Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (142)

Search Parameters:
Keywords = two-dimensional perovskite

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
35 pages, 4880 KB  
Review
Perovskite Nanocrystals, Quantum Dots, and Two-Dimensional Structures: Synthesis, Optoelectronics, Quantum Technologies, and Biomedical Imaging
by Kamran Ullah, Anwar Ul Haq, Sergii Golovynskyi, Tarak Hidouri, Junle Qu and Iuliia Golovynska
Nanomaterials 2026, 16(1), 30; https://doi.org/10.3390/nano16010030 - 25 Dec 2025
Viewed by 970
Abstract
Perovskite crystals, nanocrystals, quantum dots (QDs), and two-dimensional (2D) materials are at the forefront of optoelectronics and quantum optics, offering groundbreaking potential for a wide range of applications, including photovoltaics, light-emitting devices, and quantum information technologies. Perovskite materials, with their remarkable, tunable bandgaps, [...] Read more.
Perovskite crystals, nanocrystals, quantum dots (QDs), and two-dimensional (2D) materials are at the forefront of optoelectronics and quantum optics, offering groundbreaking potential for a wide range of applications, including photovoltaics, light-emitting devices, and quantum information technologies. Perovskite materials, with their remarkable, tunable bandgaps, high absorption coefficients, and efficient charge transport, have revolutionized the field of light-emitting diodes, photodetectors, and solar cells. QDs, owing to their size-dependent quantum confinement and high photoluminescence quantum yields, are crucial for applications in display technologies, imaging, and quantum computing. The synthesis of QDs from perovskite-based materials yields a significant enhancement in the performance of optoelectronics devices. Furthermore, 2D perovskites have recently exhibited extraordinary carrier mobility, strong light–matter interactions, and mechanical flexibility, making them highly attractive for next-generation optoelectronic applications. Additionally, this review discusses the synergistic potential of hybrid material architectures, where perovskite crystals, QDs, and 2D materials are combined to enhance optoelectronic performance and their role in quantum optics. By analyzing the effects of material structure, surface modifications, and fabrication techniques, this review provides a valuable resource for harnessing the transformative potential of these advanced materials in modern optoelectronic applications. Full article
(This article belongs to the Special Issue Luminescence Properties and Bio-Applications of Nanomaterials)
Show Figures

Figure 1

11 pages, 2223 KB  
Article
Multiferroic Pb(Zr0.52Ti0.48)O3-CoFe2O4 Janus-Type Nanofibers and Their Nanoscale Magnetoelectric Coupling
by Qingfeng Zhu, Ting Wang, Junfeng Zhao, Haijuan Mei and Weiping Gong
Nanomaterials 2026, 16(1), 2; https://doi.org/10.3390/nano16010002 - 19 Dec 2025
Viewed by 367
Abstract
One-dimensional (1D) multiferroic composite nanofibers are known to exhibit enhanced magnetoelectric (ME) coupling compared to their thin-film and bulk counterparts with similar compositions. While measuring their local ME coupling at the nanoscale is essential for understanding multiferroic interactions, it remains challenging due to [...] Read more.
One-dimensional (1D) multiferroic composite nanofibers are known to exhibit enhanced magnetoelectric (ME) coupling compared to their thin-film and bulk counterparts with similar compositions. While measuring their local ME coupling at the nanoscale is essential for understanding multiferroic interactions, it remains challenging due to their complex structure. In this work, multiferroic Pb(Zr0.52Ti0.48)O3-CoFe2O4 (PZT-CFO) Janus-type nanofibers were synthesized by electrospinning. This unique structure is expected to provide a more compact and continuous interface between the ferroelectric and ferromagnetic phases compared to core–shell configurations. X-ray diffraction confirmed the coexistence of the perovskite PZT and spinel CFO phases without detectable impurities. The Janus configuration was directly verified by scanning electron microscopy and Kelvin probe force microscopy, which revealed a distinct surface potential contrast between the two halves of a single nanofiber. Magnetic hysteresis loops demonstrated the macroscopic ferromagnetic behavior of the nanofiber assembly. Local magnetoelectric coupling was probed using piezoresponse force microscopy under an applied magnetic field. An enhancement of the intrinsic piezoresponse from 15 pm to 19 pm. was observed upon applying an 8000 Oe magnetic field, providing direct evidence of strain-mediated ME coupling at the nanoscale. Although no ferroelectric domain switching was observed, likely due to the substrate clamping effect, the observed piezoresponse modulation confirms the functional ME interaction. These findings suggest that the Janus nanofibers hold promise for applications in one-dimensional multiferroic devices. Full article
Show Figures

Figure 1

41 pages, 30141 KB  
Review
Recent Advances in Crystallographic Optimization for High-Performance Two-Dimensional Perovskite Photovoltaic Devices
by Pinghui Yang, Yuexian Cao, Jianhua Wang, Jiaju Zhou, Minyong Du and Dexu Zheng
Photochem 2026, 6(1), 1; https://doi.org/10.3390/photochem6010001 - 19 Dec 2025
Viewed by 432
Abstract
Two-dimensional (2D) metal halide perovskites have attracted considerable interest for their markedly improved environmental stability and versatile compositional tunability compared to their three-dimensional (3D) counterparts. Nevertheless, the anisotropic charge transport caused by insulating organic spacers often leads to inefficient charge transport and limiting [...] Read more.
Two-dimensional (2D) metal halide perovskites have attracted considerable interest for their markedly improved environmental stability and versatile compositional tunability compared to their three-dimensional (3D) counterparts. Nevertheless, the anisotropic charge transport caused by insulating organic spacers often leads to inefficient charge transport and limiting device performance. Precise control over crystallographic orientation, particularly achieving vertical alignment of the inorganic layers, is essential to facilitate out-of-plane charge transport and enhance device efficiency. This review systematically summarizes recent advances in understanding and controlling the crystallographic orientation of 2D perovskites, emphasizing manipulating strategies such as processing optimization, composition engineering, spacer design, solvent selection, and additive assistance to promote vertical alignment of inorganic layers and improve interlayer charge transport. We also discuss the influence of phase distribution, quantum well width, and crystal growth kinetics on device performance. Finally, we outline prevailing challenges and future opportunities for achieving the ideal microstructure and high-efficiency 2D perovskite solar cells. Full article
Show Figures

Graphical abstract

24 pages, 3258 KB  
Review
Progress in Charge Transfer in 2D Metal Halide Perovskite Heterojunctions: A Review
by Chenjing Quan, Jiahe Yan, Xiaofeng Liu, Qing Lin, Beibei Xu and Jianrong Qiu
Materials 2025, 18(24), 5690; https://doi.org/10.3390/ma18245690 - 18 Dec 2025
Viewed by 423
Abstract
Metal halide perovskite (MHP)-based heterojunctions have become a forefront area in the research of optoelectronic functional materials due to their unique layered crystal structure, tunable band gaps, and exceptional optoelectronic properties. Recent studies have demonstrated that interface charge transfer is a crucial factor [...] Read more.
Metal halide perovskite (MHP)-based heterojunctions have become a forefront area in the research of optoelectronic functional materials due to their unique layered crystal structure, tunable band gaps, and exceptional optoelectronic properties. Recent studies have demonstrated that interface charge transfer is a crucial factor in determining the optoelectronic performance of the heterojunction devices. By constructing heterojunctions between MHPs and two-dimensional (2D) materials such as graphene, MoS2, and WS2, efficient electron–hole separation and transport can be achieved, significantly extending carrier lifetimes and suppressing non-radiative recombination. This results in enhanced response speed and energy conversion efficiency in photodetectors, photovoltaic devices, and light-emitting devices (LEDs). In these heterojunctions, the thickness of the MHP layer, interface defect density, and band alignment significantly influence carrier dynamics. Furthermore, techniques such as interface engineering, molecular passivation, and band engineering can effectively optimize charge separation efficiency and improve device stability. The integration of multilayer heterojunctions and flexible designs also presents new opportunities for expanding the functionality of high-performance optoelectronic devices. In this review, we systematically summarize the charge transfer mechanisms in MHP-based heterojunctions and highlight recent advances in their optoelectronic applications. Particular emphasis is placed on the influence of interfacial coupling on carrier generation, transport, and recombination dynamics. Furthermore, the ultrafast dynamic behaviors and band-engineering strategies in representative heterojunctions are elaborated, together with key factors and approaches for enhancing charge transfer efficiency. Finally, the potential of MHP heterojunctions for high-performance optoelectronic devices and emerging photonic systems is discussed. This review aims to provide a comprehensive theoretical and experimental reference for future research and to offer new insights into the rational design and application of flexible optoelectronics, photovoltaics, light-emitting devices, and quantum photonic technologies. Full article
(This article belongs to the Section Energy Materials)
Show Figures

Graphical abstract

13 pages, 1934 KB  
Article
Ligand-Mediated, Temperature-Tuned Synthesis of CsPbBr3 Nanosheets for Ordered Superlattice Assembly
by Zahir Abdalla, Chengqi Liu, Shefiu Kareem, Xiaoqian Wang, Zisheng Tang and Yong Liu
Materials 2025, 18(21), 4885; https://doi.org/10.3390/ma18214885 - 24 Oct 2025
Viewed by 845
Abstract
Two-dimensional (2D) colloidal CsPbBr3 nanosheets (NSs) possess size-dependent optoelectronic properties; however, conventional hot-injection methods often lack precise growth control and well-ordered superlattice self-assembly. Herein, we introduce a modified ligand-assisted hot-injection strategy that promotes direct precursor–ligand interactions prior to solvent mixing, thereby enabling [...] Read more.
Two-dimensional (2D) colloidal CsPbBr3 nanosheets (NSs) possess size-dependent optoelectronic properties; however, conventional hot-injection methods often lack precise growth control and well-ordered superlattice self-assembly. Herein, we introduce a modified ligand-assisted hot-injection strategy that promotes direct precursor–ligand interactions prior to solvent mixing, thereby enabling highly controlled nanosheet superlattice growth. By adjusting the reaction temperature from 130 to 150 °C, we obtained rectangular nanosheets with monodisperse, well-defined thicknesses of 3.35 ± 0.05 nm and 4.05 ± 0.09 nm at 130 and 140 °C, respectively, both below the 7 nm exciton Bohr diameter, consistent with strong quantum confinement. The resulting superlattices exhibited sharp, tunable photoluminescence peaks at 462, 464, and 513 nm, with time-resolved PL revealing a clear size–lifetime correlation, where smaller lateral superlattices at 130 °C showed a short decay time of 8.65 ns, intermediate growth at 140 °C yielded 15.42 ns, and larger lateral superlattices at 150 °C reached 35.49 ns. Importantly, the modified synthesis facilitated the formation of ordered superlattices that preserved their intrinsic emission properties, underscoring their structural stability and scalability. These findings establish a direct link between ligand-mediated synthesis, reaction temperature, nanosheet dimensions, and optical performance, offering a pathway to high-quality perovskite NS superlattices for advanced optoelectronic applications such as light-emitting diodes and sensors. Full article
(This article belongs to the Special Issue Advanced Materials in Photoelectrics and Photonics)
Show Figures

Figure 1

13 pages, 1889 KB  
Article
Dimension Tailoring of Quasi-2D Perovskite Films Based on Atmosphere Control Toward Enhanced Amplified Spontaneous Emission
by Zijia Wang, Xuexuan Huang, Zixuan Song, Chiyu Guo, Liang Tao, Shibo Wei, Ke Ren, Yuze Wu, Xuejiao Sun and Chenghao Bi
Materials 2025, 18(19), 4628; https://doi.org/10.3390/ma18194628 - 7 Oct 2025
Viewed by 743
Abstract
Quasi-two-dimensional (Q2D) perovskite films have garnered significant attention as novel gain media for lasers due to their tunable bandgap, narrow linewidth, and solution processability. Q2D perovskites endowed with intrinsic quantum well structures demonstrate remarkable potential as gain media for cost-effective miniaturized lasers, owing [...] Read more.
Quasi-two-dimensional (Q2D) perovskite films have garnered significant attention as novel gain media for lasers due to their tunable bandgap, narrow linewidth, and solution processability. Q2D perovskites endowed with intrinsic quantum well structures demonstrate remarkable potential as gain media for cost-effective miniaturized lasers, owing to their superior ambient stability and enhanced photon confinement capabilities. However, the mixed-phase distribution within Q2D films constitutes a critical determinant of their optical properties, exhibiting pronounced sensitivity to specific fabrication protocols and processing parameters, including annealing temperature, duration, antisolvent volume, injection timing, and dosing rate. These factors frequently lead to broad phase distribution in Q2D perovskite films, thereby inducing incomplete exciton energy transfer and multiple emission peaks, while simultaneously making the fabrication processes intricate and reducing reproducibility. Here, we report a novel annealing-free and antisolvent-free method for the preparation of Q2D perovskite films fabricated in ambient atmosphere. By constructing a tailored mixed-solvent vapor atmosphere and systematically investigating its regulatory effects on the nucleation and growth processes of film via in situ photoluminescence spectra, we successfully achieved the fabrication of Q2D perovskite films with large n narrow phase distribution characteristics. Due to the reduced content of small n domains, the incomplete energy transfer from small n to large n phases and the carriers’ accumulation in small n can be greatly suppressed, thereby suppressing the trap-assistant nonradiative recombination and Auger recombination. Ultimately, the Q2D perovskite film showed a single emission peak at 519 nm with the narrow full width at half maximum (FWHM) of 21.5 nm and high photoluminescence quantum yield (PLQY) of 83%. And based on the optimized Q2D film, we achieved an amplified spontaneous emission (ASE) with a low threshold of 29 μJ·cm−2, which was approximately 60% lower than the 69 μJ·cm−2 of the control film. Full article
Show Figures

Figure 1

19 pages, 4237 KB  
Article
Numerical Study of Incidence Angle-Tuned, Guided-Mode Resonant, Metasurfaces-Based Sensors for Glucose and Blood-Related Analytes Detection
by Zeev Fradkin, Maxim Piscklich, Moshe Zohar and Mark Auslender
Sensors 2025, 25(18), 5852; https://doi.org/10.3390/s25185852 - 19 Sep 2025
Viewed by 864
Abstract
In optical one-dimensional grating-on-layer planar structures, an optical resonance occurs when the incident light wave becomes phase-matched to a leaky waveguide mode excited in the layer underneath the grating by an appropriate tuning of the grating periodicity. Changing the refractive indices of the [...] Read more.
In optical one-dimensional grating-on-layer planar structures, an optical resonance occurs when the incident light wave becomes phase-matched to a leaky waveguide mode excited in the layer underneath the grating by an appropriate tuning of the grating periodicity. Changing the refractive indices of the grating’s constituents, and/or thickness, changes the resonance frequency. In the case of a two-dimensional grating atop such a smooth layer, a similar and also cavity-mode resonance can occur. This idea has straightforward usage in diverse optical sensor applications. In this study, a novel guided-mode resonance sensor design for detecting glucose and hemoglobin in minute concentrations at a wide range of incidence angles is presented. In this design, materials of the grating, such as a polymer and cesium-lead halide with a perovskite crystal structure, are examined, which will allow flexible, low-cost fabrication by soft-lithography/imprint-lithography methods. The sensitivity, figure of merit, and quality factor are reported for one- and two-dimensional grating structures. The simulations performed are based on rigorous coupled-wave analysis. Optical resonance quality factor of ∼5·105 is achieved at oblique incidence for a structure comprising a one-dimensional grating etched in a poly-vinylidene chloride layer atop a silicon nitride waveguide layer on a substrate. Record values of the above-noted characteristics are achieved with a synergetic interplay of the materials, structural dimensions, incidence angle, polarization, and grating geometry. Full article
(This article belongs to the Special Issue Optoelectronic Devices and Sensors)
Show Figures

Figure 1

12 pages, 1655 KB  
Article
Two-Dimensional Multilayered Ferroelectric with Polarization-Boosted Photocatalytic Hydrogen Evolution
by Yu Peng, Liangyao Li, Yilin Xu, Xing Wang and Yu Hou
Catalysts 2025, 15(9), 910; https://doi.org/10.3390/catal15090910 - 18 Sep 2025
Viewed by 1017
Abstract
Ferroelectric materials have attracted great attention for photocatalytic hydrogen (H2) evolution due to their internal depolarization fields that promote carrier separation and directional migration. However, conventional inorganic ferroelectrics often suffer from wide band gaps and low conductivity, limiting their solar-to-hydrogen conversion [...] Read more.
Ferroelectric materials have attracted great attention for photocatalytic hydrogen (H2) evolution due to their internal depolarization fields that promote carrier separation and directional migration. However, conventional inorganic ferroelectrics often suffer from wide band gaps and low conductivity, limiting their solar-to-hydrogen conversion efficiency. Here, we report a two-dimensional (2D) multilayered perovskite ferroelectric, [butylammonium]2[ethylammonium]2Pb3I10 (BAPI), which integrates robust spontaneous polarization (Ps) and excellent semiconductor properties to enable efficient photocatalysis. Under simultaneous light and ultrasonic excitation, BAPI/Pt (1 wt%) achieves a H2 evolution rate of 1256 μmol g−1 h−1, which is twice that under light alone, due to dynamic polarization modulation that mitigates ionic screening and enhances internal electric fields. Notably, this enhancement vanishes when BAPI transitions to a centrosymmetric, nonpolar phase at 323 K, confirming the critical role of Ps. These findings offer a new pathway toward high-performance ferroelectric photocatalysts for solar hydrogen production. Full article
(This article belongs to the Section Photocatalysis)
Show Figures

Figure 1

14 pages, 2458 KB  
Article
Dual Enhancement of Optoelectronic and Mechanical Performance in Perovskite Solar Cells Enabled by Nanoplate-Structured FTO Interfaces
by Ruichen Tian, Aldrin D. Calderon, Quanrong Fang and Xiaoyu Liu
Nanomaterials 2025, 15(18), 1430; https://doi.org/10.3390/nano15181430 - 18 Sep 2025
Viewed by 673
Abstract
Perovskite solar cells (PSCs) rarely report, on a single-device platform, concurrent gains in optoelectronic efficiency and buried-interface mechanical robustness—two prerequisites for flexible and roll-to-roll (R2R) integration. We engineered a nanoplate-structured fluorine-doped tin oxide (NP-FTO) front electrode that couples light management with three-dimensional interfacial [...] Read more.
Perovskite solar cells (PSCs) rarely report, on a single-device platform, concurrent gains in optoelectronic efficiency and buried-interface mechanical robustness—two prerequisites for flexible and roll-to-roll (R2R) integration. We engineered a nanoplate-structured fluorine-doped tin oxide (NP-FTO) front electrode that couples light management with three-dimensional interfacial anchoring, and we quantified both photovoltaic (PV) and nanomechanical metrics on the same device stack. Relative to planar FTO, the NP-FTO PSCs achieved PCE of up to 25.65%, with simultaneous improvements in Voc (to 1.196 V), Jsc (up to 26.35 mA cm−2), and FF (to 82.65%). Nanoindentation revealed a ~28% increase in reduced modulus and >70% higher hardness, accompanied by a ~32% reduction in maximum indentation depth, indicating enhanced load-bearing capacity consistent with the observed FF gains. The low-temperature, solution-compatible NP-FTO interface is amenable to R2R manufacturing and flexible substrates, offering a unified route to bridge high PCE with reinforced interfacial mechanics toward integration-ready perovskite modules. Full article
Show Figures

Figure 1

13 pages, 1644 KB  
Article
Modeling and Simulation of Highly Efficient and Eco-Friendly Perovskite Solar Cells Enabled by 2D Photonic Structuring and HTL-Free Design
by Ghada Yassin Abdel-Latif
Electronics 2025, 14(18), 3607; https://doi.org/10.3390/electronics14183607 - 11 Sep 2025
Viewed by 1081
Abstract
A novel, eco-friendly perovskite solar cell design is investigated using numerical simulations based on the finite-difference time-domain (FDTD) method. The proposed structure incorporates a two-dimensional (2D) photonic crystal (PhC) architecture featuring a titanium dioxide (TiO2) cylindrical electron extraction layer. To reduce [...] Read more.
A novel, eco-friendly perovskite solar cell design is investigated using numerical simulations based on the finite-difference time-domain (FDTD) method. The proposed structure incorporates a two-dimensional (2D) photonic crystal (PhC) architecture featuring a titanium dioxide (TiO2) cylindrical electron extraction layer. To reduce fabrication complexity and overall production costs, a hole-transport-layer-free (HTL-free) configuration is employed. Simulation results reveal a significant enhancement in photovoltaic performance compared to conventional planar structures, achieving an ultimate efficiency of 42.3%, compared to 36.6% for the traditional design—an improvement of over 16%. Electromagnetic field distributions are analyzed to elucidate the physical mechanisms behind the enhanced absorption. The improved optical performance is attributed to strong coupling between photonic modes and surface plasmon polaritons (SPPs), which enhances light–matter interaction. Furthermore, the device exhibits polarization-insensitive and angle-independent absorption characteristics, maintaining high performance for both transverse magnetic (TM) and transverse electric (TE) polarizations at incidence angles up to 60°. These findings highlight a promising pathway toward the development of cost-effective, lead-free perovskite solar cells with high efficiency and simplified fabrication processes. Full article
Show Figures

Figure 1

13 pages, 4460 KB  
Article
Interstitial Ag+ Engineering Enables Superior Resistive Switching in Quasi-2D Halide Perovskites
by Haiyang Qin, Zijia Wang, Qinrao Li, Jianxin Lin, Dongzhu Lu, Yicong Huang, Wenke Gao, Huachuan Wang and Chenghao Bi
Nanomaterials 2025, 15(16), 1267; https://doi.org/10.3390/nano15161267 - 16 Aug 2025
Viewed by 1206
Abstract
Halide perovskite-based memristors are promising neuromorphic devices due to their unique ion migration and interface tunability, yet their conduction mechanisms remain unclear, causing stability and performance issues. Here, we engineer interstitial Ag+ ions within a quasi-two-dimensional (quasi-2D) halide perovskite ((C6H [...] Read more.
Halide perovskite-based memristors are promising neuromorphic devices due to their unique ion migration and interface tunability, yet their conduction mechanisms remain unclear, causing stability and performance issues. Here, we engineer interstitial Ag+ ions within a quasi-two-dimensional (quasi-2D) halide perovskite ((C6H5C2H4NH3)2Csn−1PbnI3n+1) to enhance device stability and controllability. The introduced Ag+ ions occupy organic interlayers, forming thermodynamically stable structures and introducing deep-level energy states without structural distortion, which do not act as non-radiative recombination centers, but instead serve as efficient charge trapping centers that stabilize intermediate resistance states and facilitate controlled filament evolution during resistive switching. This modification also leads to enhanced electron transparency near the Fermi level, contributing to improved charge transport dynamics and device performance. Under external electric fields, these Ag+ ions act as mobile ionic species, facilitating controlled filament formation and stable resistive switching. The resulting devices demonstrate exceptional performance, featuring an ultrahigh on/off ratio (∼108) and low operating voltages (∼0.31 V), surpassing existing benchmarks. Our findings highlight the dual role of Ag+ ions in structural stabilization and conduction modulation, providing a robust approach for high-performance perovskite memristor engineering. Full article
(This article belongs to the Special Issue Quantum Dot Materials and Their Optoelectronic Applications)
Show Figures

Graphical abstract

9 pages, 3634 KB  
Article
Van Der Waals Mask-Assisted Strategy for Deterministic Fabrication of Two-Dimensional Organic−Inorganic Hybrid Perovskites Lateral Heterostructures
by Bin Han, Mengke Lin, Yanren Tang, Xingyu Liu, Bingtao Lian, Qi Qiu, Shukai Ding and Bingshe Xu
Inorganics 2025, 13(8), 266; https://doi.org/10.3390/inorganics13080266 - 14 Aug 2025
Viewed by 937
Abstract
Two-dimensional (2D) organic−inorganic hybrid perovskites (OIHPs) have emerged as promising candidates for next-generation optoelectronic applications. While vertical heterostructures of 2D OIHPs have been explored through mechanical stacking, the controlled fabrication of lateral heterostructures remains a significant challenge. Here, we present a lithography-free, van [...] Read more.
Two-dimensional (2D) organic−inorganic hybrid perovskites (OIHPs) have emerged as promising candidates for next-generation optoelectronic applications. While vertical heterostructures of 2D OIHPs have been explored through mechanical stacking, the controlled fabrication of lateral heterostructures remains a significant challenge. Here, we present a lithography-free, van der Waals mask-assisted strategy for the deterministic fabrication of 2D OIHP lateral heterostructures. Mechanically exfoliated 2D materials such as graphene serve as removable masks that enable selective conversion of unmasked perovskite regions via ion exchange reaction. This technique enables the fabrication of various lateral heterostructures, such as BA2MA2Pb3I10/MAPbI3, PEAPbI4/MAPbI3, as well as BA2MAPb2I7/MAPbBr3. Furthermore, complex multiheterostructures and superlattices can be constructed through sequential masking and conversion processes. Moreover, to investigate the electronic properties and demonstrate potential device applications of the lateral heterostructures, we have fabricated an electrical diode based on a BA2MA2Pb3I10/MAPbI3 lateral heterostructure. Stable electrical rectifying behavior with a rectification ratio of around 10 was observed. This general and flexible approach provides a robust platform for constructing 2D OIHPs lateral heterostructures and opens new pathways for their integration into high-performance optoelectronic devices. Full article
(This article belongs to the Section Inorganic Materials)
Show Figures

Figure 1

11 pages, 2667 KB  
Article
Pressure Effects on Structure and Optical Properties in Sn(II)-Doped Cs2ZnCl4 All-Inorganic Zero-Dimensional Halide Perovskite
by Ting Geng, Mengqing Wang, Yuhan Qin, Zhuo Chen, Ao Zhang, Chunmei Zhang, Yongguang Li and Guanjun Xiao
Inorganics 2025, 13(8), 264; https://doi.org/10.3390/inorganics13080264 - 13 Aug 2025
Cited by 1 | Viewed by 1222
Abstract
The toxicity of lead in conventional perovskites and their inherent chemical instability impede the commercialization of perovskite-based optoelectronics. Therefore, it is vital to develop chemically stable and environmentally friendly Pb-free alternatives. Recently, zero-dimensional (0D) all-inorganic Cs2ZnCl4 doped with Sn(II) has [...] Read more.
The toxicity of lead in conventional perovskites and their inherent chemical instability impede the commercialization of perovskite-based optoelectronics. Therefore, it is vital to develop chemically stable and environmentally friendly Pb-free alternatives. Recently, zero-dimensional (0D) all-inorganic Cs2ZnCl4 doped with Sn(II) has emerged as a promising candidate, exhibiting superior chemical robustness, minimal biotoxicity, and exceptional optoelectronic properties. In this work, pressure effects on structure and optical properties in Sn(II)-doped all-inorganic zero-dimensional halide perovskite are investigated both experimentally and theoretically. The structure–property relationship of Sn(II)-doped Cs2ZnCl4 is studied using high-pressure techniques. Piezochromism, accompanied by a remarkable change in emission color from orange/red and green to orange/yellow, was obtained from 1 atm to 22.5 GPa. Angle dispersive synchrotron X-ray diffraction (ADXRD) patterns and Raman spectra manifest that the material underwent an isostructural phase transition followed by amorphization with increasing pressure. The piezochromism and band gap engineering originate from the pressure-induced lattice compression and isostructural phase transition. This work advances STE emission studies and provides a robust strategy to boost emission efficiency and to construct multifunctional materials with piezochromism in environmentally friendly perovskites, thus facilitating diverse future applications. Full article
(This article belongs to the Special Issue New Semiconductor Materials for Energy Conversion)
Show Figures

Graphical abstract

15 pages, 5436 KB  
Article
Effect of Surface Passivation on the Quasi-Two-Dimensional Perovskite X2Cs(n−1) PbnI(3n+1)
by Min Li, Haoyan Zheng, Xianliang Ke, Dawei Zhang and Jie Huang
Condens. Matter 2025, 10(3), 44; https://doi.org/10.3390/condmat10030044 - 9 Aug 2025
Viewed by 1324
Abstract
The two-dimensional (2D) Ruddlesden–Popper perovskite exhibits superior chemical stability but suffers from compromised photoelectric properties due to the van der Waals gap. This study presents a novel investigation of surface passivation effects on quasi-2D perovskite X2Csn−1PbnI3n+1 [...] Read more.
The two-dimensional (2D) Ruddlesden–Popper perovskite exhibits superior chemical stability but suffers from compromised photoelectric properties due to the van der Waals gap. This study presents a novel investigation of surface passivation effects on quasi-2D perovskite X2Csn−1PbnI3n+1 (n = 1–6; X = MA, FA, PEA) using DFT methods, revealing three key advances: First, we demonstrate that organic cation passivation (MA+, FA+, PEA+) enables exceptional stability improvements, with FA-passivated structures showing optimal stability—a crucial finding for materials design. Second, we identify a critical thickness effect (n > 3) where bandgaps converge to <1.6 eV (approaching bulk values) while maintaining strong absorption, establishing the minimum layer requirement for optimal performance. Third, we reveal that effective masses balance and absorption strengthens significantly when n > 3. These fundamental insights provide a transformative strategy to simultaneously enhance both stability and optoelectronic properties in quasi-2D perovskites. Full article
Show Figures

Figure 1

10 pages, 3012 KB  
Article
A Perovskite-Based Photoelectric Synaptic Transistor with Dynamic Nonlinear Response
by Jiahui Liu, Zunxian Yang, Yujie Zheng and Wenkun Su
Photonics 2025, 12(7), 734; https://doi.org/10.3390/photonics12070734 - 18 Jul 2025
Viewed by 815
Abstract
Nonlinear characteristics are essential for neuromorphic devices to process high-dimensional and unstructured data. However, enabling a device to realize a nonlinear response under the same stimulation condition is challenging as this involves two opposing processes: simultaneous charge accumulation and recombination. In this study, [...] Read more.
Nonlinear characteristics are essential for neuromorphic devices to process high-dimensional and unstructured data. However, enabling a device to realize a nonlinear response under the same stimulation condition is challenging as this involves two opposing processes: simultaneous charge accumulation and recombination. In this study, a hybrid transistor based on a mixed-halide perovskite was fabricated to achieve dynamic nonlinear changes in synaptic plasticity. The utilization of a light-induced mixed-bandgap structure within the mixed perovskite film has been demonstrated to increase the recombination paths of photogenerated carriers of the hybrid film, thereby promoting the formation of nonlinear signals in the device. The constructed heterojunction optoelectronic synaptic transistor, formed by combining a mixed-halide perovskite with a p-type semiconductor, generates dynamic nonlinear decay responses under 400 nm light pulses with an intensity as low as 0.02 mW/cm2. Furthermore, it has been demonstrated that nonlinear photocurrent growth can be achieved under 650 nm light pulses. It is important to note that this novel nonlinear response is characterized by its dynamism. These improvements provide a novel method for expanding the modulation capability of optoelectronic synaptic devices for synaptic plasticity. Full article
(This article belongs to the Special Issue Polaritons Nanophotonics: Physics, Materials and Applications)
Show Figures

Figure 1

Back to TopTop