The Occurrence and Removal of Microplastics from Stormwater Using Green Infrastructure
Abstract
1. Introduction
2. Methodology
3. Results and Discussion
3.1. Occurrence of Microplastics in Stormwater
3.1.1. Microplastics in Stormwater
3.1.2. Sources of Microplastics in Stormwater
3.1.3. Shapes of Microplastics in Stormwater
3.2. Removing Microplastics from Stormwater Using Green Urban Infrastructure
3.2.1. Bioretention Systems
3.2.2. Constructed Wetland
3.2.3. Permeable Pavements
3.2.4. Influence of the Shape of MPs on Their Removal Using Green Infrastructure
3.2.5. A “Bottleneck” in the Use of Green Infrastructure
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Word Meteorological Organization. Significant Weather and Climate Events; Word Meteorological Organization: Geneva, Switzerland, 2024. [Google Scholar]
- Kundzewicz, Z.W. Climate Change Impacts on the Hydrological Cycle. Ecohydrol. Hydrobiol. 2008, 8, 195–203. [Google Scholar] [CrossRef]
- Wang, X.; Liu, L. The Impacts of Climate Change on the Hydrological Cycle and Water Resource Management. Water 2023, 15, 2342. [Google Scholar] [CrossRef]
- Hernández-Hernández, M.; Olcina, J.; Morote, Á.F. Urban Stormwater Management, a Tool for Adapting to Climate Change: From Risk to Resource. Water 2020, 12, 2616. [Google Scholar] [CrossRef]
- Pratap, S.; Markonis, Y. The Response of the Hydrological Cycle to Temperature Changes in Recent and Distant Climatic History. Prog. Earth Planet Sci. 2022, 9, 30. [Google Scholar] [CrossRef]
- Ferreira, J.C.; Costa dos Santos, D.; Campos, L.C. Blue-Green Infrastructure in View of Integrated Urban Water Management: A Novel Assessment of an Effectiveness Index. Water Res. 2024, 257, 121658. [Google Scholar] [CrossRef]
- Khan, S.J.; Deere, D.; Leusch, F.D.L.; Humpage, A.; Jenkins, M.; Cunliffe, D. Extreme Weather Events: Should Drinking Water Quality Management Systems Adapt to Changing Risk Profiles? Water Res. 2015, 85, 124–136. [Google Scholar] [CrossRef]
- Hohner, A.K.; Cawley, K.; Oropeza, J.; Summers, R.S.; Rosario-Ortiz, F.L. Drinking Water Treatment Response Following a Colorado Wildfire. Water Res. 2016, 105, 187–198. [Google Scholar] [CrossRef]
- Pająk, M. Alum Sludge as an Adsorbent for Inorganic and Organic Pollutants Removal from Aqueous Solutions: A Review. Int. J. Environ. Sci. Technol. 2023, 20, 10953–10972. [Google Scholar] [CrossRef]
- Boretti, A.; Rosa, L. Reassessing the Projections of the World Water Development Report. NPJ Clean Water 2019, 2, 15. [Google Scholar] [CrossRef]
- Jasechko, S.; Seybold, H.; Perrone, D.; Fan, Y.; Shamsudduha, M.; Taylor, R.G.; Fallatah, O.; Kirchner, J.W. Rapid Groundwater Decline and Some Cases of Recovery in Aquifers Globally. Nature 2024, 625, 715–721. [Google Scholar] [CrossRef]
- European Environment Agency. Water Resources Across Europe—Confronting Water Stress: An Updated Assessment; Publications Office of the EU: Copenhagen, Denmark; European Environment Agency: Copenhagen, Denmark, 2021; p. 12. [Google Scholar]
- He, C.; Liu, Z.; Wu, J.; Pan, X.; Fang, Z.; Li, J.; Bryan, B.A. Future Global Urban Water Scarcity and Potential Solutions. Nat. Commun. 2021, 12, 4667. [Google Scholar] [CrossRef] [PubMed]
- Cousins, J.J. Remaking Stormwater as a Resource: Technology, Law, and Citizenship. Wiley Interdiscip. Rev. Water 2018, 5, e1300. [Google Scholar] [CrossRef]
- Castán Broto, V.; Bulkeley, H. A Survey of Urban Climate Change Experiments in 100 Cities. Glob. Environ. Chang. 2013, 23, 92–102. [Google Scholar] [CrossRef]
- Chappin, E.J.L.; van der Lei, T. Adaptation of Interconnected Infrastructures to Climate Change: Asocio-Technical Systems Perspective. Util. Policy 2014, 31, 10–17. [Google Scholar] [CrossRef]
- Chan, F.K.S.; Griffiths, J.A.; Higgitt, D.; Xu, S.; Zhu, F.; Tang, Y.T.; Xu, Y.; Thorne, C.R. “Sponge City” in China—A Breakthrough of Planning and Flood Risk Management in the Urban Context. Land Use Policy 2018, 76, 772–778. [Google Scholar] [CrossRef]
- Ociepa, E. Ocena zanieczyszczenia ścieków deszczowych trafiajacych do systemów kanalizacji deszczowej. Eng. Environ. Prot. 2011, 14, 357–364. [Google Scholar]
- Ociepa, E.; Kisiel, A.; Lach, J. Zanieczyszczenia wód opadowych spływajcych do systemów kanalizacyjnych contamination of precipitation water flowing into draining systems. Proceeding ECOpole 2010, 4, 462–469. [Google Scholar]
- Jędrzejczak, M. Potencjał Eutrofizacyjny Wód Opadowych i Ich Wpływ Na Wzrost Glonów Słodkowodnych Desmodesmus Subspicatus. Gaz Woda I Tech. Sanit. 2024, 1, 12–18. [Google Scholar] [CrossRef]
- Pervov, A.G.; Matveev, N.A. Stormwater Treatment for Removal of Synthetic Surfactants and Petroleum Products by Reverse Osmosis Including Subsequent Concentrate Utilization. Pet. Chem. 2014, 54, 686–697. [Google Scholar] [CrossRef]
- Brown, J.N.; Peake, B.M. Sources of Heavy Metals and Polycyclic Aromatic Hydrocarbons in Urban Stormwater Runoff. Sci. Total Environ. 2006, 359, 145–155. [Google Scholar] [CrossRef]
- Vijayaraghavan, K.; Biswal, B.K.; Adam, M.G.; Soh, S.H.; Tsen-Tieng, D.L.; Davis, A.P.; Chew, S.H.; Tan, P.Y.; Babovic, V.; Balasubramanian, R. Bioretention Systems for Stormwater Management: Recent Advances and Future Prospects. J. Environ. Manag. 2021, 292, 112766. [Google Scholar] [CrossRef] [PubMed]
- Harada, S. Application of Porous Concrete Infiltration Techniques to Street Stormwater Inlets That Simultaneously Mitigate against Non-Point Heavy Metal Pollution and Stormwater Runoff Reduction in Urban Areas: Catchment-Scale Evaluation of the Potential of Discrete and Small-Scale Techniques. Water 2023, 15, 1998. [Google Scholar]
- Bunke, D.; Moritz, S.; Brack, W.; Herráez, D.L.; Posthuma, L.; Nuss, M. Developments in Society and Implications for Emerging Pollutants in the Aquatic Environment. Environ. Sci. Eur. 2019, 31, 32. [Google Scholar] [CrossRef]
- Tang, Y.; Yin, M.; Yang, W.; Li, H.; Zhong, Y.; Mo, L.; Liang, Y.; Ma, X.; Sun, X. Emerging pollutants in water environment: Occurrence, monitoring, fate, and risk assessment. Water Environ. Res. 2019, 91, 984–991. [Google Scholar] [CrossRef]
- Premarathna, K.S.D.; Biswas, J.K.; Kumar, M.; Varjani, S.; Mickan, B.; Show, P.L.; Lau, S.Y.; Novo, L.A.B.; Vithanage, M. Biofilters and Bioretention Systems: The Role of Biochar in the Blue-Green City Concept for Stormwater Management. Environ. Sci. Water Res. Technol. 2023, 9, 3103–3119. [Google Scholar] [CrossRef]
- Kaushik, R.; Balasubramanian, R.; de la Cruz, A.A. Influence of Air Quality on the Composition of Microbial Pathogens in Fresh Rainwater. Appl. Environ. Microbiol. 2012, 78, 2813–2818. [Google Scholar] [CrossRef]
- Aryal, R.; Vigneswaran, S.; Kandasamy, J.; Naidu, R. Urban Stormwater Quality and Treatment. Korean J. Chem. Eng. 2010, 27, 1343–1359. [Google Scholar] [CrossRef]
- Murphy, L.U.; O’Sullivan, A.; Cochrane, T.A. Quantifying the Spatial Variability of Airborne Pollutants to Stormwater Runoff in Different Land-Use Catchments. Water Air Soil Pollut. 2016, 225, 2016. [Google Scholar] [CrossRef]
- Malmur, R.; Pluta, K. Badanie efektywnosci usuwania zawiesin ze ścieków opadowych przy zastosowaniu zbiornika retencyjnego. Instal 2024, 10, 30–34. [Google Scholar]
- Müller, A.; Österlund, H.; Marsalek, J.; Viklander, M. The Pollution Conveyed by Urban Runoff: A Review of Sources. Sci. Total Environ. 2020, 709, 136125. [Google Scholar] [CrossRef]
- Grbić, J.; Helm, P.; Athey, S.; Rochman, C.M. Microplastics Entering Northwestern Lake Ontario Are Diverse and Linked to Urban Sources. Water Res. 2020, 174, 115623. [Google Scholar] [CrossRef] [PubMed]
- Gilbreath, A.; McKee, L.; Shimabuku, I.; Lin, D.; Werbowski, L.M.; Zhu, X.; Grbic, J.; Rochman, C. Multi-Year Water Quality Performance and Mass Accumulation of PCBs, Mercury, Methylmercury, Copper and Microplastics in a Bioretention Rain Garden. J. Sustain. Water Built Environ. 2019, 5, 04019004. [Google Scholar] [CrossRef]
- Werbowski, L.M.; Gilbreath, A.N.; Munno, K.; Zhu, X.; Grbic, J.; Wu, T.; Sutton, R.; Sedlak, M.D.; Deshpande, A.D.; Rochman, C.M. Urban Stormwater Runoff: A Major Pathway for Anthropogenic Particles, Black Rubbery Fragments, and Other Types of Microplastics to Urban Receiving Waters. ACS ES&T Water. 2021, 1, 1420–1428. [Google Scholar]
- Horton, A.A.; Cross, R.K.; Read, D.S.; Jürgens, M.D.; Ball, H.L.; Svendsen, C.; Vollertsen, J.; Johnson, A.C. Semi-Automated Analysis of Microplastics in Complex Wastewater Samples. Environ. Pollut. 2021, 268, 115841. [Google Scholar] [CrossRef]
- Ross, M.S.; Loutan, A.; Groeneveld, T.; Molenaar, D.; Kroetch, K.; Bujaczek, T.; Kolter, S.; Moon, S.; Huynh, A.; Khayam, R.; et al. Estimated Discharge of Microplastics via Urban Stormwater during Individual Rain Events. Front. Environ. Sci. 2023, 11, 11090267. [Google Scholar] [CrossRef]
- Wagner, M.; Lambert, S. Freshwater Microplastics. In The Handbook of Environmental Chemistry; Barcelo, D., Kostianoy, A.G., Eds.; Springer Nature: Berlin/Heidelberg, Germany, 2018; p. 58. [Google Scholar]
- Utami, I.; Andini, M.A.; Zahra, S.A.; Gunawan, A.K. Microplastic Contamination of Rainwater on the Highway with Different Elevations in Yogyakarta Province Indonesia. J. Biotechnol. Nat. Sci. 2023, 3, 51–60. [Google Scholar]
- Sridharan, S.; Kumar, M.; Saha, M.; Kirkham, M.B.; Singh, L.; Bolan, N.S. The Polymers and Their Additives in Particulate Plastics: What Makes Them Hazardous to the Fauna? Sci. Total Environ. 2022, 824, 153828. [Google Scholar] [CrossRef]
- Boots, B.; Russell, C.W.; Green, D.S. Effects of Microplastics in Soil Ecosystems: Above and Below Ground. Environ. Sci. Technol. 2019, 53, 11496–11506. [Google Scholar] [CrossRef]
- Mishra, A.K.; Singh, J.; Mishra, P.P. Microplastics in Freshwater Ecosystem: A Serious Threat for Freshwater Environment. Int. J. Environ. Sci. Technol. 2023, 20, 9189–9204. [Google Scholar] [CrossRef]
- Zhang, Y.; Kang, S.; Allen, S.; Allen, D.; Gao, T.; Sillanpää, M. Atmospheric Microplastics: A Review on Current Status and Perspectives. Earth Sci. Rev. 2020, 203, 103118. [Google Scholar] [CrossRef]
- Rillig, M.C.; Kim, S.W.; Kim, T.Y.; Waldman, W.R. The Global Plastic Toxicity Debt. Environ. Sci. Technol. 2021, 55, 2717–2719. [Google Scholar] [CrossRef] [PubMed]
- Bradney, L.; Wijesekara, H.; Palansooriya, K.N.; Obadamudalige, N.; Bolan, N.S.; Ok, Y.S.; Rinklebe, J.; Kim, K.H.; Kirkham, M.B. Particulate Plastics as a Vector for Toxic Trace-Element Uptake by Aquatic and Terrestrial Organisms and Human Health Risk. Environ. Int. 2019, 131, 104937. [Google Scholar] [CrossRef] [PubMed]
- Prapanchan, V.N.; Kumar, E.; Subramani, T.; Sathya, U.; Li, P. A Global Perspective on Microplastic Occurrence in Sediments and Water with a Special Focus on Sources, Analytical Techniques, Health Risks, and Remediation Technologies. Water 2023, 15, 1987. [Google Scholar] [CrossRef]
- Hataley, E.K.; Shahmohamadloo, R.S.; Almirall, X.O.; Harrison, A.L.; Rochman, C.M.; Zou, S.; Orihel, D.M. Experimental Evidence from the Field That Naturally Weathered Microplastics Accumulate Cyanobacterial Toxins in Eutrophic Lakes. Environ. Toxicol. Chem. 2022, 41, 3017–3028. [Google Scholar] [CrossRef]
- Hirt, N.; Body-Malapel, M. Immunotoxicity and Intestinal Effects of Nano- and Microplastics: A Review of the Literature. Part. Fibre Toxicol. 2020, 17, 57. [Google Scholar] [CrossRef]
- Yee, M.S.L.; Hii, L.W.; Looi, C.K.; Lim, W.M.; Wong, S.F.; Kok, Y.Y.; Tan, B.K.; Wong, C.Y.; Leong, C.O. Impact of Microplastics and Nanoplastics on Human Health. Nanomaterials 2021, 11, 496. [Google Scholar] [CrossRef]
- Choi, E.H.; Lee, H.; Kang, M.J.; Nam, I.; Moon, H.K.; Sung, J.W.; Eu, J.Y.; Lee, H. Bin Factors Affecting Zero-Waste Behaviours of College Students. Int. J. Environ. Res. Public Health 2022, 19, 9697. [Google Scholar] [CrossRef]
- Cho, Y.M.; Choi, K.H. The Current Status of Studies of Human Exposure Assessment of Microplastics and Their Health Effects: A Rapid Systematic Review. Environ. Anal. Health Toxicol. 2021, 36, e2021004. [Google Scholar] [CrossRef]
- Enyoh, C.E.; Devi, A.; Kadono, H.; Wang, Q.; Rabin, M.H. The Plastic Within: Microplastics Invading Human Organs and Bodily Fluids Systems. Environments 2023, 10, 194. [Google Scholar] [CrossRef]
- Tamargo, A.; Molinero, N.; Reinosa, J.J.; Alcolea-Rodriguez, V.; Portela, R.; Bañares, M.A.; Fernández, J.F.; Moreno-Arribas, M.V. PET Microplastics Affect Human Gut Microbiota Communities during Simulated Gastrointestinal Digestion, First Evidence of Plausible Polymer Biodegradation during Human Digestion. Sci. Rep. 2022, 12, 528. [Google Scholar] [CrossRef]
- de Souza Machado, A.A.; Kloas, W.; Zarfl, C.; Hempel, S.; Rillig, M.C. Microplastics as an Emerging Threat to Terrestrial Ecosystems. Glob. Chang. Biol. 2018, 24, 1405–1416. [Google Scholar] [CrossRef] [PubMed]
- Frias, J.P.G.L.; Nash, R. Microplastics: Finding a Consensus on the Definition. Mar. Pollut. Bull. 2019, 138, 145–147. [Google Scholar] [CrossRef] [PubMed]
- An, X.; Wang, Y.; Adnan, M.; Li, W.; Zhang, Y. Natural Factors of Microplastics Distribution and Migration in Water: A Review. Water 2024, 16, 1595. [Google Scholar] [CrossRef]
- Ashiq, M.M.; Jazaei, F.; Bell, K.; Ali, A.S.A.; Bakhshaee, A.; Babakhani, P. Abundance, Spatial Distribution, and Physical Characteristics of Microplastics in Stormwater Detention Ponds. Front Environ. Sci. Eng. 2023, 17, 124. [Google Scholar] [CrossRef]
- Dhaundiyal, A.; Mittal, A. Unveiling the Microplastics: Sources, Distribution, Toxicological Impacts, Extraction Methods, Degradational Strategies, Paving the Path to a Sustainable Future. Water Air Soil Pollut. 2024, 235, 691. [Google Scholar] [CrossRef]
- Li, K.; Du, L.; Qin, C.; Bolan, N.; Wang, H.; Wang, H. Microplastic Pollution as an Environmental Risk Exacerbating the Greenhouse Effect and Climate Change: A Review. Carbon Res. 2024, 3, 9. [Google Scholar] [CrossRef]
- Manikandan, S.; Preethi, B.; Deena, S.R.; Vijayan, D.S.; Subbaiya, R.; Vickram, S.; Karmegam, N.; Kim, W.; Govarthanan, M. Systematic Assessment of Mechanisms, Developments, Innovative Solutions, and Future Perspectives of Microplastics and Ecotoxicity—A Review. Adv. Sustain. Syst. 2024, 8, 2400294. [Google Scholar] [CrossRef]
- Hale, R.C.; Seeley, M.E.; La Guardia, M.J.; Mai, L.; Zeng, E.Y. A Global Perspective on Microplastics. J. Geophys. Res. Oceans 2020, 125, e2018JC014719. [Google Scholar] [CrossRef]
- Zhang, X.; Jiao, W.; Wang, Y.; Gu, Y.; Zhang, S.; Liu, J.; Zhang, Z.; Tan, C. Occurrence, Ecological Risk of Microplastics in Campus Athletic Fields Runoff and Their Adsorption Behavior towards Heavy Metals. Environ. Geochem. Health 2025, 47, 86. [Google Scholar] [CrossRef]
- Ahmad, T.; Gul, S.; Peng, L.; Mehmood, T.; Huang, Q.; Ahmad, A.; Ali, H.; Ali, W.; Souissi, S.; Zinck, P. Microplastic Mitigation in Urban Stormwater Using Green Infrastructure: A Review. Environ. Chem. Lett. 2025, 23, 999–1024. [Google Scholar] [CrossRef]
- Osman, A.I.; Hosny, M.; Eltaweil, A.S.; Omar, S.; Elgarahy, A.M.; Farghali, M.; Yap, P.S.; Wu, Y.S.; Nagandran, S.; Batumalaie, K.; et al. Microplastic Sources, Formation, Toxicity and Remediation: A Review. Environ. Chem. Lett. 2023, 21, 2129–2169. [Google Scholar] [CrossRef] [PubMed]
- Giustra, M.; Sinesi, G.; Spena, F.; De Santes, B.; Morelli, L.; Barbieri, L.; Garbujo, S.; Galli, P.; Prosperi, D.; Colombo, M. Microplastics in Cosmetics: Open Questions and Sustainable Opportunities. ChemSusChem 2024, 17, e202401065. [Google Scholar] [CrossRef] [PubMed]
- Kukkola, A.; Chetwynd, A.J.; Krause, S.; Lynch, I. Beyond Microbeads: Examining the Role of Cosmetics in Microplastic Pollution and Spotlighting Unanswered Questions. J. Hazard. Mater. 2024, 476, 135053. [Google Scholar] [CrossRef]
- Verschoor, A.J.; van Gelderen, A.; Hofstra, U. Fate of Recycled Tyre Granulate Used on Artificial Turf. Environ. Sci. Eur. 2021, 33, 27. [Google Scholar] [CrossRef]
- Šaravanja, A.; Pušić, T.; Dekanić, T. Microplastics in Wastewater by Washing Polyester Fabrics. Materials 2022, 15, 2683. [Google Scholar] [CrossRef]
- Hechmi, S.; Bhat, M.A.; Kallel, A.; Khiari, O.; Louati, Z.; Khelil, M.N.; Zoghlami, R.I.; Cherni, Y.; Melki, S.; Trabelsi, I.; et al. Soil contamination with microplastics (MPs) from treated wastewater and sewage sludge: Risks and sustainable mitigation strategies. Discov. Environ. 2024, 2, 95. [Google Scholar] [CrossRef]
- Olshammar, M.; Graae, L.; Robijn, A.; Nilsson, F. Microplastic from Cast Rubber Granulate and Granulate-Free Artificial Grass Surfaces; The Swedish Environ. Prot. Agency Rep.; Swedish Environmental Protection Agency: Stockholm, Sweden, 2022. [Google Scholar]
- Jan Kole, P.; Löhr, A.J.; Van Belleghem, F.G.A.J.; Ragas, A.M.J. Wear and Tear of Tyres: A Stealthy Source of Microplastics in the Environment. Int. J. Environ. Res. Public Health 2017, 14, 1256. [Google Scholar]
- Sommer, F.; Dietze, V.; Baum, A.; Sauer, J.; Gilge, S.; Maschowski, C.; Gieré, R. Tire Abrasion as a Major Source of Microplastics in the Environment. Aerosol. Air Qual. Res. 2018, 18, 2014–2028. [Google Scholar] [CrossRef]
- Gazal, A.A.; Gheewala, S.H. Plastics, Microplastics and Other Polymer Materials-A Threat to the Environment. J. Sustain. Energy Environ. 2020, 11, 113–122. [Google Scholar]
- Song, J.; Wang, C.; Li, G. Defining Primary and Secondary Microplastics: A Connotation Analysis. ACS ES&T Water 2024, 4, 2330–2332. [Google Scholar] [CrossRef]
- Xun, F.; Zhou, J.; Xiong, J.; Hu, T.; Xia, Q. Migration Characteristics of Polypropylene (PP) Microplastics and Effects on Pollutants Removal Performance of Bioretention Cells. J. Environ. Chem. Eng. 2024, 12, 113833. [Google Scholar] [CrossRef]
- Österlund, H.; Blecken, G.; Lange, K.; Marsalek, J.; Gopinath, K.; Viklander, M. Microplastics in Urban Catchments: Review of Sources, Pathways, and Entry into Stormwater. Sci. Total Environ. 2023, 858, 159781. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, S.; Mandal, A. Studies on Mechanical Properties of Tyre Rubber Concrete. SSRG Int. J. Civ. Eng. 2016, 3, 18–21. [Google Scholar] [CrossRef]
- Magnusson, K.; Eliasson, K.; Fråne, A.; Haikonen, K.; Hultén, J.; Olshammar, M.; Stadmark, J.; Voisin, A. Swedish Sources and Pathways for Microplastics to the Marine Environment A Review of Existing Data. IVL Swed. Environ. Res. Inst. Rep. C 2016, 183, 1–87. [Google Scholar]
- Zhu, Y.; Li, H.; Yang, B.; Zhang, X.; Mahmud, S.; Zhang, X.; Yu, B.; Zhu, Y. Permeable Pavement Design Framework for Urban Stormwater Management Considering Multiple Criteria and Uncertainty. J. Clean Prod. 2021, 293, 126114. [Google Scholar] [CrossRef]
- Liu, F.; Vianello, A.; Vollertsen, J. Retention of Microplastics in Sediments of Urban and Highway Stormwater Retention Ponds. Environ. Pollut. 2019, 255 Pt 2, 113335. [Google Scholar] [CrossRef]
- Chen, Y.N.; Rani, A.; Chiang, C.Y.; Kim, H.; Pan, S.Y. Monitoring, Control and Assessment of Microplastics in Bioenvironmental Systems. Environ. Technol. Innov. 2023, 32, 103250. [Google Scholar] [CrossRef]
- Koelmans, A.A.; Mohamed Nor, N.H.; Hermsen, E.; Kooi, M.; Mintenig, S.M.; De France, J. Microplastics in Freshwaters and Drinking Water: Critical Review and Assessment of Data Quality. Water Res. 2019, 155, 410–422. [Google Scholar] [CrossRef]
- Su, L.; Nan, B.; Craig, N.J.; Pettigrove, V. Temporal and Spatial Variations of Microplastics in Roadside Dust from Rural and Urban Victoria, Australia: Implications for Diffuse Pollution. Chemosphere 2020, 252, 126567. [Google Scholar] [CrossRef]
- Kang, H.; Park, S.; Lee, B.; Kim, I.; Kim, S. Concentration of Microplastics in Road Dust as a Function of the Drying Period—A Case Study in G City, Korea. Sustainability 2022, 14, 3006. [Google Scholar] [CrossRef]
- Zhao, X.; You, F. Life Cycle Assessment of Microplastics Reveals Their Greater Environmental Hazards than Mismanaged Polymer Waste 2 Losses. Environ. Sci. Technol. 2022, 56, 11780–11797. [Google Scholar] [CrossRef] [PubMed]
- Dris, R.; Imhof, H.; Sanchez, W.; Gasperi, J.; Galgani, F.; Tassin, B.; Laforsch, C. Beyond the Ocean: Contamination of Freshwater Ecosystems with (Micro-)Plastic Particles. Environ. Chem. 2015, 12, 539–550. [Google Scholar] [CrossRef]
- Smyth, K.; Tan, S.; Van Seters, T.; Gasperi, J.; Dris, R.; Drake, J.; Passeport, E. Small-Size Microplastics in Urban Stormwater Runoff Are Efficiently Trapped in a Bioretention Cell. ACS ES&T Water 2024, 4, 2522–2531. [Google Scholar]
- Evangeliou, N.; Grythe, H.; Klimont, Z.; Heyes, C.; Eckhardt, S.; Lopez-Aparicio, S.; Stohl, A. Atmospheric Transport Is a Major Pathway of Microplastics to Remote Regions. Nat. Commun. 2020, 11, 3381. [Google Scholar] [CrossRef]
- Rauert, C.; Charlton, N.; Okoffo, E.D.; Stanton, R.S.; Agua, A.R.; Pirrung, M.C.; Thomas, K.V. Concentrations of Tire Additive Chemicals and Tire Road Wear Particles in an Australian Urban Tributary. Environ. Sci. Technol. 2022, 56, 2421–2431. [Google Scholar] [CrossRef]
- Sewwandi, M.; Kumar, A.; Pallewatta, S.; Vithanage, M. Microplastics in Urban Stormwater Sediments and Runoff: An Essential Component in the Microplastic Cycle. TrAC—Trends Anal. Chem. 2024, 178, 117824. [Google Scholar] [CrossRef]
- Lange, K.; Österlund, H.; Viklander, M.; Blecken, G.T. Occurrence and Concentration of 20–100 μm Sized Microplastic in Highway Runoff and Its Removal in a Gross Pollutant Trap—Bioretention and Sand Filter Stormwater Treatment Train. Sci. Total Environ. 2022, 809, 151151. [Google Scholar] [CrossRef]
- Lange, K. Metal and Microplastic Treatment in Stormwater Bioretention. Ph.D. Thesis, Luea University of Technology, Norrbotten County, Sweden, 2021. [Google Scholar]
- Knight, L.J.; Parker-Jurd, F.N.F.; Al-Sid-Cheikh, M.; Thompson, R.C. Tyre Wear Particles: An Abundant yet Widely Unreported Microplastic? Environ. Sci. Pollut. Res. 2020, 27, 18345–18354. [Google Scholar] [CrossRef]
- Elmer-Dixon, M.M.; Fawcett, L.P.; Sorensen, E.N.; Maurer-Jones, M.A. Bovine Serum Albumin Bends Over Backward to Interact with Aged Plastics: A Model for Understanding Protein Attachment to Plastic Debris. Environ. Sci. Technol. 2024, 58, 10207–10215. [Google Scholar] [CrossRef]
- Jessieleena, A.; Rathinavelu, S.; Velmaiel, K.E.; John, A.A.; Nambi, I.M. Residential Houses—A Major Point Source of Microplastic Pollution: Insights on the Various Sources, Their Transport, Transformation, and Toxicity Behaviour. Environ. Sci. Pollut. Res. 2023, 30, 67919–67940. [Google Scholar] [CrossRef]
- Middleton, J.R.; Barrett, M.E. Water Quality Performance of a Batch Type Stormwater Detention Basin. Water Environ. Res. 2008, 80, 172–178. [Google Scholar] [CrossRef] [PubMed]
- Moruzzi, R.B.; Speranza, L.G.; da Conceição, F.T.; de Souza Martins, S.T.; Busquets, R.; Campos, L.C. Stormwater Detention Reservoirs: An Opportunity for Monitoring and a Potential Site to Prevent the Spread of Urban Microplastics. Water 2020, 12, 1994. [Google Scholar] [CrossRef]
- Liu, F.; Olesen, K.B.; Borregaard, A.R.; Vollertsen, J. Microplastics in Urban and Highway Stormwater Retention Ponds. Sci. Total Environ. 2019, 671, 992–1000. [Google Scholar] [CrossRef]
- Järlskog, I.; Strömvall, A.M.; Magnusson, K.; Galfi, H.; Björklund, K.; Polukarova, M.; Garção, R.; Markiewicz, A.; Aronsson, M.; Gustafsson, M.; et al. Traffic-Related Microplastic Particles, Metals, and Organic Pollutants in an Urban Area under Reconstruction. Sci. Total Environ. 2021, 774, 145503. [Google Scholar] [CrossRef]
- Ziajahromi, S.; Drapper, D.; Hornbuckle, A.; Rintoul, L.; Leusch, F.D.L. Microplastic Pollution in a Stormwater Floating Treatment Wetland: Detection of Tyre Particles in Sediment. Sci. Total Environ. 2020, 713, 136356. [Google Scholar] [CrossRef]
- Zhang, B.; Tang, X.; Liu, Q.; Li, L.; Zhao, Y.; Zhao, Y. Different Effecting Mechanisms of Two Sized Polystyrene Microplastics on Microalgal Oxidative Stress and Photosynthetic Responses. Ecotoxicol. Environ. Saf. 2022, 244, 114072. [Google Scholar] [CrossRef]
- Olesen, K.B.; Stephansen, D.A.; van Alst, N.; Vollertsen, J. Microplastics in a Stormwater Pond. Water 2019, 11, 1466. [Google Scholar] [CrossRef]
- Bond, C.; Li, H.; Rate, A.W. Land Use Pattern Affects Microplastic Concentrations in Stormwater Drains in Urban Catchments in Perth, Western Australia. Land 2022, 11, 1815. [Google Scholar] [CrossRef]
- O’Brien, S.; Okoffo, E.D.; Rauert, C.; O’Brien, J.W.; Ribeiro, F.; Burrows, S.D.; Toapanta, T.; Wang, X.; Thomas, K.V. Quantification of Selected Microplastics in Australian Urban Road Dust. J. Hazard. Mater. 2021, 416, 125811. [Google Scholar] [CrossRef]
- Dikareva, N.; Simon, K.S. Microplastic Pollution in Streams Spanning an Urbanisation Gradient. Environ. Pollut. 2019, 250, 292–299. [Google Scholar] [CrossRef]
- Hartmann, N.B.; Hüffer, T.; Thompson, R.C.; Hassellöv, M.; Verschoor, A.; Daugaard, A.E.; Rist, S.; Karlsson, T.; Brennholt, N.; Cole, M.; et al. Are We Speaking the Same Language? Recommendations for a Definition and Categorization Framework for Plastic Debris. Environ. Sci. Technol. 2019, 53, 1039–1047. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Chen, G.; Wang, J. Microplastics in the Marine Environment: Sources, Fates, Impacts and Microbial Degradation. Toxics 2021, 9, 41. [Google Scholar] [CrossRef] [PubMed]
- Dey, S.; Veerendra, G.T.N.; Babu, P.S.S.A.; Manoj, A.V.P.; Nagarjuna, K. Degradation of Plastics Waste and Its Effects on Biological Ecosystems: A Scientific Analysis and Comprehensive Review. Biomed. Mater. Devices 2023, 2, 70–112. [Google Scholar] [CrossRef]
- Chavez-Linares, P.; Hoppe, S.; Chevalot, I. Recycling and Degradation Pathways of Synthetic Textile Fibers Such as Polyamide and Elastane. Glob. Chall. 2025, 9, 2400163. [Google Scholar] [CrossRef]
- Tao, D.; Zhang, K.; Xu, S.; Lin, H.; Liu, Y.; Kang, J.; Yim, T.; Giesy, J.P.; Leung, K.M.Y. Microfibers Released into the Air from a Household Tumble Dryer. Environ. Sci. Technol. Lett. 2022, 9, 120–126. [Google Scholar] [CrossRef]
- Woodall, L.C.; Sanchez-Vidal, A.; Canals, M.; Paterson, G.L.J.; Coppock, R.; Sleight, V.; Calafat, A.; Rogers, A.D.; Narayanaswamy, B.E.; Thompson, R.C. The Deep Sea Is a Major Sink for Microplastic Debris. R. Soc. Open Sci. 2014, 1, 140317. [Google Scholar] [CrossRef]
- White, J.R. Polymer Ageing: Physics, Chemistry or Engineering? Time to Reflect. Chem. Rep. 2006, 9, 1396–1408. [Google Scholar] [CrossRef]
- Suaria, G.; Achtypi, A.; Perold, V.; Lee, J.R.; Pierucci, A.; Bornman, T.G.; Aliani, S.; Ryan, P.G. Microfibers in Oceanic Surface Waters: A Global Characterization. Sci. Adv. 2020, 6, eaay8493. [Google Scholar] [CrossRef]
- He, H.; Cai, S.; Chen, S.; Li, Q.; Wan, P.; Ye, R.; Zeng, X.; Yao, B.; Ji, Y.; Cao, T.; et al. Spatial and Temporal Distribution Characteristics and Potential Sources of Microplastic Pollution in China’s Freshwater Environments. Water 2024, 16, 1270. [Google Scholar] [CrossRef]
- Xie, L.; Luo, S.; Liu, Y.; Ruan, X.; Gong, K.; Ge, Q.; Li, K.; Valev, V.K.; Liu, G.; Zhang, L. Automatic Identification of Individual Nanoplastics by Raman Spectroscopy Based on Machine Learning. Environ. Sci. Technol. 2023, 57, 18203–18214. [Google Scholar] [CrossRef]
- Gunther, H.J.; Das, T.K.; Leonard, J.; Koutnik, V.S.; El Rassi, L.; Tang, Z.; Mohanty, S.K.; Mohanty, S. Water Impact Statement UV Exposure to PET Microplastics Increases Their Downward Mobility in Stormwater Biofilters Undergoing Freeze-Thaw Cycles. Environ. Sci. Water Res. Technol. 2023, 9, 3136–3145. [Google Scholar] [CrossRef]
- Berdahl, P.; Akbari, H.; Levinson, R.; Miller, W.A. Weathering of Roofing Materials—An Overview. Constr. Build. Mater. 2008, 22, 423–433. [Google Scholar] [CrossRef]
- Riahinezhad, M.; Hallman, M.; Masson, J.F. Critical Review of Polymeric Building Envelope Materials: Degradation, Durability and Service Life Prediction. Buildings 2021, 11, 299. [Google Scholar] [CrossRef]
- Prasittisopin, L.; Ferdous, W.; Kamchoom, V. Microplastics in Construction and Built Environment. Dev. Built Environ. 2023, 15, 100188. [Google Scholar] [CrossRef]
- Baldwin, A.K.; Corsi, S.R.; Mason, S.A. Plastic Debris in 29 Great Lakes Tributaries: Relations to Watershed Attributes and Hydrology. Environ. Sci. Technol. 2016, 50, 10377–10385. [Google Scholar] [CrossRef]
- Horton, A.A.; Svendsen, C.; Williams, R.J.; Spurgeon, D.J.; Lahive, E. Large Microplastic Particles in Sediments of Tributaries of the River Thames, UK—Abundance, Sources and Methods for Effective Quantification. Mar. Pollut. Bull. 2017, 114, 218–226. [Google Scholar] [CrossRef]
- García-Haba, E.; Hernández-Crespo, C.; Martín, M.; Andrés-Doménech, I. The Role of Different Sustainable Urban Drainage Systems in Removing Microplastics from Urban Runoff: A Review. J. Clean Prod. 2023, 411, 137197. [Google Scholar] [CrossRef]
- Chini, C.M.; Canning, J.F.; Schreiber, K.L.; Peschel, J.M.; Stillwell, A.S. The Green Experiment: Cities, Green Stormwater Infrastructure, and Sustainability. Sustainability 2017, 9, 105. [Google Scholar] [CrossRef]
- Bodus, B.; O’Malley, K.; Dieter, G.; Gunawardana, C.; McDonald, W. Review of Emerging Contaminants in Green Stormwater Infrastructure: Antibiotic Resistance Genes, Microplastics, Tire Wear Particles, PFAS, and Temperature. Sci. Total Environ. 2024, 906, 167195. [Google Scholar] [CrossRef]
- Wolfand, J.; Poor, C.J.; Taylor, B.L.H.; Morrow, E.; Radke, A.; Diaz-Gunning, E. Microplastics: The Occurrence in Stormwater Runoff and the Effectiveness of Bioretention Systems for Removal. J. Environ. Eng. 2023, 149, 7285. [Google Scholar] [CrossRef]
- Kong, J.; Jeong, S.; Lee, J.; Jeong, S. Permeable Pavement Blocks as a Sustainable Solution for Managing Microplastic Pollution in Urban Stormwater. Sci. Total Environ. 2025, 966, 178649. [Google Scholar] [CrossRef] [PubMed]
- García-Haba, E.; Benito-Kaesbach, A.; Hernández-Crespo, C.; Sanz-Lazaro, C.; Martín, M.; Andrés-Doménech, I. Removal and Fate of Microplastics in Permeable Pavements: An Experimental Layer-by-Layer Analysis. Sci. Total Environ. 2024, 929, 172627. [Google Scholar] [CrossRef] [PubMed]
- Irvine, K.N.; Chua, L.H.C.; Hua’an, Z.; Qi, L.E.; Xuan, L.Y. Nature-Based Solutions to Manage Particle-Bound Metals in Urban Stormwater Runoff: Current Design Practices and Knowledge Gaps. J. Soils Sediments 2023, 23, 3671–3688. [Google Scholar] [CrossRef]
- Moazzem, S.; Bhuiyan, M.; Muthukumaran, S.; Fagan, J.; Jegatheesan, V. A Critical Review of Nature-Based Systems (NbS) to Treat Stormwater in Response to Climate Change and Urbanization. Curr. Pollut. Rep. 2024, 10, 286–311. [Google Scholar] [CrossRef]
- Kratky, H.; Li, Z.; Chen, Y.; Wang, C.; Li, X.; Yu, T. A Critical Literature Review of Bioretention Research for Stormwater Management in Cold Climate and Future Research Recommendations. Front. Environ. Sci. Eng. 2017, 11, 16. [Google Scholar] [CrossRef]
- Hoang, V.H.; Nguyen, M.K.; Hoang, T.D.; Nguyen, H.L.; Lin, C.; Yousaf, B.; Ha, M.C.; Bui, V.K.H.; Pham, M.T.; Chang, S.W.; et al. Global Occurrence and Environmental Fate of Microplastics in Stormwater Runoff: Unlock the In-Depth Knowledge on Nature-Based Removal Strategies. Rev. Environ. Contam. Toxicol. 2025, 263, 5. [Google Scholar] [CrossRef]
- Nazarpour, S.; Gnecco, I.; Palla, A. Evaluating the Effectiveness of Bioretention Cells for Urban Stormwater Management: A Systematic Review. Water 2023, 15, 913. [Google Scholar] [CrossRef]
- Hunt, W.F.; Lord, B.; Loh, B.; Sia, A. Plant Selection for Bioretention Systems and Stormwater Treatment Practices; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Ahmad, T.; Peng, L.; Mehmood, T.; Gul, S.; Ullah, Z.; Lin, S.; Li, S.; van Hullebusch, E.D. Advancing Microplastics Remediation in Bioretention Systems Using Biochar/Kaolin: Optimizing Organics Removal, Plant Health, and Microbial Community Dynamics. Environ. Chem. Ecotoxicol. 2025, 7, 141–153. [Google Scholar] [CrossRef]
- Wei, L.; Yue, Q.; Chen, G.; Wang, J. Microplastics in Rainwater/Stormwater Environments: Influencing Factors, Sources, Transport, Fate, and Removal Techniques. TrAC—Trends Anal. Chem. 2023, 165, 117147. [Google Scholar] [CrossRef]
- Smyth, K.; Passeport, E.; Drake, J. Modelling Microplastics in Bioretention Systems: A Review. Eng. Engrxiv Arch. 2024. [CrossRef]
- Stang, C.; Mohamed, B.A.; Li, L.Y. Microplastic Removal from Urban Stormwater: Current Treatments and Research Gaps. J. Environ. Manag. 2022, 317, 115510. [Google Scholar] [CrossRef] [PubMed]
- Spraakman, S.; Rodgers, T.F.M.; Monri-Fung, H.; Nowicki, A.; Diamond, M.L.; Passeport, E.; Thuna, M.; Drake, J. A Need for Standardized Reporting: A Scoping Review of Bioretention Research 2000–2019. Water 2020, 12, 3122. [Google Scholar] [CrossRef]
- Kuoppamäki, K.; Pflugmacher Lima, S.; Scopetani, C.; Setälä, H. The Ability of Selected Filter Materials in Removing Nutrients, Metals, and Microplastics from Stormwater in Biofilter Structures. J. Environ. Qual. 2021, 50, 465–475. [Google Scholar] [CrossRef] [PubMed]
- Han, Z.; Xiong, J.; Zhou, J.; Wang, Z.; Hu, T.; Xu, J. Microplastics Removal from Stormwater Runoff by Bioretention Cells: A Review. J. Environ. Sci. 2025, 154, 73–90. [Google Scholar] [CrossRef]
- Johansson, G.; Fedje, K.K.; Modin, O.; Haeger-Eugensson, M.; Uhl, W.; Andersson-Sköld, Y.; Strömvall, A.M. Removal and Release of Microplastics and Other Environmental Pollutants during the Start-up of Bioretention Filters Treating Stormwater. J. Hazard. Mater. 2024, 468, 133532. [Google Scholar] [CrossRef]
- Mufidah, F.; Soewondo, P. Microplastic Removal from Road Stormwater Runoff Using Lab-Scale Bioretention Cell. J. Eng. Technol. Sci. 2023, 55, 524–537. [Google Scholar] [CrossRef]
- Vijuksungsith, P.; Satapanajaru, T.; Muangkaew, K.; Boonprasert, R. Performance of Bioretention Systems by Umbrella Plant (Cyperus alternifolius L.) and Common Reed (Phragmites Australis) for Removal of Microplastics. Environ. Technol. Innov. 2024, 35, 103734. [Google Scholar] [CrossRef]
- Malaviya, P.; Singh, A. Constructed Wetlands for Management of Urban Stormwater Runoff. Crit. Rev. Environ. Sci. Technol. 2012, 42, 2153–2214. [Google Scholar] [CrossRef]
- Bydalek, F.; Ifayemi, D.; Reynolds, L.; Barden, R.; Kasprzyk-Hordern, B.; Wenk, J. Microplastic Dynamics in a Free Water Surface Constructed Wetland. Sci. Total Environ. 2023, 858, 160113. [Google Scholar] [CrossRef]
- Sarti, C.; Cincinelli, A.; Bresciani, R.; Rizzo, A.; Chelazzi, D.; Masi, F. Microplastic Removal and Risk Assessment Framework in a Constructed Wetland for the Treatment of Combined Sewer Overflows. Sci. Total Environ. 2024, 952, 175864. [Google Scholar] [CrossRef]
- Wang, Q.; Hernández-Crespo, C.; Santoni, M.; Van Hulle, S.; Rousseau, D.P.L. Horizontal Subsurface Flow Constructed Wetlands as Tertiary Treatment: Can They Be an Efficient Barrier for Microplastics Pollution? Sci. Total Environ. 2020, 721, 137785. [Google Scholar] [CrossRef] [PubMed]
- Rullander, G.; Lorenz, C.; Strömvall, A.M.; Vollertsen, J.; Dalahmeh, S.S. Bark and Biochar in Horizontal Flow Filters Effectively Remove Microplastics from Stormwater. Environ. Pollut. 2024, 356, 124335. [Google Scholar] [CrossRef] [PubMed]
- Rullander, G.; Lorenz, C.; Herbert, R.B.; Strömvall, A.-M.; Vollertsen, J.; Dalahmeh, S.S. How Effective Is the Retention of Microplastics in Horizontal Flow Sand Filters Treating Stormwater? J. Environ. Manag. 2023, 344, 118690. [Google Scholar] [CrossRef]
- Liu, S.; Zhao, Y.; Li, T.; Hu, T.; Zheng, K.; Shen, M.; Long, H. Removal of Micro/Nanoplastics in Constructed Wetland: Efficiency, Limitations and Perspectives. Chem. Eng. J. 2023, 475, 146033. [Google Scholar] [CrossRef]
- Wang, L.; Gao, Y.; Jiang, W.; Chen, J.; Chen, Y.; Zhang, X.; Wang, G. Microplastics with Cadmium Inhibit the Growth of Vallisneria Natans (Lour.) Hara Rather than Reduce Cadmium Toxicity. Chemosphere 2021, 266, 128979. [Google Scholar] [CrossRef]
- Wu, S.; Cai, C.; Wang, W.; Bao, M.; Huang, J.; Dai, Y.; Wang, Y.; Cheng, S. The Interaction of Microplastic and Heavy Metal in Bioretention Cell: Contributions of Water-Soil-Plant System. Environ. Pollut. 2024, 361, 124853. [Google Scholar] [CrossRef]
- Boguniewicz-Zabłocka, J.; Capodaglio, A.G. Analysis of Alternatives for Sustainable Stormwater Management in Small Developments of Polish Urban Catchments. Sustainability 2020, 12, 10189. [Google Scholar] [CrossRef]
- Kayhanian, M.; Li, H.; Harvey, J.T.; Liang, X. Application of Permeable Pavements in Highways for Stormwater Runoff Management and Pollution Prevention: California Research Experiences. Int. J. Transp. Sci. Technol. 2019, 8, 358–372. [Google Scholar] [CrossRef]
- Abduljaleel, Y.; Chikabvumbwa, S.R.; Haq, F.U. Assessing the Efficacy of Permeable Interlocking Concrete Pavers (PICP) in Managing Stormwater Runoff under Climate Change and Land Use Scenarios. J. Hydrol. 2025, 646, 132329. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency’s (EPA) Office of Water (OW). Stormwater Best Management Practice Permeable Pavements Minimum Measure: Post Construction Stormwater Management in New Development and Redevelopment Subcategory: Infiltration; U.S. Environmental Protection Agency: Washington, DC, USA, 2021.
- Rasmussen, L.A.; Lykkemark, J.; Andersen, T.R.; Vollertsen, J. Permeable Pavements: A Possible Sink for Tyre Wear Particles and Other Microplastics? Sci. Total Environ. 2023, 869, 161770. [Google Scholar] [CrossRef]
- Mitchell, C.J.; Jayakaran, A.D. Mitigating Tire Wear Particles and Tire Additive Chemicals in Stormwater with Permeable Pavements. Sci. Total Environ. 2024, 908, 168236. [Google Scholar] [CrossRef] [PubMed]
- Tatsii, D.; Bucci, S.; Bhowmick, T.; Guettler, J.; Bakels, L.; Bagheri, G.; Stohl, A. Shape Matters: Long-Range Transport of Microplastic Fibers in the Atmosphere. Environ. Sci. Technol. 2024, 58, 671–682. [Google Scholar] [CrossRef] [PubMed]
- McIlwraith, H.K.; Lindeque, P.K.; Miliou, A.; Tolhurst, T.J.; Cole, M. Microplastic Shape Influences Fate in Vegetated Wetlands. Environ. Pollut. 2024, 345, 123492. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Zhang, Z.; Xiong, J.; Shi, W.P.; Liang, L.; Zhang, F.; Zhang, F. Nitrogen Removal Performance of Bioretention Cells under Polyethylene (PE) Microplastic Stress. Environ. Pollut. 2023, 338, 122655. [Google Scholar] [CrossRef]
- Zhang, S.; Shen, C.; Zhang, F.; Wei, K.; Shan, S.; Zhao, Y.; Man, Y.B.; Wong, M.H.; Zhang, J. Microplastics Removal Mechanisms in Constructed Wetlands and Their Impacts on Nutrient (Nitrogen, Phosphorus and Carbon) Removal: A Critical Review. Sci. Total Environ. 2024, 918, 170654. [Google Scholar] [CrossRef]
- Li, Z.; Liu, W.; Rahaman, M.H.; Chen, Z.; Yan, J.; Zhai, J. Polystyrene Microplastics Accumulation in Lab-Scale Vertical Flow Constructed Wetlands: Impacts and Fate. J. Hazard. Mater. 2024, 461, 132576. [Google Scholar] [CrossRef]
- Panduro, T.E.; Nainggolan, D.; Zandersen, M. Cost-Effectiveness Analysis of Urban Nature-Based Solutions: A Stepwise Ranking Approach. Nat.-Based Solut. 2024, 6, 100186. [Google Scholar] [CrossRef]
- Cost of Permeable Paver Driveway: 7 Powerful 2025 Benefits. Available online: https://dubepropertymaintenance.com/cost-of-permeable-paver-driveway/?utm_source=chatgpt.com (accessed on 12 June 2025).
- Katare, S. Sustainable and Cost-Effective Development of Pervious Paver Block Made with RHA (Rice Husk Ash) and RAP (Recycled Asphalt Pavement). Int. J. Res. Appl. Sci. Eng. Technol. 2023, 11, 950–965. [Google Scholar] [CrossRef]
- Stormwater Best Management Practice-Bioretention (Rain Garden). Available online: https://www.epa.gov/system/files/documents/2021-11/bmp-bioretention-rain-gardens.pdf (accessed on 12 June 2025).
- Stormwater Best Management Practice-Stormwater Wetland. Available online: https://www.epa.gov/system/files/documents/2021-11/bmp-stormwater-wetland.pdf (accessed on 12 June 2025).
Place | Microplastics Concentration | Shape | Type of Material | References |
---|---|---|---|---|
Recycled Tire Parking | 186 ± 173 p/L | 79% fibers 17% rubber 1% fragments | PES > PU > PE | [33] |
Three Ponds in Urban Area | 0.5–22.9 p/L | - | PP > PE > PVC > PS | [99] |
Urban Area, High Traffic | 0.4–3.2 p/L | 58% fibers 15% fragments 21% microbeads 4% rubber | - | [35] |
Urban Area, Residential and Offices | 8.28 ± 6.90 p/L | 20–97% fibers 10–64% rubber 5–40% fragments | WF > WF/PET > PP | [35] |
Urban Redevelopment Area | 9–280 p/L | 47% asphalt 39% TWP | - | [100] |
Densely Populated Urban Area | 0.7–200.4 p/L | 47.7% fibers 42.5% fragments | - | [37] |
Car Park in City Center | 3.8–59 p/L w tym 2.5–58 p/L TWP | 80% fibers 20% fragments | PET, PP, PVC | [100] |
Metropolitan City | 0.4–36.48 p/L | films, fragments, fibers, foams, pellets | PE, PP, PET, PS | [101] |
Stormwater Ponds | 270 p/L | fibers, fragments | PP > poliester > akryl > inne > PA > PE > PS | [102] |
Stormwater Drains | 9.22–20.21 p/L | 86–99% fibers, 1–13% fragments | PP, PE, PTFE, PVDF | [103] |
Urban Area | 0.7–200.4 p/L | 47.7% fibers 42.5% fragments | PP, PE, PS | [37,104] |
City Roads | 0.68–5.9 mg/g | - | PP, PS, PET, PVC, PMMA, PE | [104] |
Metropolitan City | 57.5 MP units/kg | 57% fragnents, 27% pellet, 9% fibres, 6% film, | PE, PES, PS, PA, PP | [97] |
Urban Area—Streams | 17–303 p/m3 | 39% fragments, 34% fibers | PE, PET, PVC, EVA | [105] |
Urban Area | 118–8894 items/kg | Fragments, fibers, pellets | PP, PS, poliester, PE, PU, PVC, PA | [80] |
Conventional Stormwater Management System—Gray Infrastructure (Stormwater Drainage) | Green Infrastructure in Stormwater Treatment (Bioretention System, Constructed Wetlands, and Permeable Pavements) |
---|---|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Permeable Pavements | Conventional Surface | |
---|---|---|
Water Retention | High | Very low |
Structural Capacity | Low | High |
Vertical Permeability | High | Very low |
Pavement Pollution Level | Low | High |
Pavement Surface Overflow | Low | High |
Groundwater Resource | Yes | No |
Noise Level | Low | High |
Urban Heat Island | Medium | High |
Vegetation Growth | Supports | Does not support |
Reduction in Pollution from Stormwater | Yes | No |
Microplastic Removal | Yes > 90% | No |
Investment Cost | Medium/high | Low |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwarciak-Kozłowska, A.; Madeła, M. The Occurrence and Removal of Microplastics from Stormwater Using Green Infrastructure. Water 2025, 17, 2089. https://doi.org/10.3390/w17142089
Kwarciak-Kozłowska A, Madeła M. The Occurrence and Removal of Microplastics from Stormwater Using Green Infrastructure. Water. 2025; 17(14):2089. https://doi.org/10.3390/w17142089
Chicago/Turabian StyleKwarciak-Kozłowska, Anna, and Magdalena Madeła. 2025. "The Occurrence and Removal of Microplastics from Stormwater Using Green Infrastructure" Water 17, no. 14: 2089. https://doi.org/10.3390/w17142089
APA StyleKwarciak-Kozłowska, A., & Madeła, M. (2025). The Occurrence and Removal of Microplastics from Stormwater Using Green Infrastructure. Water, 17(14), 2089. https://doi.org/10.3390/w17142089