Numerical Study of Incidence Angle-Tuned, Guided-Mode Resonant, Metasurfaces-Based Sensors for Glucose and Blood-Related Analytes Detection
Abstract
1. Introduction
2. Materials and Methods
2.1. Analyzed Sensors’ Structures and Their Characteristics
2.2. The 1D- and 2D-Grating-Based Sensor Structures Simulated, Set A and B, Respectively
- A1
- The grating lamella and waveguide are both CsPbBr3;
- A2
- The grating lamella and waveguide are both Si3N4;
- A3
- The grating lamella is CsPbBr3 and the waveguide is Si3N4;
- A4
- The grating lamella is PVC, and the waveguide is CsPbBr3;
- A5
- The grating lamella is PVC, and the waveguide is Si3N4.
- B1
- The grating mesa and waveguide are both Si3N4;
- B2
- The grating mesa is CsPbBr3 and the waveguide is Si3N4;
- B3
- The grating mesa is PVC and the waveguide is Si3N4.
3. Results and Analysis
3.1. Reflectance Spectra and Characteristics of the Set A Sensors
3.2. 2D Grating Sensor at Normal Incidence
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
GMR | Guided-mode resonance |
DPN | Dip-pen nanolithography |
RCWA | Rigorous coupled-wave analysis |
FOM | Figure of merit |
NIL | Nanoimprint lithography |
PECVD | Plasma-enhanced chemical vapor deposition |
SOI | Silicon on insulator |
References
- Zhou, Y.; Guo, Z.; Zhou, W.; Li, S.; Liu, Z.; Zhao, X.; Wu, X. High-Q guided mode resonance sensors based on shallow sub-wavelength grating structures. Nanotechnology 2020, 31, 325501. [Google Scholar] [CrossRef]
- Quaranta, G.; Basset, G.; Martin, O.J.F.; Gallinet, B. Recent Advances in Resonant Waveguide Gratings. Laser Photonics Rev. 2018, 12, 1800017. [Google Scholar] [CrossRef]
- Khaleque, T.; Magnusson, R. Light management through guided-mode resonances in thin-film silicon solar cells. J. Nanophotonics 2014, 8, 083995. [Google Scholar] [CrossRef]
- Magnusson, R.; Ko, Y.H. Guided-mode resonance nanophotonics: Fundamentals and applications. In Nanoengineering: Fabrication, Properties, Optics, and Devices XIII; Campo, E.M., Dobisz, E.A., Eldada, L.A., Eds.; International Society for Optics and Photonics, SPIE: Bellingham, WA, USA, 2016; Volume 9927, p. 992702. [Google Scholar] [CrossRef]
- Qian, L.; Zhang, D.; Huang, Y.; Tao, C.; Hong, R.; Zhuang, S. Performance of a double-layer guided mode resonance filter with non-subwavelength grating period at oblique incidence. Opt. Laser Technol. 2015, 72, 42–47. [Google Scholar] [CrossRef]
- Menon, S.; Prosad, A.; Krishna, A.S.L.; Biswas, R.; Raghunathan, V. Resonant mode engineering in silicon compatible multilayer guided-mode resonance structures under Gaussian beam excitation condition. J. Opt. 2021, 23, 105001. [Google Scholar] [CrossRef]
- Zhang, W.; Kim, S.M.; Ganesh, N.; Block, I.D.; Mathias, P.C.; Wu, H.Y.; Cunningham, B.T. Deposited nanorod films for photonic crystal biosensor applications. J. Vac. Sci. Technol. A 2010, 28, 996–1001. [Google Scholar] [CrossRef]
- Canalejas-Tejero, V.; López, A.; Casquel, R.; Holgado, M.; Barrios, C.A. Sensitive metal layer-assisted guided-mode resonance SU8 nanopillar array for label-free optical biosensing. Sens. Actuators B Chem. 2016, 226, 204–210. [Google Scholar] [CrossRef]
- Kang, H.; Lee, D.; Yang, Y.; Oh, D.K.; Seong, J.; Kim, J.; Jeon, N.; Kang, D.; Rho, J. Emerging low-cost, large-scale photonic platforms with soft lithography and self-assembly. Photonics Insights 2023, 2, R04. [Google Scholar] [CrossRef]
- Xia, Y.; Whitesides, G.M. Soft Lithography. Angew. Chem. Int. Ed. 1998, 37, 550–575. [Google Scholar] [CrossRef]
- Guo, L.; Xu, L.; Liu, L. Sensitivity enhancement of guided mode resonance sensors under oblique incidence. Photonics Res. 2024, 12, 2667–2675. [Google Scholar] [CrossRef]
- Lan, H.; Ding, Y.; Liu, H. Nanoimprint Lithography: Principles, Processes and Materials; Nanotechnology Science and Technology Series; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2011. [Google Scholar]
- Kessel, A.; Frydendahl, C.; Indukuri, S.R.K.C.; Mazurski, N.; Arora, P.; Levy, U. Soft Lithography for Manufacturing Scalable Perovskite Metasurfaces with Enhanced Emission and Absorption. Adv. Opt. Mater. 2020, 8, 2001627. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, L.; Johnson, M.; Hillier, A.C.; Lu, M. One-step sol-gel imprint lithography for guided-mode resonance structures. Nanotechnology 2016, 27, 095302. [Google Scholar] [CrossRef]
- Gazzo, S.; Manfredi, G.; Pötzsch, R.; Wei, Q.; Alloisio, M.; Voit, B.; Comoretto, D. High refractive index hyperbranched polyvinylsulfides for planar one-dimensional all-polymer photonic crystals. J. Polym. Sci. Part B Polym. Phys. 2016, 54, 73–80. [Google Scholar] [CrossRef]
- Zhan, Y.; Li, C.; Che, Z.; Shum, H.C.; Hu, X.; Li, H. Light management using photonic structures towards high-index perovskite optoelectronics: Fundamentals, designing, and applications. Energy Environ. Sci. 2023, 16, 4135–4163. [Google Scholar] [CrossRef]
- Das, S.; Gholipour, S.; Saliba, M. Perovskites for Laser and Detector Applications. Energy Environ. Mater. 2019, 2, 146–153. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, Y.; Hong, B.; Wang, G. Optical waveguide in curved and welded perovskite nanowires. Sci. China Technol. Sci. 2023, 66, 1471–1479. [Google Scholar] [CrossRef]
- Sun, X.; Shao, Y.; Wang, C.; Yue, J.; Cui, A.; Tao, S.; Wang, S.; Zhang, D.; Zhou, D.; Chen, C. Organic-Inorganic Hybrid Integrated Optical Waveguide Gain Compensator Based on CsPbBr3 Perovskite Nanocrystals. IEEE Electron Device Lett. 2024, 45, 754–757. [Google Scholar] [CrossRef]
- Gebremichael, Z.T.; Alam, S.; Cefarin, N.; Pozzato, A.; Yohannes, T.; Schubert, U.S.; Hoppe, H.; Tormen, M. Controlling Metal Halide Perovskite Crystal Growth via Microcontact Printed Hydrophobic-Hydrophilic Templates. Cryst. Res. Technol. 2022, 57, 2100121. [Google Scholar] [CrossRef]
- Paquet, C.; Kumacheva, E. Nanostructured polymers for photonics. Mater. Today 2008, 11, 48–56. [Google Scholar] [CrossRef]
- Rumpf, R.C.; Johnson, E.G. Modeling fabrication to accurately place GMR resonances. Opt. Express 2007, 15, 3452–3464. [Google Scholar] [CrossRef]
- Cegielski, P.J.; Neutzner, S.; Porschatis, C.; Lerch, H.; Bolten, J.; Suckow, S.; Kandada, A.R.S.; Chmielak, B.; Petrozza, A.; Wahlbrink, T.; et al. Integrated perovskite lasers on a silicon nitride waveguide platform by cost-effective high throughput fabrication. Opt. Express 2017, 25, 13199–13206. [Google Scholar] [CrossRef]
- Li, Y.; Ding, Y.; Sun, J.; Tan, S.; Li, Y.; Wang, X.; Cai, J.; Bai, J.; Lv, X.; Guo, W.; et al. Design Strategies and Emerging Applications of Perovskite-Based Sensors. SmartMat 2025, 6, e70022. [Google Scholar] [CrossRef]
- Knop, K. Rigorous diffraction theory for transmission phase gratings with deep rectangular grooves. J. Opt. Soc. Am. 1978, 68, 1206–1210. [Google Scholar] [CrossRef]
- Moharam, M.G.; Gaylord, T.K. Rigorous coupled-wave analysis of planar-grating diffraction. J. Opt. Soc. Am. 1981, 71, 811–818. [Google Scholar] [CrossRef]
- Moharam, M.G.; Gaylord, T.K. Diffraction analysis of dielectric surface-relief gratings. J. Opt. Soc. Am. 1982, 72, 1385–1392. [Google Scholar] [CrossRef]
- Moharam, M.G.; Gaylord, T.K. Rigorous coupled-wave analysis of metallic surface-relief gratings. J. Opt. Soc. Am. A 1986, 3, 1780–1787. [Google Scholar] [CrossRef]
- Gallagher, N.C.; Whang, A.J. Solving slab lamellar grating problems by the singular-value-decomposition method. J. Opt. Soc. Am. A 1990, 7, 1701–1711. [Google Scholar] [CrossRef]
- Pai, D.M.; Awada, K.A. Analysis of dielectric gratings of arbitrary profiles and thicknesses. J. Opt. Soc. Am. A 1991, 8, 755–762. [Google Scholar] [CrossRef]
- Hava, S.; Auslender, M.; Rabinovich, D. Operator approach to electromagnetic coupled-wave calculations of lamellar gratings: Infrared optical properties of intrinsic silicon gratings. Appl. Opt. 1994, 33, 4807–4813. [Google Scholar] [CrossRef]
- Chateau, N.; Hugonin, J.P. Algorithm for the rigorous coupled-wave analysis of grating diffraction. J. Opt. Soc. Am. A 1994, 11, 1321–1331. [Google Scholar] [CrossRef]
- Li, L.; Haggans, C.W. Convergence of the coupled-wave method for metallic lamellar diffraction gratings. J. Opt. Soc. Am. A 1993, 10, 1184–1189. [Google Scholar] [CrossRef]
- Lalanne, P.; Morris, G.M. Highly improved convergence of the coupled-wave method for TM polarization. J. Opt. Soc. Am. A 1996, 13, 779–784. [Google Scholar] [CrossRef]
- Granet, G.; Guizal, B. Efficient implementation of the coupled-wave method for metallic lamellar gratings in TM polarization. J. Opt. Soc. Am. A 1996, 13, 1019–1023. [Google Scholar] [CrossRef]
- Auslender, M.; Hava, S. Scattering-matrix propagation algorithm in full-vectorial optics of multilayer grating structures. Opt. Lett. 1996, 21, 1765–1767. [Google Scholar] [CrossRef]
- Moharam, M.G.; Pommet, D.A.; Grann, E.B.; Gaylord, T.K. Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: Enhanced transmittance matrix approach. J. Opt. Soc. Am. A 1995, 12, 1077–1086. [Google Scholar] [CrossRef]
- Li, L. Use of Fourier series in the analysis of discontinuous periodic structures. J. Opt. Soc. Am. A 1996, 13, 1870–1876. [Google Scholar] [CrossRef]
- Li, L. New formulation of the Fourier modal method for crossed surface-relief gratings. J. Opt. Soc. Am. A 1997, 14, 2758–2767. [Google Scholar] [CrossRef]
- Brennan, M.C.; Krein, D.M.; Rowe, E.; McCleese, C.L.; Sun, L.; Berry, K.G.; Stevenson, P.R.; Susner, M.A.; Grusenmeyer, T.A. Fundamental optical constants and anti-reflection coating of melt-grown, polished CsPbBr3 crystals. MRS Commun. 2024, 14, 900–908. [Google Scholar] [CrossRef]
- Zhang, X.; Qiu, J.; Li, X.; Zhao, J.; Liu, L. Complex refractive indices measurements of polymers in visible and near-infrared bands. Appl. Opt. 2020, 59, 2337–2344. [Google Scholar] [CrossRef] [PubMed]
- Beliaev, L.Y.; Shkondin, E.; Lavrinenko, A.V.; Takayama, O. Optical, structural and composition properties of silicon nitride films deposited by reactive radio-frequency sputtering, low pressure and plasma-enhanced chemical vapor deposition. Thin Solid Films 2022, 763, 139568. [Google Scholar] [CrossRef]
- Friebel, M.; Meinke, M. Model function to calculate the refractive index of native hemoglobin in the wavelength range of 250–1100 nm dependent on concentration. Appl. Opt. 2006, 45, 2838–2842. [Google Scholar] [CrossRef] [PubMed]
- Misto; Purwandari, E.; Supriyadi; Arkundato, A.; Rohman, L.; Eko Cahyono, B. Analyses of Concentration and Wavelength Dependent Refractive Index of Sugar Solution Using Sellmeier Equation. J. Phys. Conf. Ser. 2021, 1825, 012030. [Google Scholar] [CrossRef]
- Ge, C.; Lu, M.; George, S.; Flood, T.A.; Wagner, C.; Zheng, J.; Pokhriyal, A.; Eden, J.G.; Hergenrother, P.J.; Cunningham, B.T. External cavity laser biosensor. Lab Chip 2013, 13, 1247–1256. [Google Scholar] [CrossRef]
- Drayton, A.; Barth, I.; Krauss, T.F. Chapter Five—Guided mode resonances and photonic crystals for biosensing and imaging. In Photonic Crystal Metasurface Optoelectronics; Semiconductors and Semimetals; Zhou, W., Fan, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; Volume 100, pp. 115–148. [Google Scholar] [CrossRef]
- Wang, S.S.; Magnusson, R.; Bagby, J.S.; Moharam, M.G. Guided-mode resonances in planar dielectric-layer diffraction gratings. J. Opt. Soc. Am. A 1990, 8, 1470–1475. [Google Scholar] [CrossRef]
- Magnusson, R.; Wang, S.S. New principle for optical filters. Appl. Phys. Lett. 1992, 61, 1022–1024. [Google Scholar] [CrossRef]
- Magnusson, R.; Wang, S.S. Theory and applications of guided-mode resonance filters. Appl. Opt. 1993, 32, 2606–2613. [Google Scholar] [CrossRef]
- Wang, S.S.; Magnusson, R. Multilayer waveguide-grating filters. Appl. Opt. 1995, 34, 2414–2420. [Google Scholar] [CrossRef] [PubMed]
- Rosenblatt, D.; Sharon, A.; Friesem, A.A. Resonant Grating Waveguide Structures. IEEE J. Quantum Electron. 1997, 33, 2038–2059. [Google Scholar] [CrossRef]
- Norton, S.M.; Erdogan, T.; Morris, G.M. Coupled-mode theory of resonant-grating filters. J. Opt. Soc. Am. A 1997, 14, 629–639. [Google Scholar] [CrossRef]
- Sharon, A.; Rosenblatt, D.; Friesem, A.A. Narrow spectral bandwidths with grating waveguide structures. Appl. Phys. Lett. 1996, 69, 4154–4156. [Google Scholar] [CrossRef]
- Norton, S.M.; Morris, G.M.; Erdogan, T. Experimental investigation of resonant-grating filter lineshapes in comparison with theoretical models. J. Opt. Soc. Am. A 1998, 15, 464–472. [Google Scholar] [CrossRef]
- Priambodo, P.S.; Maldonado, T.A.; Magnusson, R. Fabrication and characterization of high-quality waveguide-mode resonant optical filters. Appl. Phys. Lett. 2003, 83, 3248–3250. [Google Scholar] [CrossRef]
- Sharon, A.; Rosenblatt, D.; Friesem, A.A. Light modulation with resonant grating–waveguide structures. Opt. Lett. 1996, 21, 1564–1566. [Google Scholar] [CrossRef] [PubMed]
- Lukosz, W. Principles and sensitivities of integrated optical and surface plasmon sensors for direct affinity sensing and immunosensing. Biosens. Bioelectron. 1991, 6, 215–225. [Google Scholar] [CrossRef]
- Nellen, P.; Lukosz, W. Integrated optical input grating couplers as direct affinity sensors. Biosens. Bioelectron. 1993, 8, 129–147. [Google Scholar] [CrossRef]
- Lukosz, W. Integrated optical chemical and direct biochemical sensors. Sens. Actuators B Chem. 1995, 29, 37–50. [Google Scholar] [CrossRef]
- Lukosz, W.; Clerc, D.; Nellen, P. Input and output grating couplers as integrated optical biosensors. Sens. Actuators A Phys. 1990, 25, 181–184. [Google Scholar] [CrossRef]
- Nellen, P.M.; Lukosz, W. Integrated optical input grating couplers as chemo- and immunosensors. Sens. Actuators B Chem. 1990, 1, 592–596. [Google Scholar] [CrossRef]
- Nellen, P.; Lukosz, W. Model experiments with integrated optical input grating couplers as direct immunosensors. Biosens. Bioelectron. 1991, 6, 517–525. [Google Scholar] [CrossRef]
- Clerc, D.; Lukosz, W. Integrated optical output grating coupler as refractometer and (bio-)chemical sensor. Sens. Actuators B Chem. 1993, 11, 461–465. [Google Scholar] [CrossRef]
- Lukosz, W.; Clerc, D.; Nellen, P.; Stamm, C.; Weiss, P. Output grating couplers on planar optical waveguides as direct immunosensors. Biosens. Bioelectron. 1991, 6, 227–232. [Google Scholar] [CrossRef]
- Huber, W.; Barner, R.; Fattinger, C.; Hübscher, J.; Koller, H.; Müller, F.; Schalatter, D.; Lukosz, W. Direct optical immunosensing (sensitivity and selectivity). Sens. Actuators B Chem. 1992, 6, 122–126. [Google Scholar] [CrossRef]
- Clerc, D.; Lukosz, W. Integrated optical output grating coupler as biochemical sensor. Sens. Actuators B Chem. 1994, 19, 581–586. [Google Scholar] [CrossRef]
- Abdulhalim, I. Biosensing configurations using guided wave resonant structures. In Proceedings of the Optical Waveguide Sensing and Imaging; Bock, W.J., Gannot, I., Tanev, S., Eds.; Springer: Dordrecht, The Netherlands, 2008; pp. 211–228. [Google Scholar]
- Wawro, D.D.; Tibuleac, S.; Magnusson, R.; Liu, H. Optical fiber endface biosensor based on resonances in dielectric waveguide gratings. Proc. SPIE 2000, 3911, 86–94. [Google Scholar] [CrossRef]
- Cunningham, B.; Lin, B.; Qiu, J.; Li, P.; Pepper, J.; Hugh, B. A plastic colorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions. Sens. Actuators B Chem. 2002, 85, 219–226. [Google Scholar] [CrossRef]
- Block, I.D.; Chan, L.L.; Cunningham, B.T. Photonic crystal optical biosensor incorporating structured low-index porous dielectric. Sens. Actuators B Chem. 2006, 120, 187–193. [Google Scholar] [CrossRef]
- Cunningham, B.; Li, P.; Lin, B.; Pepper, J. Colorimetric resonant reflection as a direct biochemical assay technique. Sens. Actuators B Chem. 2002, 81, 316–328. [Google Scholar] [CrossRef]
- Wang, J.J.; Chen, L.; Kwan, S.; Liu, F.; Deng, X. Resonant grating filters as refractive index sensors for chemical and biological detections. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 2005, 23, 3006–3010. [Google Scholar] [CrossRef]
- Schmid, J.H.; Sinclair, W.; García, J.; Janz, S.; Lapointe, J.; Poitras, D.; Li, Y.; Mischki, T.; Lopinski, G.; Cheben, P.; et al. Silicon-on-insulator guided mode resonant grating for evanescent field molecular sensing. Opt. Express 2009, 17, 18371–18380. [Google Scholar] [CrossRef] [PubMed]
- Tiefenthaler, K.; Lukosz, W. Sensitivity of grating couplers as integrated-optical chemical sensors. J. Opt. Soc. Am. B 1989, 6, 209–220. [Google Scholar] [CrossRef]
- Krasnykov, O.; Auslender, M.; Abdulhalim, I. Optimizing the guided mode resonant structure for optical sensing in water. Phys. Express 2011, 1, 183–190. [Google Scholar]
- Bi, L.; Fan, X.; Zhao, H.; Liu, L.; Wei, X.; Niu, H.; Li, C.; Bai, C.; Fang, W. Enhanced sensing ability in multiple Fano resonance optical biosensor with high-contrast metastructures. Results Opt. 2022, 9, 100276. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, B.; Guo, Z.; Wu, X. Guided Mode Resonance Sensors with Optimized Figure of Merit. Nanomaterials 2019, 9, 837. [Google Scholar] [CrossRef]
- Liang, F.; Clarke, N.; Patel, P.; Loncar, M.; Quan, Q. Scalable photonic crystal chips for high sensitivity protein detection. Opt. Express 2013, 21, 32306–32312. [Google Scholar] [CrossRef]
- Huang, L.; Jin, R.; Zhou, C.; Li, G.; Xu, L.; Overvig, A.; Deng, F.; Chen, X.; Lu, W.; Alù, A.; et al. Ultrahigh-Q guided mode resonances in an All-dielectric metasurface. Nat. Commun. 2023, 14, 3433. [Google Scholar] [CrossRef]
- Qian, L.; Wang, K.; Bykov, D.A.; Xu, Y.; Zhu, L.; Yan, C. Improving the sensitivity of guided-mode resonance sensors under oblique incidence condition. Opt. Express 2019, 27, 30563–30575. [Google Scholar] [CrossRef] [PubMed]
- Cu, D.T.; Wu, H.W.; Chen, H.P.; Su, L.C.; Kuo, C.C. Exploiting Thin-Film Properties and Guided-Mode Resonance for Designing Ultrahigh-Figure-of-Merit Refractive Index Sensors. Sensors 2024, 24, 960. [Google Scholar] [CrossRef]
- Amedalor, R.; Karvinen, P.; Pesonen, H.; Turunen, J.; Niemi, T.; Bej, S. High-Q guided-mode resonance of a crossed grating with near-flat dispersion. Appl. Phys. Lett. 2023, 122, 161102. [Google Scholar] [CrossRef]
- Liu, B.; Chen, F. Adjustable slow light and optical switch in a black phosphorus metamaterial based on double plasmon-induced transparency. Phys. B Condens. Matter 2025, 714, 417423. [Google Scholar] [CrossRef]
- Liu, H.; Li, J.; Yang, H.; Wang, J.; Li, B.; Zhang, H.; Yi, Y. TiN-Only Metasurface Absorber for Solar Energy Harvesting. Photonics 2025, 12, 443. [Google Scholar] [CrossRef]
- Zhang, B.; Luo, Y. Dynamic optical tuning and sensing in L-shaped Dirac semimetal-based terahertz metasurfaces. Phys. Lett. A 2025, 541, 130419. [Google Scholar] [CrossRef]
- Li, L.; Chen, F. Tunable four-band metamaterial absorber and sensor based on a stacking double-ring Dirac semimetal structure design. Phys. Lett. A 2025, 544, 130489. [Google Scholar] [CrossRef]
Set A structures, s-polarized sensing modality | |||||||||
Structure | S, nm/RIU | Q | FOM, nm/RIU | ||||||
0° | 30° | 60° | 0° | 30° | 60° | 0° | 30° | 60° | |
A1 ∗ | 59 | 287 | – † | – † | – † | ||||
A2 ⋄ | 55 | 277 | 441 | ||||||
A3 ⋄ | 56 | 276 | 441 | ||||||
A4 ∗ | 30 | 222 | – † | – † | – † | ||||
A5 ⋄ | 30 | 216 | 355 | ||||||
Set A structures, p-polarized sensing modality | |||||||||
A1 ∗ | 102 | 306 | – † | – † | – † | ||||
A2 ⋄ | 86 | 275 | 401 | ||||||
A3 ⋄ | 88 | 276 | 402 | ||||||
A4 ∗ | 62 | 243 | – † | – † | – † | ||||
A5 ⋄ | 55 | 225 | 338 |
Sensor Structure | Q | ||
---|---|---|---|
B1 | 82 | ||
B2 | 83 | ||
B3 | 67 |
Sensor Type | Q | ||
---|---|---|---|
A5: s-polarized | 30 | ||
A5: p-polarized | 54 | ||
B3 | 67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fradkin, Z.; Piscklich, M.; Zohar, M.; Auslender, M. Numerical Study of Incidence Angle-Tuned, Guided-Mode Resonant, Metasurfaces-Based Sensors for Glucose and Blood-Related Analytes Detection. Sensors 2025, 25, 5852. https://doi.org/10.3390/s25185852
Fradkin Z, Piscklich M, Zohar M, Auslender M. Numerical Study of Incidence Angle-Tuned, Guided-Mode Resonant, Metasurfaces-Based Sensors for Glucose and Blood-Related Analytes Detection. Sensors. 2025; 25(18):5852. https://doi.org/10.3390/s25185852
Chicago/Turabian StyleFradkin, Zeev, Maxim Piscklich, Moshe Zohar, and Mark Auslender. 2025. "Numerical Study of Incidence Angle-Tuned, Guided-Mode Resonant, Metasurfaces-Based Sensors for Glucose and Blood-Related Analytes Detection" Sensors 25, no. 18: 5852. https://doi.org/10.3390/s25185852
APA StyleFradkin, Z., Piscklich, M., Zohar, M., & Auslender, M. (2025). Numerical Study of Incidence Angle-Tuned, Guided-Mode Resonant, Metasurfaces-Based Sensors for Glucose and Blood-Related Analytes Detection. Sensors, 25(18), 5852. https://doi.org/10.3390/s25185852