Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,034)

Search Parameters:
Keywords = turbulent fluids

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 2011 KB  
Article
A Comparative CFD Study on the Wave-Making Characteristics and Resistance Performance of Two Representative Naval Vessel Designs
by Yutao Tian, Hai Shou, Sixing Guo, Zehan Chen, Zhengxun Zhou, Yuxing Zheng, Kunpeng Shi and Dapeng Zhang
J. Mar. Sci. Eng. 2026, 14(2), 212; https://doi.org/10.3390/jmse14020212 - 20 Jan 2026
Abstract
The wave-making characteristics and resistance performance of a naval vessel are fundamental to its hydrodynamic design, directly impacting its speed, stealth, and energy efficiency. To reveal the performance trade-offs inherent in different design philosophies, a systematic comparative study on the hydrodynamic performance of [...] Read more.
The wave-making characteristics and resistance performance of a naval vessel are fundamental to its hydrodynamic design, directly impacting its speed, stealth, and energy efficiency. To reveal the performance trade-offs inherent in different design philosophies, a systematic comparative study on the hydrodynamic performance of two representative mainstream naval destroyers from China and the United States was conducted using Computational Fluid Dynamics (CFD). Full-scale three-dimensional models of both vessels were established based on publicly available data. Their flow fields in calm water were numerically simulated at both economical (18 knots) and maximum (30 knots) speeds using an unsteady Reynolds-Averaged Navier–Stokes (RANS) solver, the Volume of Fluid (VOF) method for free-surface capturing, and the SST k-ω turbulence model. The performance differences were meticulously compared through qualitative observation of wave patterns, quantitative measurements (such as the transverse width of the wave-making region), and analysis of resistance data. Numerical results indicated that the wave-making generated by the vessel of the United States was more pronounced during steady navigation. To validate the reliability of the CFD results, supplementary towing tank tests were performed using a small-scale model (1.1 m in length) of the vessel from China. The test speed (1.5 m/s) was scaled to correspond to the full-scale ship speed through dimensional analysis. The experimental data showed good agreement with the simulation results, jointly confirming the aforementioned performance trade-off. This study clearly demonstrates that, at the economic speed, the design of the mainstream vessel from China tends to prioritize superior wave stealth performance at the expense of higher resistance, whereas the mainstream vessel from the U.S. exhibits the characteristics of lower resistance coupled with more significant wave-making features. These findings provide an important theoretical basis and data support for the future multi-objective optimization design of surface vessels concerning stealth, speed, and comprehensive energy efficiency. Full article
22 pages, 56816 KB  
Article
Three-Dimensional CFD Simulations of the Flow Around an Infinitely Long Cylinder from Subcritical to Postcritical Reynolds Regimes Using DES
by Marielle de Oliveira, Fábio Saltara, Adrian Jackson, Mark Parsons and Bruno S. Carmo
Fluids 2026, 11(1), 26; https://doi.org/10.3390/fluids11010026 - 20 Jan 2026
Abstract
The flow around circular cylinders is a classic problem in fluid mechanics with significant implications for offshore engineering. While extensive numerical and experimental research has focused on the subcritical and critical Reynolds regimes, the supercritical and postcritical regimes remain challenging and relatively unexplored, [...] Read more.
The flow around circular cylinders is a classic problem in fluid mechanics with significant implications for offshore engineering. While extensive numerical and experimental research has focused on the subcritical and critical Reynolds regimes, the supercritical and postcritical regimes remain challenging and relatively unexplored, primarily due to the complex nature of turbulence and the high computational requirements. In this study, we perform three-dimensional detached eddy simulations using the finite volume method in OpenFOAM v1906, employing Menter’s k-ω SST turbulence model, to systematically investigate the flow past an infinitely long smooth cylinder from the subcritical through the postcritical regimes. The numerical setup ensures accurate near-wall resolution and reliable representation of unsteady flow features. We present a detailed analysis of vortex shedding patterns, wake evolution, and statistical properties of lift and drag coefficients for selected Reynolds numbers representative of each regime. The simulation results are benchmarked against experimental data from the literature, demonstrating good agreement for Strouhal number and mean drag. Special emphasis is placed on the evolution of wake topology and force coefficients as the flow transitions from laminar to fully turbulent conditions. The findings contribute to the limited numerical literature on flow around circular cylinders across subcritical, critical, supercritical, and postcritical Reynolds number regimes, providing insights that are fundamentally relevant to the broader scope of understanding vortex shedding phenomena. Full article
(This article belongs to the Section Mathematical and Computational Fluid Mechanics)
Show Figures

Figure 1

18 pages, 2899 KB  
Article
Numerical Investigation on Drag Reduction Mechanisms of Biomimetic Microstructure Surfaces
by Jiangpeng Liu, Jie Xu, Chaogang Ding, Debin Shan and Bin Guo
Biomimetics 2026, 11(1), 77; https://doi.org/10.3390/biomimetics11010077 - 18 Jan 2026
Viewed by 138
Abstract
Biomimetic microstructured surfaces offer a promising passive strategy for drag reduction in marine and aerospace applications. This study employs computational fluid dynamics (CFD) simulations to systematically investigate the drag reduction performance and mechanisms of groove-type microstructures, addressing both geometry selection and dimensional optimization. [...] Read more.
Biomimetic microstructured surfaces offer a promising passive strategy for drag reduction in marine and aerospace applications. This study employs computational fluid dynamics (CFD) simulations to systematically investigate the drag reduction performance and mechanisms of groove-type microstructures, addressing both geometry selection and dimensional optimization. Three representative geometries (V-groove, blade-groove, and arc-groove) were compared under identical flow conditions (inflow velocity 5 m/s, Re = 7.5 × 105) using the shear-stress-transport (SST k-ω) turbulence model, and the third-generation Ω criterion was employed for threshold-independent vortex identification. The results establish a clear performance hierarchy: blade-groove achieves the highest drag reduction rate of 18.2%, followed by the V-groove (16.5%) and arc-groove (14.7%). The analysis reveals that stable near-wall microvortices form dynamic vortex isolation layers that separate the high-speed flow from the groove valleys, with blade grooves generating the strongest and most fully developed vortex structures. A parametric study of blade-groove aspect ratios (h+/s+ = 0.35–1.0) further demonstrates that maintaining h+/s+ ≥ 0.75 preserves effective vortex-isolation layers, whereas reducing h+/s+ below 0.6 causes vortex collapse and performance degradation. These findings establish a comprehensive design framework combining geometry selection (blade-groove > V-groove > arc-groove) with dimensional optimization criteria, providing quantitative guidance for practical biomimetic drag-reducing surfaces. Full article
(This article belongs to the Special Issue Adhesion and Friction in Biological and Bioinspired Systems)
Show Figures

Figure 1

15 pages, 3462 KB  
Article
Multiphysics Simulation for Efficient and Reliable Systems for Low-Temperature Plasma Treatment of Metals
by Nina Yankova Penkova, Boncho Edward Varhoshkov, Valery Todorov, Hristo Antchev, Kalin Krumov and Vesselin Iliev
Materials 2026, 19(2), 382; https://doi.org/10.3390/ma19020382 - 17 Jan 2026
Viewed by 128
Abstract
Plasma nitriding is an advanced method to increase the hardness and wear resistance of different metal parts with complex shapes and geometries. The modelling is an appropriate approach for better understanding and improving such technologies based on multi-physical processes. Mathematical models of the [...] Read more.
Plasma nitriding is an advanced method to increase the hardness and wear resistance of different metal parts with complex shapes and geometries. The modelling is an appropriate approach for better understanding and improving such technologies based on multi-physical processes. Mathematical models of the coupled electromagnetic, fluid flow, and thermal processes in vacuum chambers for the low-temperature plasma treatment of metal parts have been developed. They were solved numerically via ANSYS/CFX software for a discretized solid and gas space of a plasma nitriding chamber. The specific electrical conductivity of the gas mixture, containing plasma, has been calibrated on the basis of an electrical model of the chamber and in situ measurements. The three-dimensional fields of pressure, temperature, velocity, turbulent characteristics, electric current density, and voltage in the chamber have been simulated and analysed. Methods for further development and application of the models and for technological and constructive enhancement of the plasma treatment technologies are discussed. Full article
(This article belongs to the Special Issue Advances in Plasma Treatment of Materials)
Show Figures

Figure 1

24 pages, 9747 KB  
Article
Turbulent Flow Analysis of a Representative Low-Height Urban Landscape in Mexico
by Cecilia Ibarra-Hernández, Luis Hernández-García, Rodolfo Nájera-Sanchez, Enriqueta Arriaga-Gomez, Sergio Martínez-Delgadillo, Diana Medellín-Salazar and Alejandro Alonzo García
Fluids 2026, 11(1), 23; https://doi.org/10.3390/fluids11010023 - 16 Jan 2026
Viewed by 132
Abstract
This article analyzes the applications of computational fluid dynamics (CFD) in addressing the issue of flow patterns in a realistic urban landscape, specifically in the Metropolitan Area of Monterrey. CFD enables the simulation of physical phenomena such as turbulence, which is useful for [...] Read more.
This article analyzes the applications of computational fluid dynamics (CFD) in addressing the issue of flow patterns in a realistic urban landscape, specifically in the Metropolitan Area of Monterrey. CFD enables the simulation of physical phenomena such as turbulence, which is useful for studying the transport behavior of pollutants in urban environments. The computational model was obtained from satellite imaging and covered a surface of about 1.134 km × 1.227 km. It was composed of 173 urban blocks, representing around 3570 houses, including hospitals, schools, recreation centers and other gathering places. The population of the urban landscape was estimated at around 11,400 inhabitants. Three velocity scenarios, low, average, and high (air gusts), were simulated, using data from a local weather station. The Reynolds numbers (Re) ranged from 1.9 × 106 to 21.2 × 106, falling within the fully developed turbulence regime, which was modeled using the renormalization group (RNG) k–ε turbulence model. Results showed that the mean velocity patterns were preserved independent of the Reynolds number (Re) and were characterized by regions of high velocity in the main avenues, as well as other regions of low velocity between urban blocks. This methodology may also be applicable for understanding the flow patterns of similar urban regions composed of irregularly arranged low-rise blocks. Full article
(This article belongs to the Special Issue CFD Applications in Environmental Engineering)
Show Figures

Figure 1

22 pages, 5183 KB  
Article
Fluid Domain Characteristics and Separation Performance of an Eccentric Pipe Separator Handling a Crude Oil-Water Mixture
by Qi-Lin Wu, Zheng-Jia Ou, Ye Liu, Shuo Liu, Meng Yang and Jing-Yu Xu
Separations 2026, 13(1), 33; https://doi.org/10.3390/separations13010033 - 15 Jan 2026
Viewed by 111
Abstract
This study presents an eccentric pipe separator (EPS) designed according to the shallow pool principle and Stokes’ law as a compact alternative to conventional gravitational tank separators for offshore platforms. To investigate the internal oil-water flow characteristics and separation performance of the EPS, [...] Read more.
This study presents an eccentric pipe separator (EPS) designed according to the shallow pool principle and Stokes’ law as a compact alternative to conventional gravitational tank separators for offshore platforms. To investigate the internal oil-water flow characteristics and separation performance of the EPS, both field experiments with crude oil on an offshore platform and computational fluid dynamics (CFD) simulations were conducted, guided by dimensional analysis. Crude oil volume fractions were measured using a Coriolis mass flow meter and the fluorescence method. The CFD analysis employed an Eulerian multiphase model coupled with the renormalization group (RNG) k-ε turbulence model, validated against experimental data. Under the operating conditions examined, the separated water contained less than 50 mg/L of oil, while the separated crude oil achieved a purity of 98%, corresponding to a separation efficiency of 97%. The split ratios between the oil and upper outlets were found to strongly influence the phase distribution, velocity field, and pressure distribution within the EPS. Higher split ratios caused crude oil to accumulate in the upper core region and annulus. Maximum separation efficiency occurred when the combined split ratio of the upper and oil outlets matched the inlet oil volume fraction. Excessively high split ratios led to excessive water entrainment in the separated oil, whereas excessively low ratios resulted in excessive oil entrainment in the separated water. Crude oil density and inlet velocity exhibited an inverse relationship with separation efficiency; as these parameters increased, reduced droplet settling diminished optimal efficiency. In contrast, crude oil viscosity showed a positive correlation with the pressure drop between the inlet and oil outlet. Overall, the EPS demonstrates a viable, space-efficient alternative for oil-water separation in offshore oil production. Full article
(This article belongs to the Section Separation Engineering)
Show Figures

Figure 1

21 pages, 3877 KB  
Article
Investigation of Cavitation Inception in Aviation Hydraulic Fluid AMG-10 in a Small-Scale Rectangular Throttle Channel
by Volodymyr Brazhenko and Taras Tarasenko
Aerospace 2026, 13(1), 83; https://doi.org/10.3390/aerospace13010083 - 13 Jan 2026
Viewed by 145
Abstract
Cavitation in aircraft hydraulic systems continues to pose a serious problem for the aviation industry. This paper presents a new study on cavitation in aviation hydraulic fluid AMG-10 at its inception condition, corresponding to a relative pressure drop of Δp = 0.58, [...] Read more.
Cavitation in aircraft hydraulic systems continues to pose a serious problem for the aviation industry. This paper presents a new study on cavitation in aviation hydraulic fluid AMG-10 at its inception condition, corresponding to a relative pressure drop of Δp = 0.58, within a small-scale rectangular throttle channel of specified dimensions. Numerical simulations were performed in a quasi-steady-state framework using the realizable k–ε turbulence model combined with the Enhanced Wall Treatment approach, and the results were validated against time-integrated experimental data obtained via the shadowgraphy method. Cavitation was modeled using the Zwart–Gerber–Belamri model. The validated numerical model, which showed a pressure deviation of less than 10% from experimental data on the upper and lower walls, also demonstrated good agreement in the dimensions of the cavitation regions, confirming that the upper region is consistently larger than the lower one. Quantitative analysis demonstrated that regions with high vapor concentration are highly localized, representing only 0.048% of the channel volume at a 0.8 vapor fraction threshold. The analysis reveals that the cavitation regions spatially coincide with local pressure drops to values as low as 214 and 236 Pa near the upper and lower walls. These regions are also associated with wall jets, accelerated by the flow constriction to velocities up to 41.98 m/s. Furthermore, the cavitation region corresponds to a distinct peak in the mean turbulent kinetic energy field, reaching 164.5 m2/s2, which decays downstream. Full article
Show Figures

Figure 1

18 pages, 8082 KB  
Article
Application of Attention Mechanism Models in the Identification of Oil–Water Two-Phase Flow Patterns
by Qiang Chen, Haimin Guo, Xiaodong Wang, Yuqing Guo, Jie Liu, Ao Li, Yongtuo Sun and Dudu Wang
Processes 2026, 14(2), 265; https://doi.org/10.3390/pr14020265 - 12 Jan 2026
Viewed by 241
Abstract
Accurate identification of oil–water two-phase flow patterns is essential for ensuring the safety and operational efficiency of oil and gas extraction systems. While traditional methods using empirical models and sensor technologies have provided basic insights, they often struggle to capture the nonlinear features [...] Read more.
Accurate identification of oil–water two-phase flow patterns is essential for ensuring the safety and operational efficiency of oil and gas extraction systems. While traditional methods using empirical models and sensor technologies have provided basic insights, they often struggle to capture the nonlinear features of complex operational conditions. To address the challenge of data scarcity commonly found in experimental settings, this study employs a data augmentation strategy that combines the Synthetic Minority Over-sampling Technique (SMOTE) with Gaussian noise injection, effectively expanding the feature space from 60 original experimental nodes. Next, a physics-constrained attention mechanism model was developed that incorporates a physical constraint matrix to effectively mask irrelevant feature interactions. Experimental results show that while the standard attention model (83.88%) and the baseline BP neural network (84.25%) have limitations in generalizing to complex regimes, the proposed physics-constrained model achieves a peak test accuracy of 96.62%. Importantly, the model demonstrates exceptional robustness in identifying complex transition regions—specifically Dispersed Oil-in-Water (DO/W) flows—where it improved recall rates by about 24.6% compared to baselines. Additionally, visualization of attention scores confirms that the distribution of attention weights aligns closely with fluid-dynamic mechanisms—favoring inclination for stratified flows and flow rate for turbulence-dominated dispersions—thus validating the model’s interpretability. This research offers a novel, interpretable approach for modeling dynamic feature interactions in multiphase flows and provides valuable insights for intelligent oilfield development. Full article
Show Figures

Graphical abstract

9 pages, 395 KB  
Article
Ideas on New Fluid Dynamic Theory Based on the Liutex Rigid Rotation Definition
by Kuncan Zheng, Zhi Pan, You Fan, Yiting Liu, Dapeng Zhang and Yonghong Niu
Fluids 2026, 11(1), 20; https://doi.org/10.3390/fluids11010020 - 12 Jan 2026
Viewed by 108
Abstract
In recent years, a novel decomposition of fluid motion has been proposed, which mathematically defines a type of fluid rigid rotation distinct from vorticity, termed the Liutex quantity. Since its introduction, Liutex has been successfully applied to describe fluid vortices and has emerged [...] Read more.
In recent years, a novel decomposition of fluid motion has been proposed, which mathematically defines a type of fluid rigid rotation distinct from vorticity, termed the Liutex quantity. Since its introduction, Liutex has been successfully applied to describe fluid vortices and has emerged as an internationally recognized third-generation vortex identification method. This new motion decomposition undoubtedly leads to a revised description of rotational and deformational motions, thereby necessitating a new description of dynamics. Therefore, based on the Stokes assumption and the novel Liutex decomposition, this paper constructs a new constitutive equation and derives a new set of fluid dynamic equations. The research findings reveal two key insights: first, the new shear stress in the fluid is no longer symmetric; second, in addition to traditional forces such as body force, pressure, and viscous force, an additional force induced by Liutex-based rigid rotation is identified. Furthermore, the new dynamic framework encompasses traditional fluid dynamics, with the latter being a special case when Liutex equals the traditional vorticity. It is anticipated that the proposed equations will find significant applications in the study of fluid vortices and turbulence and will undoubtedly stimulate research interest in the field of fluid mechanics. Full article
(This article belongs to the Special Issue Vortex Definition and Identification)
Show Figures

Figure 1

23 pages, 4391 KB  
Article
Experimental and Numerical Analysis of Thermal Efficiency Improvement in a Hybrid Solar–Electric Water Heating System
by Hussein N. O. AL-Abboodi, Mehmet Özalp, Hasanain A. Abdul Wahhab, Cevat Özarpa and Mohammed A. M. AL-Jaafari
Appl. Sci. 2026, 16(2), 764; https://doi.org/10.3390/app16020764 - 12 Jan 2026
Viewed by 104
Abstract
Many studies on solar heating systems have examined individual techniques to enhance the performance of solar water collectors, such as flow obstructions, increased turbulence, nanofluids, and investment in thermal storage. The benefits of integrating these sustainability strategies into a single, sustainable system have [...] Read more.
Many studies on solar heating systems have examined individual techniques to enhance the performance of solar water collectors, such as flow obstructions, increased turbulence, nanofluids, and investment in thermal storage. The benefits of integrating these sustainability strategies into a single, sustainable system have yet to be fully established. This work displays a hybrid water-heating system that contains a solar water collector (SWC) and an electric water heater (EWH), a photovoltaic panel (PV), and nano-additives to increase the outlet water temperature and improve thermal efficiency. Numerical and experimental analyses were used to estimate the influence of water flow rate (2.5, 3.5, and 4.5 L/min) and different Al2O3 concentrations (0.1%, 0.2%, and 0.3%) on system performance using U-shaped pipe in SWC model. The results highlight that lower flow rates consistently yield higher ΔT values because water spends a longer time in the collector, allowing it to absorb more heat. Also, when using water only, the collector efficiency increases pro-aggressively with flow rate. A significant performance enhancement is observed upon incorporating Al2O3 nanoparticles into the fluid, with a 0.1% Al2O3 volume concentration improving efficiency by ~7.4% over water. At 0.3%, the highest improvement is recorded, yielding a ~9.3% gain in efficiency compared to the base case. Full article
Show Figures

Figure 1

18 pages, 6462 KB  
Article
Effect of Different Impeller Types on Mixing Efficiency in Mechanically Stirred Tanks with Tubular Baffles
by Jesús Eduardo Lugo Hinojosa, Juan Antonio Yáñez Varela, Alejandro Alonzo García, Gabriela Rivadeneyra Romero and Sergio Alejandro Martínez Delgadillo
Processes 2026, 14(2), 225; https://doi.org/10.3390/pr14020225 - 8 Jan 2026
Viewed by 263
Abstract
Efficient mixing in stirred tanks is essential for chemical and biochemical processes. Tubular baffles offer potential energy savings and multifunctionality (e.g., as heat exchangers); however, their interaction with common impeller types is not well understood. This study uses computational fluid dynamics (CFD) simulations [...] Read more.
Efficient mixing in stirred tanks is essential for chemical and biochemical processes. Tubular baffles offer potential energy savings and multifunctionality (e.g., as heat exchangers); however, their interaction with common impeller types is not well understood. This study uses computational fluid dynamics (CFD) simulations to evaluate the hydrodynamic performance of a novel tubular baffle design compared to conventional flat baffles with three impellers: a Rushton turbine (RT), a pitched blade turbine (PBT), and a hydrofoil (HE3). Dimensionless analysis (power number, NP; and pumping number, NQ), flow visualization, and vorticity dynamics were employed. The results show that, by attenuating large-scale recirculation, tubular baffles reduce power consumption by 64%, 13%, and 23% for the HE3, PBT, and RT, respectively. However, the HE3 impeller experienced a 30% decrease in pumping capacity, which confined the flow to the lower tank. The PBT showed a 10% increase in NQ and intensified bottom circulation. The RT uniquely generated distributed, high-intensity turbulence along the baffle height while maintaining its characteristic dual-loop structure. The analysis critiques the local pumping efficiency metric and advocates for a global flow assessment. The HE3 is optimal for efficient bulk blending at low power; the PBT is optimal for strong bottom circulation processes; and the RT is optimal for applications requiring enhanced interfacial processes, where baffles serve a dual function. This work provides a framework for selecting energy-efficient agitation systems by coupling impeller performance with global tank hydrodynamics. Full article
Show Figures

Figure 1

29 pages, 5747 KB  
Article
Geometric Optimization of Corrugated Channels for Heat Transfer Enhancement Using Field Synergy and Response Surface Methodology
by Nehir Tokgoz
Appl. Sci. 2026, 16(2), 660; https://doi.org/10.3390/app16020660 - 8 Jan 2026
Viewed by 142
Abstract
This study presents a numerical investigation of turbulent flow and heat transfer in corrugated channels, focusing on the effects of key geometric parameters on thermal–hydraulic performance. The corrugation height-to-channel height ratio (C/H), the length ratio (L1/L2), and the expansion [...] Read more.
This study presents a numerical investigation of turbulent flow and heat transfer in corrugated channels, focusing on the effects of key geometric parameters on thermal–hydraulic performance. The corrugation height-to-channel height ratio (C/H), the length ratio (L1/L2), and the expansion angle (θ) were systematically varied, and simulations were performed for Reynolds numbers between 4 × 103 and 1 × 104 using water as the working fluid and SST k–ω turbulence model. Response Surface Methodology (RSM) was applied to develop predictive models for the Nusselt number (Nu), friction factor (f), and thermal performance index (η). The results indicate that C/H is the dominant geometric parameter controlling both heat transfer and flow resistance. Increasing C/H from 0.10 to 1.00 results in a reduction in Nu of approximately 20–22%, while the friction factor decreases by about 40–45% over the investigated Reynolds number range, revealing a clear thermal–hydraulic trade-off. In contrast, variations in L1/L2 (0.5–6.0) and θ (5–30°) have a relatively weak influence, typically causing changes in Nu and f below 5–7%. The thermal performance index remains consistently above unity for all configurations and varies within a narrow range (η ≈ 1.00–1.16). The maximum thermal enhancement of approximately 10–15% is achieved at lower C/H values, particularly at low Reynolds numbers, whereas higher C/H values favor reduced pressure losses. Overall, the findings quantitatively demonstrate that corrugation height governs the thermal–hydraulic behavior of corrugated channels, while L1/L2 and θ provide design flexibility with minimal performance penalty. Full article
Show Figures

Figure 1

26 pages, 15207 KB  
Article
Solid–Liquid Flow Analysis Using Simultaneous Two-Phase PIV in a Stirred Tank Bioreactor
by Mohamad Madani, Angélique Delafosse, Sébastien Calvo and Dominique Toye
Fluids 2026, 11(1), 17; https://doi.org/10.3390/fluids11010017 - 8 Jan 2026
Viewed by 255
Abstract
Solid–liquid stirred tanks are widely used in multiphase processes, including bioreactors for mesenchymal stem cell (MSC) culture, yet simultaneous experimental data for both dispersed and carrier phases remain limited. Here, a refractive index-matched (RIM) suspension of PMMA microparticles ( [...] Read more.
Solid–liquid stirred tanks are widely used in multiphase processes, including bioreactors for mesenchymal stem cell (MSC) culture, yet simultaneous experimental data for both dispersed and carrier phases remain limited. Here, a refractive index-matched (RIM) suspension of PMMA microparticles (dp=168μm, ρp/ρl0.96) in an NH4SCN solution is studied at an intermediate Reynolds number (Re5000), low Stokes number (St=0.078), and particle volume fractions 0.1αp0.5 v%. This system was previously established and studied for the effect of addition of particles on the carrier phase. In this work, a dual-camera PIV set-up provides simultaneous velocity fields of the liquid and particle phases in a stirred tank equipped with a three-blade down-pumping HTPGD impeller. The liquid mean flow and circulation loop remained essentially unchanged with particle loading, whereas particle mean velocities were lower than single-phase and liquid-phase values in the impeller discharge. Turbulence levels diverged between phases: liquid-phase turbulent kinetic energy (TKE) in the impeller region increased modestly with αp, while solid-phase TKE was attenuated. Slip velocity maps showed that particles lagged the fluid in the impeller jet and deviated faster from the wall in the upward flow, with slip magnitudes increasing with αp. An approximate axial force balance indicated that drag dominates over lift in the impeller and wall regions, while the balance is approximately satisfied in the tank bulk, providing an experimental benchmark for refining drag and lift models in this class of stirred tanks. Full article
Show Figures

Figure 1

18 pages, 12671 KB  
Article
Numerical Study on Heat Transfer Performance of Turbulence Enhancement Configurations for Galinstan Based Mini-Channel Cooling
by Fajing Li, Junxi Han, Zhifeng Wang, Yi Dai and Peizhu Chen
Micromachines 2026, 17(1), 83; https://doi.org/10.3390/mi17010083 - 7 Jan 2026
Viewed by 166
Abstract
The escalating heat flux density and temperature in highly integrated microelectronic devices adversely affect their reliability and service life, making efficient thermal management crucial for stable operation. This study utilizes Galinstan liquid metal as the coolant to investigate the flow and heat transfer [...] Read more.
The escalating heat flux density and temperature in highly integrated microelectronic devices adversely affect their reliability and service life, making efficient thermal management crucial for stable operation. This study utilizes Galinstan liquid metal as the coolant to investigate the flow and heat transfer performance in microchannel heat sinks incorporating various turbulator configurations. It is revealed that for microchannels featuring expanded regions, turbulators that create highly symmetric flow fields are preferable due to improved flow distribution. The long teardrop-shaped turbulator provides the best heat transfer performance among all the investigated heat transfer enhancement structures. And this turbulator yields a 13.8–25.9% higher enhancement effectiveness compared to other configurations, at the expense of a 28–41% increase in pressure loss. However, the sudden cross-sectional expansion in the expanded region causes a significant reduction in fluid velocity. Consequently, microchannels with expanded regions and turbulators exhibit a higher bottom surface temperature than the original, straight microchannels, leading to an overall deterioration in heat transfer performance. Full article
(This article belongs to the Special Issue Emerging Technologies and Applications for Semiconductor Industry)
Show Figures

Figure 1

23 pages, 9862 KB  
Article
Analysis of Wind-Induced Response During the Lifting Construction of Super-Large-Span Heavy Steel Box Girders
by Shuhong Zhu, Xiaotong Sun, Xiaofeng Liu, Wenjie Li and Bin Liang
Buildings 2026, 16(2), 251; https://doi.org/10.3390/buildings16020251 - 6 Jan 2026
Viewed by 148
Abstract
Wind-induced response poses a significant challenge to the stability of extra-large-span heavy steel box girders during synchronous lifting operations. This study adopted a method combining numerical simulation with on-site monitoring to investigate the aerodynamic characteristics the beam during the overall hoisting process of [...] Read more.
Wind-induced response poses a significant challenge to the stability of extra-large-span heavy steel box girders during synchronous lifting operations. This study adopted a method combining numerical simulation with on-site monitoring to investigate the aerodynamic characteristics the beam during the overall hoisting process of the Xiaotun Bridge. A high-fidelity finite element model was established using Midas NFX 2024 R1, and fluid–structure interaction (FSI) analysis was conducted, utilizing the RANS k-ε turbulence model to simulate stochastic wind fields. The results show that during the lifting stage from 3 m to 25 m, the maximum horizontal displacement of the steel box girder rapidly increases at wind angles of 90° and 60°, and the peak displacement is reached at 25 m. Under a strong breeze at a 90° wind angle and 25 m lifting height, the maximum lateral displacement was 42.88 mm based on FSI analysis, which is approximately 50% higher than the 28.58 mm obtained from linear static analysis. Subsequently, during the 25 m to 45 m lifting stage, the displacement gradually decreases and exhibits a linear correlation with lifting height. Concurrently, the maximum stress of the lifting lug of the steel box girder increases rapidly in the 3–25 m lifting stage, reaches the maximum at 25 m, and gradually stabilizes in the 25–45 m lifting stage. The lug stress under the same critical condition reached 190.80 MPa in FSI analysis, compared with 123.83 MPa in static analysis, highlighting a significant dynamic amplification. Furthermore, the detrimental coupling effect between mechanical vibrations from the lifting platform and wind loads was quantified; the anti-overturning stability coefficient was reduced by 10.48% under longitudinal vibration compared with lateral vibration, and a further reduction of up to 39.33% was caused by their synergy with wind excitation. Field monitoring validated the numerical model, with stress discrepancies below 9.7%. Based on these findings, a critical on-site wind speed threshold of 9.38 m/s was proposed, and integrated control methods were implemented to ensure construction safety. During on-site lifting, lifting lug stresses were monitored in real time, and if the predefined threshold was exceeded, contingency measures were immediately activated to ensure a controlled termination. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

Back to TopTop