Ideas on New Fluid Dynamic Theory Based on the Liutex Rigid Rotation Definition
Abstract
1. Introduction
2. Liutex Definition and Velocity Decomposition
2.1. Liutex Definition
2.2. Liutex Velocity Decomposition
3. Constitutive Equation Based on Liutex
- (1)
- The stress is linearly related to the rate of deformation;
- (2)
- The fluid is isotropic, meaning its physical properties are independent of direction;
- (3)
- In a static flow field, the shear stress is zero, and all normal stresses are equal to the static pressure.
Discussion on the Violation of the Theorem of Reciprocal Shear Stresses in Fluids
4. New Fluid Momentum Equation Based on the Liutex Constitutive Equation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Saffman, P.G. Vortex Dynamics; Springer: New York, NY, USA, 1992. [Google Scholar]
- Küchemann, D. Report on the I.U.T.A.M. symposium on concentrated vortex motions in fluids. J. Fluid Mech. 1965, 22, 321–324. [Google Scholar] [CrossRef]
- Zhang, H. Structural Analysis of Separated Flows and Vortex Motions; National Defense Industry Press: Beijing, China, 2002. [Google Scholar]
- Helmholtz, H. Über Integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen Entsprechen. J. Für Die Reine Und Angew. Math. 1858, 55, 25–55. [Google Scholar]
- Robinson, S.K. Coherent motions in the turbulent boundary layer. Annu. Rev. Fluid Mech. 1991, 23, 601–639. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, Y.; Yang, G.; Liu, C. DNS study on vortex and vorticity in late boundary layer transition. Commun. Comput. Phys. 2017, 22, 441–459. [Google Scholar] [CrossRef]
- Hunt, J.C.R.; Wray, A.A.; Moin, P. Eddies, stream, and convergence zones in turbulent flows. In Proceedings of the Summer Program; Center for Turbulence Research Report CTR-S88; Center for Turbulence Research: Stanford, CA, USA, 1988; pp. 193–208. [Google Scholar]
- Jeong, J.; Hussain, F. On the identification of a vortex. J. Fluid Mech. 1995, 285, 69–94. [Google Scholar] [CrossRef]
- Chong, M.S.; Perry, A.E.; Cantwell, B.J. A general classification of three-dimensional flow fields. Phys. Fluids A Fluid Dyn. 1990, 2, 765–777. [Google Scholar] [CrossRef]
- Zhou, J.; Adrian, R.J.; Balachandar, S.; Kendall, T. Mechanisms for generating coherent packets of hairpin vortices in channel flow. J. Fluid Mech. 1999, 387, 353–396. [Google Scholar] [CrossRef]
- Liu, C. Liutex—Third Generation of Vortex Definition and Identification Methods. Acta Aerodyn. Sin. 2020, 38, 413–431. [Google Scholar]
- Liu, C.; Wang, Y.; Yang, Y.; Duan, Z. New omega vortex identification method. Sci. China (Phys. Mech. Astron.) 2016, 59, 62–70. [Google Scholar]
- Liu, C.; Gao, Y.S.; Dong, X.R.; Wang, Y.Q.; Liu, J.M.; Zhang, Y.N.; Cai, X.S.; Gui, N. Third generation of vortex identification methods: Omega and Liutex/Rortex based systems. J. Hydrodyn. 2019, 31, 205–223. [Google Scholar] [CrossRef]
- Xu, W.; Gao, Y.; Deng, Y.; Liu, J.; Liu, C. An explicit expression for the calculation of the Rortex vector. Phys. Fluids 2019, 31, 095102. [Google Scholar] [CrossRef]
- Gao, Y.; Liu, C. Rortex and comparison with eigenvalue-based vortex identification criteria. Phys. Fluids 2018, 30, 085107. [Google Scholar] [CrossRef]
- Dong, X.; Gao, Y.; Liu, C. New normalized Rortex/vortex identification method. Phys. Fluids 2019, 31, 011701. [Google Scholar] [CrossRef]
- Liu, J.; Liu, C. Modified normalized Rortex/vortex identification method. Phys. Fluids 2019, 31, 061704. [Google Scholar] [CrossRef]
- Liu, J.-m.; Gao, Y.-s.; Wang, Y.-q.; Liu, C. Objective Omega vortex identification method. J. Hydrodyn. 2019, 31, 455–463. [Google Scholar] [CrossRef]
- Gao, Y.; Liu, C. Rortex based velocity gradient tensor decomposition. Phys. Fluids 2019, 31, 011704. [Google Scholar] [CrossRef]
- Gao, Y.-s.; Liu, J.-m.; Yu, Y.-f.; Liu, C. A Liutex based definition and identification of vortex core center lines. J. Hydrodyn. Ser. B 2019, 31, 445–454. [Google Scholar] [CrossRef]
- Benton, S.I.; Bons, J.P. Response of a Streamwise Vortex-Wall Interaction to Unsteady Forcing. In Proceedings of the 2016 AIAA Aerospace Sciences Meeting, San Diego, CA, USA, 4–8 January 2016. [Google Scholar]
- Xu, H.; Cai, X.-s.; Liu, C. Liutex (vortex) core definition and automatic identification for turbulence vortex structures. J. Hydrodyn. Ser. B 2019, 31, 857–863. [Google Scholar] [CrossRef]
- Xu, W.-q.; Wang, Y.-q.; Gao, Y.-s.; Liu, J.-m.; Dou, H.-s.; Liu, C. Liutex similarity in turbulent boundary layer. J. Hydrodyn. Ser. B 2019, 31, 1259–1262. [Google Scholar] [CrossRef]
- Yan, B.; Wang, Y.; Yu, Y.; Liu, C. New objective Liutex vector based on an optimization procedure. Int. J. Heat Fluid Flow 2024, 107, 109407. [Google Scholar] [CrossRef]
- Li, H.; Wang, D.; Xu, H. Numerical simulation of turbulent thermal boundary layer and generation mechanisms of hairpin vortex. Aerosp. Sci. Technol. 2020, 98, 105680. [Google Scholar] [CrossRef]
- Yang, R.; Wang, Z.; Zhao, Y.; Wang, Q.; Feng, W. Numerical investigation on spatial development of the secondary flow in a supersonic turbulent square duct. Aerosp. Sci. Technol. 2020, 100, 105832. [Google Scholar] [CrossRef]
- Xu, L.; Guo, T. Analysis of hydraulic stability of a Francis turbine under partial load conditions based on Liutex method and entropy production theory. Energy 2025, 328, 136528. [Google Scholar] [CrossRef]
- Trieu, X.M.; Liu, J.; Gao, Y.; Charkrit, S.; Liu, C. Proper Orthogonal Decomposition Analysis of Coherent Structure in a Turbulent Flow after a Micro-vortex Generator. Appl. Math. Model. 2022, 104, 140–162. [Google Scholar] [CrossRef]
- Xu, W.; Wang, Y.; Gao, Y.; Liu, J.; Dou, H.-S.; Liu, C. Observation on Liutex similarity in the dissipation subrange of turbulent boundary layer. Comput. Fluids 2022, 246, 105613. [Google Scholar] [CrossRef]
- Ding, H.; Sun, R.; Wu, X.; Li, Y.; Gao, G.; Yu, H.; Chen, F.; Ji, Z. Impact of bypass ratio in a double-stage vortex tube on vortex stability and separation performance. Sep. Purif. Technol. 2025, 378, 134587. [Google Scholar] [CrossRef]
- Bai, X.; Cheng, H.; Ji, B.; Long, X.; Qian, Z.; Peng, X. Comparative Study of different vortex identification methods in a tip-leakage cavitating flow. Ocean. Eng. 2020, 207, 107373. [Google Scholar]
- Yu, Y.; Shrestha, P.; Alvarez, O.; Nottage, C.; Liu, C. Investigation of correlation between vorticity, Q, λci, λ2, Δ and Liutex. Comput. Fluids 2021, 225, 104977. [Google Scholar]
- Kovács, K.A.; Balla, E. Quantitative comparison of vortex identification methods in three-dimensional fluid flow around bluff bodies. Int. J. Heat Fluid Flow 2025, 113, 109773. [Google Scholar] [CrossRef]
- Qu, Y.; Wu, Q.; Zhao, X.; Huang, B.; Fu, X.; Wang, G. Numerical investigation of flow structures around the DARPA SUBOFF model. Ocean. Eng. 2021, 239, 109866. [Google Scholar]
- Ren, Z.; Wang, J.; Wan, D. Investigation of fine viscous flow fields in ship planar motion mechanism tests by DDES and RANS methods. Ocean. Eng. 2022, 243, 110272. [Google Scholar]
- Shao, Y.; Song, B.; Wan, D.; Wang, J. Numerical study of air entrainment mechanisms and vortical structures in breaking waves. Ocean. Eng. 2025, 341, 122569. [Google Scholar] [CrossRef]
- Chen, J.; Huang, B.; Liu, T.; Wang, Y.; Wang, G. Numerical investigation of cavitation-vortex interaction with special emphasis on the multistage shedding process. Appl. Math. Model. 2021, 96, 111–130. [Google Scholar] [CrossRef]
- Pang, C.; Yang, H.; Gao, Z.; Chen, S. Enhanced adaptive mesh refinement method using advanced vortex identification sensors in wake flow. Aerosp. Sci. Technol. 2021, 115, 106796. [Google Scholar] [CrossRef]
- Zhang, Z.; Dong, S.; Jin, R.; Dong, K.; Hou, L.; Wang, B. Vortex characteristics of a gas cyclone determined with different vortex identification methods. Powder Technol. 2022, 4s04, 117370. [Google Scholar] [CrossRef]
- Shen, H.; Wang, W.; Yu, W.; Zheng, Y.; Hou, G.; Kang, Y. Investigating electrohydrodynamic vortical flow and particle transport mechanism in electrostatic precipitators with discharge needles via vortex identification techniques. Sep. Purif. Technol. 2025, 376, 134028. [Google Scholar] [CrossRef]
- Lihui, X.; Tao, G.; Wenquan, W. Effects of Vortex Structure on Hydraulic Loss in a Low Head Francis Turbine under Overall Operating Conditions Base on Entropy Production Method. Renew. Energy 2022, 198, 367–379. [Google Scholar] [CrossRef]
- Wang, C.; Guo, L.; Liu, Z.; Zhang, Y.; Li, Z. Unsteady flow analysis regarding stall flow and rotating cavitation in the first-stage of a multistage LNG cryogenic submerged pump. Cryogenics 2023, 129, 103546. [Google Scholar]
- Yan, X.; Kan, K.; Zheng, Y.; Xu, Z.; Rossi, M.; Xu, L.; Chen, H. The vortex dynamics characteristics in a pump-turbine: A rigid vorticity analysis while varying guide vane openings in turbine mode. Energy 2024, 289, 130086. [Google Scholar] [CrossRef]
- Yu, A.; Tang, Y.; Liang, J.; Chen, P.; Zhang, Y.; Yang, C. Numerical investigation of the vorticity transportation and energy dissipation in a variable speed pump-turbine. J. Energy Storage 2024, 93, 112392. [Google Scholar] [CrossRef]
- Wang, Y.; Cheng, L. Research on the flow characteristics and energy variation characteristics of the outlet passage of a two-way flow pump device based on Liutex and energy balance equation method. Energy 2025, 318, 134805. [Google Scholar] [CrossRef]
- Liu, Y.; Zhong, W.; Zhong, L.; Tang, Y. Comparison of vortex identification criteria for tip leakage flow in an axial compressor rotor. Aerosp. Sci. Technol. 2026, 168, 110840. [Google Scholar] [CrossRef]
- Liu, C.; Gao, Y.; Tian, S. Rortex A New Vortex Vector Definition and Vorticity Tensor and Vector Decompositions. Phys. Fluids 2018, 30, 035103. [Google Scholar] [CrossRef]
- Stokes, V.K. Couple stresses in fluids. Phys. Fluids 1966, 9, 1709–1715. [Google Scholar] [CrossRef]
- Ariman, T.; Cakmak, A.S. Couple stresses in fluids. Phys. Fluids 1967, 10, 2497–2499. [Google Scholar] [CrossRef]
- Hadjesfandiari, A.R.; Dargush, G.F. Couple stress theory for solids. Int. J. Solids Struct. 2011, 48, 2496–2510. [Google Scholar] [CrossRef]
- AHadjesfandiari, R.; Hajesfandiari, A.; Dargush, G.F. Skew-symmetric couple-stress fluid mechanics. Acta Mech. 2015, 226, 871–895. [Google Scholar]
- Rubbab, Q.; Mirza, I.A.; Siddique, I.; Irshad, S. Unsteady Helical Flows of a Size-Dependent Couple-Stress Fluid. Adv. Math. Phys. 2017, 2017, 9724381. [Google Scholar]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Zheng, K.; Pan, Z.; Fan, Y.; Liu, Y.; Zhang, D.; Niu, Y. Ideas on New Fluid Dynamic Theory Based on the Liutex Rigid Rotation Definition. Fluids 2026, 11, 20. https://doi.org/10.3390/fluids11010020
Zheng K, Pan Z, Fan Y, Liu Y, Zhang D, Niu Y. Ideas on New Fluid Dynamic Theory Based on the Liutex Rigid Rotation Definition. Fluids. 2026; 11(1):20. https://doi.org/10.3390/fluids11010020
Chicago/Turabian StyleZheng, Kuncan, Zhi Pan, You Fan, Yiting Liu, Dapeng Zhang, and Yonghong Niu. 2026. "Ideas on New Fluid Dynamic Theory Based on the Liutex Rigid Rotation Definition" Fluids 11, no. 1: 20. https://doi.org/10.3390/fluids11010020
APA StyleZheng, K., Pan, Z., Fan, Y., Liu, Y., Zhang, D., & Niu, Y. (2026). Ideas on New Fluid Dynamic Theory Based on the Liutex Rigid Rotation Definition. Fluids, 11(1), 20. https://doi.org/10.3390/fluids11010020

