Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (336)

Search Parameters:
Keywords = tumor photothermal therapy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 2414 KiB  
Review
Melittin-Based Nanoparticles for Cancer Therapy: Mechanisms, Applications, and Future Perspectives
by Joe Rizkallah, Nicole Charbel, Abdallah Yassine, Amal El Masri, Chris Raffoul, Omar El Sardouk, Malak Ghezzawi, Therese Abou Nasr and Firas Kreidieh
Pharmaceutics 2025, 17(8), 1019; https://doi.org/10.3390/pharmaceutics17081019 - 6 Aug 2025
Abstract
Melittin, a cytolytic peptide derived from honeybee venom, has demonstrated potent anticancer activity through mechanisms such as membrane disruption, apoptosis induction, and modulation of key signaling pathways. Melittin exerts its anticancer activity by interacting with key molecular targets, including downregulation of the PI3K/Akt [...] Read more.
Melittin, a cytolytic peptide derived from honeybee venom, has demonstrated potent anticancer activity through mechanisms such as membrane disruption, apoptosis induction, and modulation of key signaling pathways. Melittin exerts its anticancer activity by interacting with key molecular targets, including downregulation of the PI3K/Akt and NF-κB signaling pathways, and by inducing mitochondrial apoptosis through reactive oxygen species generation and cytochrome c release. However, its clinical application is hindered by its systemic and hemolytic toxicity, rapid degradation in plasma, poor pharmacokinetics, and immunogenicity, necessitating the development of targeted delivery strategies to enable safe and effective treatment. Nanoparticle-based delivery systems have emerged as a promising strategy for overcoming these challenges, offering improved tumor targeting, reduced off-target effects, and enhanced stability. This review provides a comprehensive overview of the mechanisms through which melittin exerts its anticancer effects and evaluates the development of various melittin-loaded nanocarriers, including liposomes, polymeric nanoparticles, dendrimers, micelles, and inorganic systems. It also summarizes the preclinical evidence for melittin nanotherapy across a wide range of cancer types, highlighting both its cytotoxic and immunomodulatory effects. The potential of melittin nanoparticles to overcome multidrug resistance and synergize with chemotherapy, immunotherapy, photothermal therapy, and radiotherapy is discussed. Despite promising in vitro and in vivo findings, its clinical translation remains limited. Key barriers include toxicity, manufacturing scalability, regulatory approval, and the need for more extensive in vivo validation. A key future direction is the application of computational tools, such as physiologically based pharmacokinetic modeling and artificial-intelligence-based modeling, to streamline development and guide its clinical translation. Addressing these challenges through focused research and interdisciplinary collaboration will be essential to realizing the full therapeutic potential of melittin-based nanomedicines in oncology. Overall, this review synthesizes the findings from over 100 peer-reviewed studies published between 2008 and 2025, providing an up-to-date assessment of melittin-based nanomedicine strategies across diverse cancer types. Full article
(This article belongs to the Special Issue Development of Novel Tumor-Targeting Nanoparticles, 2nd Edition)
Show Figures

Figure 1

18 pages, 4279 KiB  
Article
Chemophotothermal Combined Therapy with 5-Fluorouracil and Branched Gold Nanoshell Hyperthermia Induced a Reduction in Tumor Size in a Xenograft Colon Cancer Model
by Sarah Eliuth Ochoa-Hugo, Karla Valdivia-Aviña, Yanet Karina Gutiérrez-Mercado, Alejandro Arturo Canales-Aguirre, Verónica Chaparro-Huerta, Adriana Aguilar-Lemarroy, Luis Felipe Jave-Suárez, Mario Eduardo Cano-González, Antonio Topete, Andrea Molina-Pineda and Rodolfo Hernández-Gutiérrez
Pharmaceutics 2025, 17(8), 988; https://doi.org/10.3390/pharmaceutics17080988 - 30 Jul 2025
Viewed by 337
Abstract
Background/Objectives: The heterogeneity of cancer disease and the frequent ineffectiveness and resistance observed with currently available treatments highlight the importance of developing new antitumor therapies. The properties of gold nanoparticles, such as their photon-energy heating, are attractive for oncology therapy; this can [...] Read more.
Background/Objectives: The heterogeneity of cancer disease and the frequent ineffectiveness and resistance observed with currently available treatments highlight the importance of developing new antitumor therapies. The properties of gold nanoparticles, such as their photon-energy heating, are attractive for oncology therapy; this can be effective and localized. The combination of chemotherapy and hyperthermia is promising. Our aim was to evaluate the combination therapy of photon hyperthermia with 5-fluorouracil (5-FU) both in vitro and in vivo. Methods: This study evaluated the antitumor efficacy of a combined chemo-photothermal therapy using 5-fluorouracil (5-FU) and branched gold nanoshells (BGNSs) in a colorectal cancer model. BGNSs were synthesized via a seed-mediated method and characterized by electron microscopy and UV–vis spectroscopy, revealing an average diameter of 126.3 nm and a plasmon resonance peak at 800 nm, suitable for near-infrared (NIR) photothermal applications. In vitro assays using SW620-GFP colon cancer cells demonstrated a ≥90% reduction in cell viability after 24 h of combined treatment with 5-FU and BGNS under NIR irradiation. In vivo, xenograft-bearing nude mice received weekly intratumoral administrations of the combined therapy for four weeks. The group treated with 5-FU + BGNS + NIR exhibited a final tumor volume of 0.4 mm3 on day 28, compared to 1010 mm3 in the control group, corresponding to a tumor growth inhibition (TGI) of 100.74% (p < 0.001), which indicates not only complete inhibition of tumor growth but also regression below the initial tumor volume. Thermographic imaging confirmed that localized hyperthermia reached 45 ± 0.5 °C at the tumor site. Results: These findings suggest that the combination of 5-FU and BGNS-mediated hyperthermia may offer a promising strategy for enhancing therapeutic outcomes in patients with colorectal cancer while potentially minimizing systemic toxicity. Conclusions: This study highlights the potential of integrating nanotechnology with conventional chemotherapy for more effective and targeted cancer treatment. Full article
(This article belongs to the Special Issue Advanced Nanotechnology for Combination Therapy and Diagnosis)
Show Figures

Graphical abstract

16 pages, 3508 KiB  
Article
Stability of Carbon Quantum Dots for Potential Photothermal and Diagnostic Applications
by María Fernanda Amezaga Gonzalez, Abdiel Ramirez-Reyes, Monica Elvira Mendoza-Duarte, Alejandro Vega-Rios, Daniel Martinez-Ozuna, Claudia A. Rodriguez-Gonzalez, Santos-Adriana Martel-Estrada and Imelda Olivas-Armendariz
C 2025, 11(3), 56; https://doi.org/10.3390/c11030056 - 29 Jul 2025
Viewed by 324
Abstract
Theranostic agents enable the simultaneous diagnosis and treatment of diseases, and they are particularly useful in fluorescent imaging and cancer therapies. In this study, carbon quantum dots were synthesized via a microwave-assisted method using citric acid and bovine serum albumin (BSA) as precursors. [...] Read more.
Theranostic agents enable the simultaneous diagnosis and treatment of diseases, and they are particularly useful in fluorescent imaging and cancer therapies. In this study, carbon quantum dots were synthesized via a microwave-assisted method using citric acid and bovine serum albumin (BSA) as precursors. The resulting CQDs exhibited spherical morphology, an average size of 4 nm, and an amorphous graphitic structure. FT-IR characterization revealed the presence of amide bonds and oxygenated functional groups. At the same time, optical analysis showed excitation at 320 nm and emission between 360 and 400 nm, with fluorescent stability maintained for one month. Furthermore, the CQDs demonstrated good thermal stability and photothermal efficiency, reaching temperatures above 41 °C within 15 min under NIR irradiation, with a mass loss of less than 1%. Their stability was evaluated in media with different pH levels, simulating physiological and tumor environments. While their behavior was affected under acidic conditions, their excellent photothermal conversion capacity and overall stability in triple-distilled water positioned them as promising candidates for theranostic applications in cancer, effectively combining diagnostic imaging and thermal therapy. Full article
(This article belongs to the Special Issue Carbon Nanohybrids for Biomedical Applications (2nd Edition))
Show Figures

Graphical abstract

17 pages, 7485 KiB  
Review
Organic Afterglow Materials for Tumor Diagnosis and Therapy
by Xiayi Chen, Bin Li, Baoli Yin, Dong Xu and Youjuan Wang
Biosensors 2025, 15(8), 484; https://doi.org/10.3390/bios15080484 - 25 Jul 2025
Viewed by 447
Abstract
Organic afterglow nanoparticles (OANs) represent a unique class of optical materials capable of sustaining luminescence after excitation cessation. Owing to their exceptional design flexibility, tunable optical properties, and favorable biosafety profiles, OAN-based afterglow imaging has emerged as an advanced modality in tumor diagnosis [...] Read more.
Organic afterglow nanoparticles (OANs) represent a unique class of optical materials capable of sustaining luminescence after excitation cessation. Owing to their exceptional design flexibility, tunable optical properties, and favorable biosafety profiles, OAN-based afterglow imaging has emerged as an advanced modality in tumor diagnosis and therapy. These nanostructures demonstrate significant potential in guiding precision surgical interventions and real-time monitoring of tumor treatment, including photodynamic therapy, photothermal therapy, and immunotherapy. This review systematically analyzes and discusses the luminescence mechanisms of OANs under various excitation sources, with particular emphasis on recent developments in tumor detection and treatment. Additionally, we also discuss the current challenges and future perspectives of using these nanoparticles in this field. Full article
(This article belongs to the Special Issue Single-Molecule Biosensing: Recent Advances and Future Challenges)
Show Figures

Figure 1

33 pages, 2309 KiB  
Review
Recent Progress of Nanomedicine for the Synergetic Treatment of Radiotherapy (RT) and Photothermal Treatment (PTT)
by Maria-Eleni Zachou, Ellas Spyratou, Nefeli Lagopati, Kalliopi Platoni and Efstathios P. Efstathopoulos
Cancers 2025, 17(14), 2295; https://doi.org/10.3390/cancers17142295 - 10 Jul 2025
Viewed by 480
Abstract
Nanotechnology has significantly advanced cancer therapy, particularly through the development of multifunctional nanoparticles (NPs) capable of acting as both therapeutic and diagnostic agents. This review focuses on the synergistic integration of radiotherapy (RT) and photothermal therapy (PTT) mediated by engineered NPs—a rapidly evolving [...] Read more.
Nanotechnology has significantly advanced cancer therapy, particularly through the development of multifunctional nanoparticles (NPs) capable of acting as both therapeutic and diagnostic agents. This review focuses on the synergistic integration of radiotherapy (RT) and photothermal therapy (PTT) mediated by engineered NPs—a rapidly evolving strategy that enhances tumor specificity, minimizes healthy tissue damage, and enables real-time imaging. By analyzing the recent literature, we highlight the dual role of NPs in amplifying radiation-induced DNA damage and converting near-infrared (NIR) light into localized thermal energy. The review classifies various metal-based and composite nanomaterials (e.g., Au, Pt, Bi, Cu, and Fe) and evaluates their performance in preclinical RT–PTT settings. We also discuss the physicochemical properties, targeting strategies, and theragnostic applications that contribute to treatment efficiency. Unlike conventional combinatorial therapies, NP-mediated RT–PTT enables high spatial–temporal control, immunogenic potential, and integration with multimodal imaging. We conclude with the current challenges, translational barriers, and outlooks for clinical implementation. This work provides a comprehensive, up-to-date synthesis of NP-assisted RT–PTT as a powerful approach within the emerging field of nano-oncology. Full article
(This article belongs to the Special Issue Nanomedicine’s Role in Oncology)
Show Figures

Figure 1

13 pages, 2327 KiB  
Article
Biocompatible and Biodegradable Nanocarriers for Targeted Drug Delivery in Precision Medicine
by Xin Jin, Hu Qian, Yuxiang Xie, Changzhi Liu, Yuan Cheng, Jinsong Hou and Jiandong Zheng
Biomimetics 2025, 10(7), 430; https://doi.org/10.3390/biomimetics10070430 - 1 Jul 2025
Viewed by 346
Abstract
Despite the promising natural origin, biocompatibility, and biodegradability of chitosan for biomedical applications, developing biodegradable nanocarriers with controllable sizes and precise drug delivery targeting remains a significant challenge, hindering its integration into precision medicine. To address this, we synthesized gold nanocage (AuNCs)/poly-(N-isopropylacrylamide-co-carboxymethyl chitosan) [...] Read more.
Despite the promising natural origin, biocompatibility, and biodegradability of chitosan for biomedical applications, developing biodegradable nanocarriers with controllable sizes and precise drug delivery targeting remains a significant challenge, hindering its integration into precision medicine. To address this, we synthesized gold nanocage (AuNCs)/poly-(N-isopropylacrylamide-co-carboxymethyl chitosan) core-shell multifunctional composite nanospheres (CPAu) through a two-step one-pot method. The resulting CPAu nanospheres (~146 nm in size) exhibited multi-sensitive release properties, excellent biocompatibility, and potent photothermal therapy (PTT) activity. These nanospheres effectively encapsulated diverse antitumor drugs while demonstrating triple responsiveness (thermo-, reduction-, and PTT-triggered) for targeted tumor cell delivery, thereby achieving enhanced antitumor efficacy in combinatorial chemotherapy. Full article
Show Figures

Figure 1

16 pages, 2118 KiB  
Review
Recent Advances in Combination Therapy of YAP Inhibitors with Physical Anti-Cancer Strategies
by Junchi Zhou, Changyan Yu, Wanhong Yang, Nian Jiang, Sanhua Li, Yun Liu and Xinting Zhu
Biomolecules 2025, 15(7), 945; https://doi.org/10.3390/biom15070945 - 29 Jun 2025
Viewed by 758
Abstract
In recent years, physical anti-cancer strategies using radiation, light, sound, electricity, and magnetism have shown great potential in cancer treatment. Photodynamic therapy, radiation therapy, photothermal therapy, and other treatments have different advantages. As a critical transcriptional coactivator in the Hippo signaling pathway, Yes-Associated [...] Read more.
In recent years, physical anti-cancer strategies using radiation, light, sound, electricity, and magnetism have shown great potential in cancer treatment. Photodynamic therapy, radiation therapy, photothermal therapy, and other treatments have different advantages. As a critical transcriptional coactivator in the Hippo signaling pathway, Yes-Associated Protein (YAP) is closely related to tumor proliferation, radiation resistance, and immunosuppression. YAP has been a target in immunotherapy, and YAP inhibitors are used in clinical practice. Combining immunotherapy and physical anti-cancer strategies is an anti-cancer program with clinical potential to enhance the therapeutic effect. This review summarizes the role of photodynamic therapy, radiotherapy, and other physical anti-cancer strategies combined with YAP-targeted therapy in cancer treatment. YAP inhibitors and these physical anti-cancer strategies provide new directions and ideas for cancer treatment. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Graphical abstract

36 pages, 6027 KiB  
Review
Recent Advances in the Application of Silver Nanoparticles for Enhancing Phototherapy Outcomes
by Rebeca M. Melo, Gabriela M. Albuquerque, Joalen P. Monte, Giovannia A. L. Pereira and Goreti Pereira
Pharmaceuticals 2025, 18(7), 970; https://doi.org/10.3390/ph18070970 - 27 Jun 2025
Viewed by 630
Abstract
The therapeutic use of silver nanoparticles (AgNPs) has been increasing, especially in phototherapy strategies. The plasmonic properties of AgNPs have contributed to their excellent results as phototherapeutic agents, namely for photodynamic therapy (PDT), photothermal therapy (PTT), and photodynamic inactivation of microorganisms. Moreover, the [...] Read more.
The therapeutic use of silver nanoparticles (AgNPs) has been increasing, especially in phototherapy strategies. The plasmonic properties of AgNPs have contributed to their excellent results as phototherapeutic agents, namely for photodynamic therapy (PDT), photothermal therapy (PTT), and photodynamic inactivation of microorganisms. Moreover, the capacity of these nanostructures to release silver ions (Ag+) and enhance the production of reactive oxygen species (ROS) has been explored in combination with light to treat several diseases. Moreover, synthesis, functionalization, and conjugation strategies with targeting agents have been widely studied to optimize selectivity and maximize the therapeutic efficacy of these nanoplatforms. In this work, we reviewed the recent advancements (2019–2024) in the use of AgNPs for phototherapy applications, with an emphasis on evaluating therapeutic efficacy and specific targeting. According to the literature, in oncology, AgNPs have been predominately employed in PTT-based strategies, demonstrating significant tumor cell death and preservation of healthy tissues, in both in vitro and in vivo studies. Concurrently, AgNP-mediated PDT has emerged as a promising approach for the eradication of bacteria and fungi, particularly those commonly associated with antibiotic resistance. The compiled data indicate that AgNPs represent an innovative and effective therapeutic alternative, with a strong potential for clinical translation, in both cancer treatment and the management of hard-to-treat infections. Full article
(This article belongs to the Special Issue Therapeutic Potential of Silver Nanoparticles (AgNPs), 2nd Edition)
Show Figures

Figure 1

16 pages, 2914 KiB  
Article
Designing Polymeric Multifunctional Nanogels for Photothermal Inactivation: Exploiting Conjugate Polymers and Thermoresponsive Platforms
by Ignacio Velzi, Edith Ines Yslas and Maria Molina
Pharmaceutics 2025, 17(7), 827; https://doi.org/10.3390/pharmaceutics17070827 - 25 Jun 2025
Viewed by 378
Abstract
Background/Objectives: Photothermal therapy (PTT) is an emerging minimally invasive strategy in biomedicine that converts near-infrared (NIR) light into localized heat for the targeted inactivation of pathogens and tumor cells. Methods and Results: In this study, we report the synthesis and characterization [...] Read more.
Background/Objectives: Photothermal therapy (PTT) is an emerging minimally invasive strategy in biomedicine that converts near-infrared (NIR) light into localized heat for the targeted inactivation of pathogens and tumor cells. Methods and Results: In this study, we report the synthesis and characterization of thermoresponsive nanogels composed of poly (N-isopropylacrylamide-co-N-isopropylmethylacrylamide) (PNIPAM-co-PNIPMAM) semi-interpenetrated with polypyrrole (PPy), yielding monodisperse particles of 377 nm diameter. Spectroscopic analyses—including 1H-NMR, FTIR, and UV-Vis—confirmed successful copolymer formation and PPy incorporation, while TEM images revealed uniform spherical morphology. Differential scanning calorimetry established a volumetric phase transition temperature of 38.4 °C, and photothermal assays demonstrated a ΔT ≈ 10 °C upon 10 min of 850 nm NIR irradiation. In vitro antimicrobial activity tests against Pseudomonas aeruginosa (ATCC 15692) showed a dose-time-dependent reduction in bacterial viability, with up to 4 log CFU/mL. Additionally, gentamicin-loaded nanogels achieved 38.7% encapsulation efficiency and exhibited stimulus-responsive drug release exceeding 75% under NIR irradiation. Conclusions: Combined photothermal and antibiotic therapy yielded augmented bacterial killing, underscoring the potential of PPy-interpenetrated nanogels as smart, dual-mode antimicrobials. Full article
Show Figures

Graphical abstract

42 pages, 2266 KiB  
Review
Innovative Approaches in Cancer Treatment: Emphasizing the Role of Nanomaterials in Tyrosine Kinase Inhibition
by Antónia Kurillová, Libor Kvítek and Aleš Panáček
Pharmaceutics 2025, 17(6), 783; https://doi.org/10.3390/pharmaceutics17060783 - 16 Jun 2025
Viewed by 845
Abstract
Medical research is at the forefront of addressing pressing global challenges, including preventing and treating cardiovascular, autoimmune, and oncological diseases, neurodegenerative disorders, and the growing resistance of pathogens to antibiotics. Understanding the molecular mechanisms underlying these diseases, using advanced medical approaches and cutting-edge [...] Read more.
Medical research is at the forefront of addressing pressing global challenges, including preventing and treating cardiovascular, autoimmune, and oncological diseases, neurodegenerative disorders, and the growing resistance of pathogens to antibiotics. Understanding the molecular mechanisms underlying these diseases, using advanced medical approaches and cutting-edge technologies, structure-based drug design, and personalized medicine, is critical for developing effective therapies, specifically anticancer treatments. Background/Objectives: One of the key drivers of cancer at the cellular level is the abnormal activity of protein enzymes, specifically serine, threonine, or tyrosine residues, through a process known as phosphorylation. While tyrosine kinase-mediated phosphorylation constitutes a minor fraction of total cellular phosphorylation, its dysregulation is critically linked to carcinogenesis and tumor progression. Methods: Small-molecule inhibitors, such as imatinib or erlotinib, are designed to halt this process, restoring cellular equilibrium and offering targeted therapeutic approaches. However, challenges persist, including frequent drug resistance and severe side effects associated with these therapies. Nanomedicine offers a transformative potential to overcome these limitations. Results: By leveraging the unique properties of nanomaterials, it is possible to achieve precise drug delivery, enhance accumulation at target sites, and improve therapeutic efficacy. Examples include nanoparticle-based delivery systems for TKIs and the combination of nanomaterials with photothermal or photodynamic therapies to enhance treatment effectiveness. Combining nanomedicine with traditional treatments holds promise and perspective for synergistic and more effective cancer management. Conclusions: This review delves into recent advances in understanding tyrosine kinase activity, the mechanisms of their inhibition, and the innovative integration of nanomedicine to revolutionize cancer treatment strategies. Full article
Show Figures

Graphical abstract

33 pages, 4970 KiB  
Review
A Review on the Recent Advancements of Polymer-Modified Mesoporous Silica Nanoparticles for Drug Delivery Under Stimuli-Trigger
by Madhappan Santhamoorthy, Perumal Asaithambi, Vanaraj Ramkumar, Natarajan Elangovan, Ilaiyaraja Perumal and Seong Cheol Kim
Polymers 2025, 17(12), 1640; https://doi.org/10.3390/polym17121640 - 13 Jun 2025
Cited by 1 | Viewed by 1276
Abstract
Mesoporous silica nanoparticles (MSNs) are gaining popularity in nanomedicine due to their large surface area, variable pore size, great biocompatibility, and chemical adaptability. In recent years, the combination of smart polymeric materials with MSNs has transformed the area of regulated drug administration, particularly [...] Read more.
Mesoporous silica nanoparticles (MSNs) are gaining popularity in nanomedicine due to their large surface area, variable pore size, great biocompatibility, and chemical adaptability. In recent years, the combination of smart polymeric materials with MSNs has transformed the area of regulated drug administration, particularly under stimuli-responsive settings. Polymer-modified MSNs provide increased stability, longer circulation times, and, most crucially, the capacity to respond to diverse internal (pH, redox potential, enzymes, and temperature) and external (light, magnetic field, and ultrasonic) stimuli. These systems allow for the site-specific, on-demand release of therapeutic molecules, increasing treatment effectiveness while decreasing off-target effects. This review presents a comprehensive analysis of recent advancements in the development and application of polymer-functionalized MSNs for stimuli-triggered drug delivery. Key polymeric modifications, including thermoresponsive, pH-sensitive, redox-responsive, and enzyme-degradable systems, are discussed in terms of their design strategies and therapeutic outcomes. The synergistic use of dual or multiple stimuli-responsive polymers is also highlighted as a promising avenue to enhance precision and control in complex biological environments. Moreover, the integration of targeting ligands and stealth polymers such as PEG further enables selective tumor targeting and immune evasion, broadening the potential clinical applications of these nanocarriers. Recent progress in stimuli-triggered MSNs for combination therapies such as chemo-photothermal and chemo-photodynamic therapy is also covered, emphasizing how polymer modifications enhance responsiveness and therapeutic synergy. Finally, the review discusses current challenges, including scalability, biosafety, and regulatory considerations, and provides perspectives on future directions to bridge the gap between laboratory research and clinical translation. Full article
Show Figures

Figure 1

18 pages, 753 KiB  
Systematic Review
Graphene Quantum Dots for Glioblastoma Treatment and Detection–Systematic Review
by Kacper Kregielewski, Wiktoria Fraczek and Marta Grodzik
Molecules 2025, 30(12), 2483; https://doi.org/10.3390/molecules30122483 - 6 Jun 2025
Viewed by 716
Abstract
Glioblastoma, a highly malignant tumor, has a poor prognosis, necessitating the development of effective therapeutic strategies due to the low success rates of existing treatments. Graphene quantum dots (GQDs) have garnered attention for their unique physicochemical, electronic, and optical properties, along with biocompatibility [...] Read more.
Glioblastoma, a highly malignant tumor, has a poor prognosis, necessitating the development of effective therapeutic strategies due to the low success rates of existing treatments. Graphene quantum dots (GQDs) have garnered attention for their unique physicochemical, electronic, and optical properties, along with biocompatibility and the ability to cross the blood–brain barrier. This systematic review evaluates the current applications of GQDs in glioblastoma management. A search across databases such as PubMed, Science Direct, and Web of Science identified 658 papers, with 10 selected for this review based on the eligibility criteria. Most of the selected studies explored GQDs as pretreatment agents for therapies like chemotherapy and photothermal therapy, alongside their roles in biosensing, bioimaging, and drug delivery. Although research is still limited, this review highlights the significant potential of GQDs as multifunctional platforms in glioblastoma therapy. Further studies are essential to optimize these nanostructures for clinical applications, aiming to improve the precision and effectiveness of treatments while reducing systemic side effects. Full article
Show Figures

Figure 1

24 pages, 1538 KiB  
Review
Multifunctional Hydrogels for Advanced Cancer Treatment: Diagnostic Imaging and Therapeutic Modalities
by Kyung Kwan Lee, Kwangmo Go, Eonjin Lee, Hongki Kim, Seonwook Kim, Ji-Hyun Kim, Min Suk Chae and Jin-Oh Jeong
Gels 2025, 11(6), 426; https://doi.org/10.3390/gels11060426 - 1 Jun 2025
Cited by 2 | Viewed by 1303
Abstract
Multifunctional hydrogels represent an emerging technological advancement in cancer therapeutics, integrating diagnostic imaging capabilities with therapeutic modalities into comprehensive, multifunctional systems. These hydrogels exhibit exceptional biocompatibility, biodegradability, high water retention capacity, and tunable mechanical properties, enabling precise drug delivery while minimizing systemic side [...] Read more.
Multifunctional hydrogels represent an emerging technological advancement in cancer therapeutics, integrating diagnostic imaging capabilities with therapeutic modalities into comprehensive, multifunctional systems. These hydrogels exhibit exceptional biocompatibility, biodegradability, high water retention capacity, and tunable mechanical properties, enabling precise drug delivery while minimizing systemic side effects. Recent innovations in stimuli-responsive components facilitate intelligent, controlled drug release mechanisms triggered by various stimuli, including changes in pH, temperature, magnetic fields, and near-infrared irradiation. Incorporating diagnostic imaging agents, such as magnetic nanoparticles, fluorescent dyes, and radiolabeled isotopes, substantially improves tumor visualization and real-time therapeutic monitoring. Multifunctional hydrogels effectively integrate chemotherapy, photothermal therapy, photodynamic therapy, immunotherapy, and their synergistic combinations, demonstrating superior therapeutic outcomes compared to conventional methods. Particularly, injectable and in situ-forming hydrogels provide sustained local drug delivery postoperatively, effectively reducing tumor recurrence. However, challenges persist, including initial burst release, mechanical instability, regulatory barriers, and scalability concerns. Current research emphasizes advanced nanocomposite formulations, biofunctionalization strategies, and innovative manufacturing technologies like 3D bioprinting to facilitate clinical translation. This review comprehensively summarizes recent advancements, clinical applications, and future perspectives of multifunctional hydrogel systems for enhanced cancer treatment, underscoring their potential to revolutionize personalized oncology. Full article
Show Figures

Figure 1

23 pages, 8205 KiB  
Review
Application of NIR Fluorescent Materials in Imaging and Treatment of Tumors of Different Depths
by Mengdi Yu, Xuan Liu, Shuqiong Wang, Ziyao Qin, Beibei Hu, Zhiwei Li and Shiguo Sun
Nanomaterials 2025, 15(11), 811; https://doi.org/10.3390/nano15110811 - 28 May 2025
Viewed by 704
Abstract
Deep-seated tumors present significant diagnostic challenges and pose substantial mortality risks due to their occult anatomical localization. Current diagnostic paradigms predominantly depend on conventional imaging modalities; nevertheless, inherent technical constraints persistently compromise diagnostic precision and therapeutic efficacy. In contrast to traditional methodologies, near-infrared [...] Read more.
Deep-seated tumors present significant diagnostic challenges and pose substantial mortality risks due to their occult anatomical localization. Current diagnostic paradigms predominantly depend on conventional imaging modalities; nevertheless, inherent technical constraints persistently compromise diagnostic precision and therapeutic efficacy. In contrast to traditional methodologies, near-infrared (NIR; 700–1700 nm) fluorescence imaging (FLI) demonstrates superior sensitivity and spatiotemporal resolution, facilitating real-time intraoperative visualization and precision-guided surgical interventions. This paper explores fluorescence materials with tailored structures for tumors at different depths. We critically analyze optimization strategies for NIR fluorescence materials while evaluating their comparative advantages in stratified tissue imaging. This study presents a systematic evaluation of NIR fluorescence molecular tomography (FMT) systems and image reconstruction methodologies. These insights provide feasible ideas for detecting and treating tumors at varying depths in clinical practice. Furthermore, the application of NIR fluorescent materials in tumor diagnosis, navigation-guided surgery, and phototherapy (including photothermal, photodynamic, and immunomodulation therapies) is discussed. Finally, the prospects and challenges of clinical transformation are summarized. Full article
(This article belongs to the Special Issue Applications of Fluorescent Nanomaterials in Imaging and Detection)
Show Figures

Graphical abstract

15 pages, 2507 KiB  
Article
Selective Photothermal Therapy Using Antioxidant Nanoparticles Encapsulating Novel Near-Infrared-Absorbing Platinum(II) Complexes
by Ryota Sawamura, Hiromi Kurokawa, Atsushi Taninaka, Takuto Toriumi, Yukio Nagasaki, Hidemi Shigekawa, Hirofumi Matsui and Nobuhiko Iki
Nanomaterials 2025, 15(11), 796; https://doi.org/10.3390/nano15110796 - 25 May 2025
Viewed by 750
Abstract
Photothermal therapy (PTT) is a promising approach for cancer treatment that has minimal side effects. It locally heats tumors using agents that convert near-infrared (NIR) light energy into heat. We previously reported that the NIR-absorbing hydrophobic diradical-platinum(II) complex PtL2 (L = 3,5-dibromo-1,2-diiminobenzosemiquinonato [...] Read more.
Photothermal therapy (PTT) is a promising approach for cancer treatment that has minimal side effects. It locally heats tumors using agents that convert near-infrared (NIR) light energy into heat. We previously reported that the NIR-absorbing hydrophobic diradical-platinum(II) complex PtL2 (L = 3,5-dibromo-1,2-diiminobenzosemiquinonato radical) can kill cancer cells through its photothermal conversion ability. In this study, we developed PtL2-loading nanoparticles (PtL2@RNPs) for the delivery of the complex to tumors based on the enhanced permeability and retention effect using an amphiphilic block copolymer that can scavenge reactive oxygen species. PtL2@RNPs exhibited particle diameters of 20–30 nm, an encapsulation efficiency exceeding 90%, and loading capacities of up to 12%. Under NIR laser irradiation, PtL2@RNPs stably generated heat with almost 100% photothermal conversion efficiency. Although the particles were not modified for cancer cell targeting, their uptake by cancer cells was approximately double that by normal cells. PtL2@RNPs exhibited NIR absorption and effectively killed cancer cells at a low irradiation power (0.15 W). Normal cells treated with PtL2@RNPs remained largely undamaged under identical irradiation conditions, demonstrating a cancer-cell-specific photothermal killing effect. These findings can provide insights for future basic studies on cancer cells and the development of effective cancer treatment modalities. Full article
(This article belongs to the Section Biology and Medicines)
Show Figures

Graphical abstract

Back to TopTop