Strategic Planning for Nature-Based Solutions in Heritage Cities: Enhancing Urban Water Sustainability
Abstract
1. Introduction
2. Methods
2.1. Principles of the SWOT
2.2. Description of Elements for SWOT
2.2.1. Description of Strengths
2.2.2. Description of Weaknesses
2.2.3. Description of Opportunities
2.2.4. Description of Threats
2.3. IFE-EFE Matrix
3. Results and Discussion
3.1. Breakdown of Outcomes by SWOT Category
3.1.1. Strengths
3.1.2. Weaknesses
3.1.3. Opportunities
3.1.4. Threats
3.2. IFE-EFE Matrix
3.3. Internal Factor Evaluation (IFE)
3.4. External Factor Evaluation (EFE)
3.5. The Impact/Uncertainty Grid
3.6. Strength + Opportunity (SO) Strategy
- (1)
- Interdisciplinary Policy Formulation (S6 + O8)
- (2)
- Community-driven NBS Design and Implementation (S6 + S7)
- (3)
- Legislation-backed Participatory Platforms (S7 + O8)
- (4)
- Integrated Strategies
3.7. Weakness + Opportunity (WO) Strategy
- (1)
- Resource Optimization and Legal Synergy (W7 + O8)
- (2)
- Public–Private Partnerships for Resource Mobilization (W7 + O8)
- (3)
- Regulatory Frameworks Encouraging Resource-Sharing Communities (W7 + O8):
- (4)
- Integrated Strategies
3.8. Limitation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Garrote, J.; Díez-Herrero, A.; Escudero, C.; García, I. A Framework Proposal for Regional-Scale Flood-Risk Assessment of Cultural Heritage Sites and Application to the Castile and León Region (Central Spain). Water 2020, 12, 329. [Google Scholar] [CrossRef]
- Reimann, L.; Vafeidis, A.T.; Brown, S.; Hinkel, J.; Tol, R.S.J. Mediterranean UNESCO World Heritage at risk from coastal flooding and erosion due to sea-level rise. Nat. Commun. 2018, 9, 4161. [Google Scholar] [CrossRef] [PubMed]
- Porębska, A.; Godyń, I.; Radzicki, K.; Nachlik, E.; Rizzi, P. Built Heritage, Sustainable Development, and Natural Hazards: Flood Protection and UNESCO World Heritage Site Protection Strategies in Krakow, Poland. Sustainability 2019, 11, 4886. [Google Scholar] [CrossRef]
- Sesana, E.; Gagnon, A.; Ciantelli, C.; Cassar, J.; Hughes, J. Climate change impacts on cultural heritage: A literature review. WIREs Clim. Change 2021, 12, e710. [Google Scholar] [CrossRef]
- Jato-Espino, D.; Toro-Huertas, E.I.; Güereca, L.P. Lifecycle sustainability assessment for the comparison of traditional and sustainable drainage systems. Sci. Total Environ. 2022, 817, 152959. [Google Scholar] [CrossRef] [PubMed]
- Nóblega Carriquiry, A.; Sauri, D.; March, H. Community Involvement in the Implementation of Sustainable Urban Drainage Systems (SUDSs): The Case of Bon Pastor, Barcelona. Sustainability 2020, 12, 510. [Google Scholar] [CrossRef]
- Todeschini, S. Innovative and Reliable Assessment of Polluted Stormwater Runoff for Effective Stormwater Management. Water 2024, 16, 16. [Google Scholar] [CrossRef]
- Roces García, J.; Sañudo-Fontaneda, L.; Ramírez, R.; Rodríguez, J.; Coupe, S.; Hunt, W.; Busto-Díez, A. Exploring social perception on Sustainable Drainage Systems: Insights from practitioners and academics. In Proceedings of the Novatech 2023 11e Conférence Internationale sur L’eau, Lyon, France, 3–7 July 2023. [Google Scholar]
- Pochwat, K. Assessment method for the hydraulic efficiency of urban drainage system components. J. Hydrol. 2025, 655, 132975. [Google Scholar] [CrossRef]
- Pochwat, K. Assessment of forced retention efficiency in stormwater drainage systems. J. Environ. Manag. 2024, 370, 122886. [Google Scholar] [CrossRef] [PubMed]
- Pochwat, K. Digital upgrade of drainage detention devices for forced retention. J. Environ. Manag. 2025, 373, 123840. [Google Scholar] [CrossRef] [PubMed]
- Maiolo, M.; Palermo, S.A.; Brusco, A.C.; Pirouz, B.; Turco, M.; Vinci, A.; Spezzano, G.; Piro, P. On the Use of a Real-Time Control Approach for Urban Stormwater Management. Water 2020, 12, 2842. [Google Scholar] [CrossRef]
- Tozer, L.; Hörschelmann, K.; Anguelovski, I.; Bulkeley, H.; Lazova, Y. Whose city? Whose nature? Towards inclusive nature-based solution governance. Cities 2020, 107, 102892. [Google Scholar] [CrossRef]
- Castellar, J.A.C.; Popartan, L.A.; Pueyo-Ros, J.; Atanasova, N.; Langergraber, G.; Säumel, I.; Corominas, L.; Comas, J.; Acuña, V. Nature-based solutions in the urban context: Terminology, classification and scoring for urban challenges and ecosystem services. Sci. Total Environ. 2021, 779, 146237. [Google Scholar] [CrossRef] [PubMed]
- Kabisch, N.; Frantzeskaki, N.; Pauleit, S.; Naumann, S.; Davis, M.; Artmann, M.; Haase, D.; Knapp, S.; Korn, H.; Stadler, J.; et al. Nature-based solutions to climate change mitigation and adaptation in urban areas: Perspectives on indicators, knowledge gaps, barriers, and opportunities for action. Ecol. Soc. 2016, 21, 39. [Google Scholar] [CrossRef]
- Guzman, P. Assessing the sustainable development of the historic urban landscape through local indicators. Lessons from a Mexican World Heritage City. J. Cult. Herit. 2020, 46, 320–327. [Google Scholar] [CrossRef]
- Guzman, P.; Pereira Roders, A.R.; Colenbrander, B. Impacts of Common Urban Development Factors on Cultural Conservation in World Heritage Cities: An Indicators-Based Analysis. Sustainability 2018, 10, 853. [Google Scholar] [CrossRef]
- Amirshenava, S.; Osanloo, M. Strategic planning of post-mining land uses: A semi-quantitative approach based on the SWOT analysis and IE matrix. Resour. Policy 2022, 76, 102585. [Google Scholar] [CrossRef]
- Capps, C.J.; Glissmeyer, M.D. Extending The Competitive Profile Matrix Using Internal Factor Evaluation And External Factor Evaluation Matrix Concepts. J. Appl. Bus. Res. (JABR) 2012, 28, 1059–1062. [Google Scholar] [CrossRef]
- Astika, I.M.; Suharyo, O. Internal and External Enviromental Strategy Analysis Using SWOT Matrix and QSPM. Int. J. Progress. Sci. Technol. 2021, 25, 507. [Google Scholar] [CrossRef]
- Banihashemi, S.A.; Rajaei, Z. Assessment of Environmental Conditions and Internal Capabilities Affecting University Strategies (IFE, EFE, SWOT & AHP Models). Int. J. Asian Soc. Sci. 2016, 6, 558–567. [Google Scholar] [CrossRef][Green Version]
- van den Bosch, M.; Ode Sang, Å. Urban natural environments as nature-based solutions for improved public health—A systematic review of reviews. Environ. Res. 2017, 158, 373–384. [Google Scholar] [CrossRef] [PubMed]
- Sandifer, P.A.; Sutton-Grier, A.E.; Ward, B.P. Exploring connections among nature, biodiversity, ecosystem services, and human health and well-being: Opportunities to enhance health and biodiversity conservation. Ecosyst. Serv. 2015, 12, 1–15. [Google Scholar] [CrossRef]
- Nelson, D.R.; Bledsoe, B.P.; Ferreira, S.; Nibbelink, N.P. Challenges to realizing the potential of nature-based solutions. Curr. Opin. Environ. Sustain. 2020, 45, 49–55. [Google Scholar] [CrossRef]
- Neugarten, R.; Langhammer, P.; Osipova, E.; Bagstad, K.; Bhagabati, N.; Butchart, S.; Dudley, N.; Elliott, V.; Gerber, L.; Gutierrrez, C.; et al. Tools for Measuring, Modelling, and Valuing Ecosystem Services: Guidance for Key Biodiversity Areas, Natural World Heritage Sites, and Protected Areas; International Union for Conservation of Nature: Gland, Switzerland, 2018. [Google Scholar]
- Pacetti, T.; Cioli, S.; Castelli, G.; Bresci, E.; Pampaloni, M.; Pileggi, T.; Caporali, E. Planning Nature Based Solutions against urban pluvial flooding in heritage cities: A spatial multi criteria approach for the city of Florence (Italy). J. Hydrol. Reg. Stud. 2022, 41, 101081. [Google Scholar] [CrossRef]
- Maghrabi, A.; Alyamani, A.; Addas, A. Exploring Pattern of Green Spaces (GSs) and Their Impact on Climatic Change Mitigation and Adaptation Strategies: Evidence from a Saudi Arabian City. Forests 2021, 12, 629. [Google Scholar] [CrossRef]
- Cortinovis, C.; Zulian, G.; Geneletti, D. Assessing Nature-Based Recreation to Support Urban Green Infrastructure Planning in Trento (Italy). Land 2018, 7, 112. [Google Scholar] [CrossRef]
- Vojinovic, Z.; Alves, A.; Gómez, J.P.; Weesakul, S.; Keerakamolchai, W.; Meesuk, V.; Sanchez, A. Effectiveness of small- and large-scale Nature-Based Solutions for flood mitigation: The case of Ayutthaya, Thailand. Sci. Total Environ. 2021, 789, 147725. [Google Scholar] [CrossRef] [PubMed]
- Kato-Huerta, J.; Geneletti, D. Environmental justice implications of nature-based solutions in urban areas: A systematic review of approaches, indicators, and outcomes. Environ. Sci. Policy 2022, 138, 122–133. [Google Scholar] [CrossRef]
- Anguelovski, I. New Directions in Urban Environmental Justice. J. Plan. Educ. Res. 2013, 33, 160–175. [Google Scholar] [CrossRef]
- Borah, A.; Bardhan, R.; Bhatia, U. Protecting heritage: Insights into effective flood management using green infrastructure in a highly urbanized environment. Int. J. Disaster Risk Reduct. 2023, 98, 104075. [Google Scholar] [CrossRef]
- Koko, I.A.; Misana, S.B.; Kessler, A.; Fleskens, L. Valuing ecosystem services: Stakeholders’ perceptions and monetary values of ecosystem services in the Kilombero wetland of Tanzania. Ecosyst. People 2020, 16, 411–426. [Google Scholar] [CrossRef]
- Claudia, T.; Luigi, P. A Novel Paradigm to Achieve Sustainable Regeneration in Historical Centres with Cultural Heritage. Procedia Soc. Behav. Sci. 2016, 223, 693–697. [Google Scholar] [CrossRef][Green Version]
- Yung, E.H.K.; Chan, E.H.W. Implementation challenges to the adaptive reuse of heritage buildings: Towards the goals of sustainable, low carbon cities. Habitat Int. 2012, 36, 352–361. [Google Scholar] [CrossRef]
- Ferreira, V.; Barreira, A.P.; Loures, L.; Antunes, D.; Panagopoulos, T. Stakeholders’ Engagement on Nature-Based Solutions: A Systematic Literature Review. Sustainability 2020, 12, 640. [Google Scholar] [CrossRef]
- Wild, T.C.; Henneberry, J.; Gill, L. Comprehending the multiple ‘values’ of green infrastructure—Valuing nature-based solutions for urban water management from multiple perspectives. Environ. Res. 2017, 158, 179–187. [Google Scholar] [CrossRef] [PubMed]
- Anderson, C.C.; Renaud, F.G. A review of public acceptance of nature-based solutions: The ‘why’, ‘when’, and ‘how’ of success for disaster risk reduction measures. Ambio 2021, 50, 1552–1573. [Google Scholar] [CrossRef] [PubMed]
- Sharon, O.; Fishman, S.N.; Ruhl, J.B.; Olander, L.; Roady, S.E. Ecosystem services and judge-made law: A review of legal cases in common law countries. Ecosyst. Serv. 2018, 32, 9–21. [Google Scholar] [CrossRef]
- Medda, F.; Lipparini, F. Impact investment for urban cultural heritage. City Cult. Soc. 2021, 26, 100413. [Google Scholar] [CrossRef]
- Finewood, M.H.; Marissa, M.A.; Zivkovich, J. Green Infrastructure and the Hidden Politics of Urban Stormwater Governance in a Postindustrial City. Ann. Am. Assoc. Geogr. 2019, 109, 909–925. [Google Scholar] [CrossRef]
- Kremer, P.; Hamstead, Z.; Haase, D.; McPhearson, T.; Frantzeskaki, N.; Andersson, E.; Kabisch, N.; Larondelle, N.; Rall, E.; Baró, F.; et al. Key insights for the future of urban ecosystem services research. Ecol. Soc. 2016, 21, 29. [Google Scholar] [CrossRef]
- Toxopeus, H.; Polzin, F. Reviewing financing barriers and strategies for urban nature-based solutions. J. Environ. Manag. 2021, 289, 112371. [Google Scholar] [CrossRef] [PubMed]
- Nesshöver, C.; Assmuth, T.; Irvine, K.N.; Rusch, G.M.; Waylen, K.A.; Delbaere, B.; Haase, D.; Jones-Walters, L.; Keune, H.; Kovacs, E.; et al. The science, policy and practice of nature-based solutions: An interdisciplinary perspective. Sci. Total Environ. 2017, 579, 1215–1227. [Google Scholar] [CrossRef] [PubMed]
- Nofal, E. Participatory Design Workshops: Interdisciplinary Encounters within a Collaborative Digital Heritage Project. Heritage 2023, 6, 2752–2766. [Google Scholar] [CrossRef]
- Eliasson, I.; Knez, I.; Fredholm, S. Heritage Planning in Practice and the Role of Cultural Ecosystem Services. Herit. Soc. 2019, 11, 44–69. [Google Scholar] [CrossRef]
- Tengberg, A.; Fredholm, S.; Eliasson, I.; Knez, I.; Saltzman, K.; Wetterberg, O. Cultural ecosystem services provided by landscapes: Assessment of heritage values and identity. Ecosyst. Serv. 2012, 2, 14–26. [Google Scholar] [CrossRef]
- Vallet, A.; Locatelli, B.; Levrel, H.; Dendoncker, N.; Barnaud, C.; Conde, Y. Linking equity, power, and stakeholders’ roles in relation to ecosystem services. Ecol. Soc. 2019, 24, 214. [Google Scholar] [CrossRef]
- Vajeethaveesin, T.; Panboonyuen, T.; Lawawironjwong, S.; Srestasathiern, P.; Jaiyen, S.; Jitkajornwanich, K. A Performance Comparison between GIS-based and Neuron Network Methods for Flood Susceptibility Assessment in Ayutthaya Province. Trends Sci. 2022, 19, 2038. [Google Scholar] [CrossRef]
- Damayanti, V.; Dipowijoyo, H.; Kurniawan, K.R.; Rosbergen, J.; Timmer, P.; Wijayanto, P. Two Towns in Indonesia, One on the Coast, the Other “A City of One Thousand Rivers”: Historic Urban Landscape (HUL) Quick Scan Method Workshops and Publication of Handbook for Indonesian University Lecturers. Blue Pap. 2022, 1, 119–127. [Google Scholar] [CrossRef]
- Castro-Calviño, L.; Rodríguez-Medina, J.; López-Facal, R. Heritage education under evaluation: The usefulness, efficiency and effectiveness of heritage education programmes. Humanit. Soc. Sci. Commun. 2020, 7, 146. [Google Scholar] [CrossRef]
- Yin, S.; Kasraian, D.; Wesemael, P.J.V. Children and Urban Green Infrastructure in the Digital Age: A Systematic Literature Review. Int. J. Environ. Res. Public Health 2022, 19, 5906. [Google Scholar] [CrossRef] [PubMed]
- Bush, J. The role of local government greening policies in the transition towards nature-based cities. Environ. Innov. Soc. Transit. 2020, 35, 35–44. [Google Scholar] [CrossRef]
- Gustafsson, C.; Polesie, T. Return on heritage investments: Measurable economic results of the conservation of rossared manor house. BDC Boll. Del Cent. Calza Bini 2013, 13, 101–118. [Google Scholar] [CrossRef]
- Stanziola, J. Some more unequal than others: Alternative financing for museums, libraries and archives in England. Cult. Trends 2011, 20, 113–140. [Google Scholar] [CrossRef]
- Wang, M.; Liu, M.; Zhang, D.; Zhang, Y.; Su, J.; Zhou, S.; Bakhshipour, A.E.; Tan, S.K. Assessing hydrological performance for optimized integrated grey-green infrastructure in response to climate change based on shared socio-economic pathways. Sustain. Cities Soc. 2023, 91, 104436. [Google Scholar] [CrossRef]
- Wang, M.; Fu, X.; Zhang, D.; Chen, F.; Su, J.; Zhou, S.; Li, J.; Zhong, Y.; Tan, S.K. Urban Flooding Risk Assessment in the Rural-Urban Fringe Based on a Bayesian Classifier. Sustainability 2023, 15, 5740. [Google Scholar] [CrossRef]
ID | Themes | Agree (%) | Neutral (%) | Disagree (%) | Sum | Total Importance Score |
---|---|---|---|---|---|---|
S1 | Enhancement of Natural Comprehension | 100 | 0 | 0 | 305 | 26 |
S2 | Diversity and Adaptability of Applications | 100 | 0 | 0 | 301 | 29 |
S3 | Clarity of the NBS Concept | 100 | 0 | 0 | 259 | 14 |
S4 | NBS as a Tool for Advocacy and Communication | 97 | 3 | 0 | 271 | 3 |
S5 | Integration of Multiple Values | 100 | 0 | 0 | 328 | 55 |
S6 | Sustainability Through Interdisciplinary Approaches | 100 | 0 | 0 | 305 | 24 |
S7 | Fostering Social Participation | 100 | 0 | 0 | 296 | 15 |
S8 | Reconnecting Humanity with Nature | 100 | 0 | 0 | 347 | 75 |
S9 | Promotion of Environmental Equity | 100 | 0 | 0 | 279 | 0 |
ID | Themes | Agree (%) | Neutral (%) | Disagree (%) | Sum | Total Importance Score |
---|---|---|---|---|---|---|
W1 | Underdevelopment of the NBS Concept | 92 | 8 | 0 | 254 | 15 |
W2 | Inadequate Understanding of NBS Ecosystem Services | 87 | 8 | 5 | 268 | 51 |
W3 | Insufficiency of Scientific Basis for NBS Applications | 92 | 5 | 3 | 271 | 38 |
W4 | Oversimplification in Measuring Ecosystem Services | 80 | 20 | 0 | 243 | 8 |
W5 | Some Ecosystem Services are Underrepresented | 72 | 25 | 3 | 235 | 0 |
W6 | Challenges in Quantifying NBS Ecosystem Services | 100 | 0 | 0 | 298 | 64 |
W7 | Resource Intensity for Implementing NBS | 92 | 8 | 0 | 282 | 50 |
W8 | Lack of Comprehensive Assessment Tools | 90 | 10 | 0 | 256 | 8 |
W9 | Overemphasis on the Monetary Value of Ecosystem Services | 65 | 30 | 5 | 237 | 6 |
ID | Themes | Agree (%) | Neutral (%) | Disagree (%) | Sum | Total Importance Score |
---|---|---|---|---|---|---|
O1 | Alignment with Existing Policy and Strategy | 100 | 0 | 0 | 316 | 54 |
O2 | Consistency with Current Technology and Methods | 100 | 0 | 0 | 284 | 11 |
O3 | Gaining Wide Recognition and Support | 100 | 0 | 0 | 345 | 101 |
O4 | Upholding High Standards of Ecosystem Management | 100 | 0 | 0 | 299 | 12 |
O5 | Ample Financial Support | 92 | 5 | 3 | 270 | 3 |
O6 | Administrative Consensus of Local Governments | 100 | 0 | 0 | 299 | 2 |
O7 | Enhancing Environmental Protection Awareness | 100 | 0 | 0 | 328 | 43 |
O8 | Sound Laws and Regulations | 100 | 0 | 0 | 301 | 6 |
O9 | Progress at the Technical Level | 100 | 0 | 0 | 297 | 8 |
ID | Themes | Agree (%) | Neutral (%) | Disagree (%) | Sum | Total Importance Score |
---|---|---|---|---|---|---|
T1 | Competition with Multiple Alternatives | 100 | 0 | 0 | 284 | 63 |
T2 | Organizational Challenges of Interdisciplinary Work | 100 | 0 | 0 | 286 | 59 |
T3 | Being Boycotted | 87 | 13 | 0 | 256 | 21 |
T4 | Insufficient Funding | 100 | 0 | 0 | 301 | 74 |
T5 | Inadequate Institutional Capacity | 100 | 0 | 0 | 257 | 8 |
T6 | Researcher Interest | 44 | 48 | 8 | 215 | 0 |
T7 | Governmental Disinterest | 70 | 30 | 0 | 234 | 4 |
T8 | Lack of Public Acceptance | 90 | 10 | 0 | 256 | 5 |
T9 | Misuse of Environmental Protection Tools and Methods | 64 | 23 | 13 | 238 | 6 |
Theme | Weight (%) | Rate | IFE | Sum-IFE | Theme | Weight (%) | Rate | IFE | Sum-EFE |
---|---|---|---|---|---|---|---|---|---|
S1 | 6.058 | 4 | 0.242 | 2.900 | O1 | 6.238 | 4 | 0.250 | 2.797 |
S2 | 5.978 | 4 | 0.239 | O2 | 5.606 | 4 | 0.224 | ||
S3 | 5.144 | 4 | 0.206 | O3 | 6.810 | 4 | 0.272 | ||
S4 | 5.382 | 3 | 0.161 | O4 | 5.902 | 4 | 0.236 | ||
S5 | 6.514 | 4 | 0.261 | O5 | 5.330 | 3 | 0.160 | ||
S6 | 6.058 | 4 | 0.242 | O6 | 5.902 | 3 | 0.177 | ||
S7 | 5.879 | 4 | 0.235 | O7 | 6.475 | 4 | 0.259 | ||
S8 | 6.892 | 4 | 0.276 | O8 | 5.942 | 4 | 0.238 | ||
S9 | 5.541 | 3 | 0.166 | O9 | 5.863 | 4 | 0.235 | ||
W1 | 5.045 | 2 | 0.101 | T1 | 5.606 | 1 | 0.056 | ||
W2 | 5.323 | 2 | 0.106 | T2 | 5.645 | 1 | 0.056 | ||
W3 | 5.382 | 2 | 0.108 | T3 | 5.053 | 2 | 0.101 | ||
W4 | 4.826 | 2 | 0.097 | T4 | 5.942 | 1 | 0.059 | ||
W5 | 4.667 | 2 | 0.093 | T5 | 5.073 | 2 | 0.101 | ||
W6 | 5.919 | 1 | 0.059 | T6 | 4.244 | 2 | 0.085 | ||
W7 | 5.601 | 2 | 0.112 | T7 | 4.619 | 2 | 0.092 | ||
W8 | 5.084 | 2 | 0.102 | T8 | 5.053 | 2 | 0.101 | ||
W9 | 4.707 | 2 | 0.094 | T9 | 4.698 | 2 | 0.094 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Zhao, J.; Ikram, R.M.A.; Tan, S.K.; Wang, M. Strategic Planning for Nature-Based Solutions in Heritage Cities: Enhancing Urban Water Sustainability. Water 2025, 17, 2110. https://doi.org/10.3390/w17142110
Liu Y, Zhao J, Ikram RMA, Tan SK, Wang M. Strategic Planning for Nature-Based Solutions in Heritage Cities: Enhancing Urban Water Sustainability. Water. 2025; 17(14):2110. https://doi.org/10.3390/w17142110
Chicago/Turabian StyleLiu, Yongqi, Jiayu Zhao, Rana Muhammad Adnan Ikram, Soon Keat Tan, and Mo Wang. 2025. "Strategic Planning for Nature-Based Solutions in Heritage Cities: Enhancing Urban Water Sustainability" Water 17, no. 14: 2110. https://doi.org/10.3390/w17142110
APA StyleLiu, Y., Zhao, J., Ikram, R. M. A., Tan, S. K., & Wang, M. (2025). Strategic Planning for Nature-Based Solutions in Heritage Cities: Enhancing Urban Water Sustainability. Water, 17(14), 2110. https://doi.org/10.3390/w17142110