30 April 2025).
- Cesium World Terrain—Cesium. Available online: https://cesium.com/platform/cesium-ion/content/cesium-world-terrain/ (accessed on 30 April 2025).
- Clausen, C.S.B.; Ma, Z.G.; Jørgensen, B.N. Can we benefit from game engines to develop digital twins for planning the deployment of photovoltaics? Energy Inform. 2022, 5 (Suppl. 4), 42. [Google Scholar] [CrossRef]
Malminkartano Spring | Malminkartano Fall | Latokaski Spring | Latokaski Fall | |
---|---|---|---|---|
Flying altitude | 125 m | 128 m | 127 m | 114 m |
Number of photos | 515 | 449 | 587 | 125 |
Number of points | 863,250 | 755,809 | 271,868 | 83,411 |
RMSE | 0.499 px | 0.497 px | 0.464 px | 0.490 px |
GSD | 17.9 mm | 17.1 mm | 18.3 mm | 15.7 mm |
Malminkartano Spring | Malminkartano Fall | Latokaski Spring | Latokaski Fall | |
---|---|---|---|---|
Number of scans | 51 | 58 | 66 | 92 |
Number of points | 999,451,537 | 1,746,420,107 | 1,392,724,299 | 3,111,419,008 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the International Society for Photogrammetry and Remote Sensing. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kauhanen, H.; Rantanen, T.; Rönnholm, P.; Shafaat, O.B.; Jaalama, K.; Julin, A.; Vaaja, M. Three-Dimensional Multitemporal Game Engine Visualizations for Watershed Analysis, Lighting Simulation, and Change Detection in Built Environments. ISPRS Int. J. Geo-Inf. 2025, 14, 265. https://doi.org/10.3390/ijgi14070265
Kauhanen H, Rantanen T, Rönnholm P, Shafaat OB, Jaalama K, Julin A, Vaaja M. Three-Dimensional Multitemporal Game Engine Visualizations for Watershed Analysis, Lighting Simulation, and Change Detection in Built Environments. ISPRS International Journal of Geo-Information. 2025; 14(7):265. https://doi.org/10.3390/ijgi14070265
Chicago/Turabian StyleKauhanen, Heikki, Toni Rantanen, Petri Rönnholm, Osama Bin Shafaat, Kaisa Jaalama, Arttu Julin, and Matti Vaaja. 2025. "Three-Dimensional Multitemporal Game Engine Visualizations for Watershed Analysis, Lighting Simulation, and Change Detection in Built Environments" ISPRS International Journal of Geo-Information 14, no. 7: 265. https://doi.org/10.3390/ijgi14070265
APA StyleKauhanen, H., Rantanen, T., Rönnholm, P., Shafaat, O. B., Jaalama, K., Julin, A., & Vaaja, M. (2025). Three-Dimensional Multitemporal Game Engine Visualizations for Watershed Analysis, Lighting Simulation, and Change Detection in Built Environments. ISPRS International Journal of Geo-Information, 14(7), 265. https://doi.org/10.3390/ijgi14070265