Stability of Carbon Quantum Dots for Potential Photothermal and Diagnostic Applications
Abstract
1. Introduction
2. Materials and Methods
2.1. Synthesis of Carbon Quantum Dots
2.2. Turbidimetry Stability Index
2.3. CQD Characterization
2.4. Photothermal Effect
3. Results and Discussion
3.1. Synthesis and Characterization of Carbon Quantum Dots
3.2. Photothermal Effect and Colloidal Stability
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CQDs | Carbon quantum dots |
BSA | Bovine serum albumin |
TSI | Turbidimetric stability index |
PTT | Photothermal therapy |
References
- Xu, X.; Ray, R.; Gu, Y.; Ploehn, H.J.; Gearheart, L.; Raker, K.; Scrivens, W.A. Electrophoretic Analysis and Purification of Fluorescent Single-Walled Carbon Nanotube Fragments. J. Am. Chem. Soc. 2004, 126, 12736–12737. [Google Scholar] [CrossRef]
- Sun, Y.-P.; Zhou, B.; Lin, Y.; Wang, W.; Fernando, K.A.S.; Pathak, P.; Meziani, M.J.; Harruff, B.A.; Wang, X.; Wang, H.; et al. Quantum-Sized Carbon Dots for Bright and Colorful Photoluminescence. J. Am. Chem. Soc. 2006, 128, 7756–7757. [Google Scholar] [CrossRef]
- Mendes, R.G.; Bachmatiuk, A.; Büchner, B.; Cuniberti, G.; Rümmeli, M.H. Carbon Nanostructures as Multi-Functional Drug Delivery Platforms. J. Mater. Chem. B 2013, 1, 401–428. [Google Scholar] [CrossRef]
- Chen, D.; Dougherty, C.A.; Zhu, K.; Hong, H. Theranostic Applications of Carbon Nanomaterials in Cancer: Focus on Imaging and Cargo Delivery. J. Control. Release 2015, 210, 230–245. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.Y.; Shen, W.; Gao, Z. Carbon Quantum Dots and Their Applications. Chem. Soc. Rev. 2015, 44, 362–381. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Lin, Q.; Chen, G.; Lu, J.; Zeng, Y.; Chen, X.; Yan, J. Sentinel Lymph Node Detection Using Carbon Nanoparticles in Patients with Early Breast Cancer. PLoS ONE 2015, 10, e0135714. [Google Scholar] [CrossRef]
- Yu, W.; Cao, X.; Xu, G.; Song, Y.; Li, G.; Zheng, H.; Zhang, N. Potential Role for Carbon Nanoparticles to Guide Central Neck Dissection in Patients with Papillary Thyroid Cancer. Surgery 2016, 160, 755–761. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, M.; Wu, M.; Zhu, J.; Zhang, X. Multifunctional Carbon-Based Nanomaterials: Applications in Biomolecular Imaging and Therapy. ACS Omega 2018, 3, 9126–9145. [Google Scholar] [CrossRef]
- Zhao, H.; Chao, Y.; Liu, J.; Huang, J.; Pan, J.; Guo, W.; Wu, J.; Sheng, M.; Yang, K.; Wang, J.; et al. Polydopamine Coated Single-Walled Carbon Nanotubes as a Versatile Platform with Radionuclide Labeling for Multimodal Tumor Imaging and Therapy. Theranostics 2016, 6, 1833–1843. [Google Scholar] [CrossRef] [PubMed]
- Hsu, P.-C.; Chen, P.-C.; Ou, C.-M.; Chang, H.-Y.; Chang, H.-T. Extremely High Inhibition Activity of Photoluminescent Carbon Nanodots toward Cancer Cells. J. Mater. Chem. B 2013, 1, 1774. [Google Scholar] [CrossRef]
- Jia, X.; Pei, M.; Zhao, X.; Tian, K.; Zhou, T.; Liu, P. PEGylated Oxidized Alginate-DOX Prodrug Conjugate Nanoparticles Cross-Linked with Fluorescent Carbon Dots for Tumor Theranostics. ACS Biomater. Sci. Eng. 2016, 2, 1641–1648. [Google Scholar] [CrossRef]
- Singh, R.K.; Patel, K.D.; Mahapatra, C.; Kang, M.S.; Kim, H.-W. C-Dot Generated Bioactive Organosilica Nanospheres in Theranostics: Multicolor Luminescent and Photothermal Properties Combined with Drug Delivery Capacity. ACS Appl. Mater. Interfaces 2016, 8, 24433–24444. [Google Scholar] [CrossRef] [PubMed]
- Ge, J.; Jia, Q.; Liu, W.; Lan, M.; Zhou, B.; Guo, L.; Zhou, H.; Zhang, H.; Wang, Y.; Gu, Y.; et al. Carbon Dots with Intrinsic Theranostic Properties for Bioimaging, Red-Light-Triggered Photodynamic/Photothermal Simultaneous Therapy in Vitro and in Vivo. Adv. Healthc. Mater. 2016, 5, 665–675. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.; Qi, H.; Ma, R.; Sun, Z.; Xiao, L.; Wei, G.; Huang, Z.; Liu, S.; Li, J.; Dong, M.; et al. N,S-Self-Doped Carbon Quantum Dots from Fungus Fibers for Sensing Tetracyclines and for Bioimaging Cancer Cells. Mater. Sci. Eng. C 2019, 105, 110132. [Google Scholar] [CrossRef]
- Rani, U.A.; Ng, L.Y.; Ng, C.Y.; Mahmoudi, E. A Review of Carbon Quantum Dots and Their Applications in Wastewater Treatment. Adv. Colloid Interface Sci. 2020, 278, 102124. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Lee, S.; Chen, X. Nanoparticle-Based Theranostic Agents. Adv. Drug Deliv. Rev. 2010, 62, 1064–1079. [Google Scholar] [CrossRef]
- Kandasamy, G.; Maity, D. Multifunctional Theranostic Nanoparticles for Biomedical Cancer Treatments—A Comprehensive Review. Mater. Sci. Eng. C 2021, 127, 112199. [Google Scholar] [CrossRef]
- Dua, S.; Kumar, P.; Pani, B.; Kaur, A.; Khanna, M.; Bhatt, G. Stability of Carbon Quantum Dots: A Critical Review. RSC Adv. 2023, 13, 13845–13861. [Google Scholar] [CrossRef]
- Milosavljevic, V.; Moulick, A.; Kopel, P.; Adam, V.; Kizek, R. Microwave Preparation of Carbon Quantum Dots with Different Surface Modification. Available online: https://web.archive.org/web/20180410075023id_/http://web2.mendelu.cz/af_239_nanotech/J_Met_Nano/0314/pdf/jmn3-03.pdf (accessed on 22 July 2025).
- Jaramillo Martínez, S.M.; Rodríguez González, C.A.; Olivas, I. Armendáriz Síntesis de Puntos Cuánticos de Carbono Para El Desarrollo de Biomarcadores Ópticos Fluorescentes; Universidad Autónoma de Ciudad Juárez: Chihuahua Juárez, México, 2022. [Google Scholar]
- Amézaga González, M.F.; Acosta Bezada, J.; Gómez Flores, V.; Chapa González, C.; Farias Mancilla, J.R.; Castillo, S.J.; Avila Orta, C.; García-Casillas, P.E. Effect of Physiological Fluid on the Photothermal Properties of Gold Nanostructured. Int. J. Mol. Sci. 2023, 24, 8339. [Google Scholar] [CrossRef]
- Matusiak, J.; Grzadka, E. Stability of Colloidal Systems—A Review of the Stability Measurements Methods. Chemia 2017, 72, 33. [Google Scholar] [CrossRef]
- Cutrim, E.S.M.; Vale, A.A.M.; Manzani, D.; Barud, H.S.; Rodríguez-Castellón, E.; Santos, A.P.S.A.; Alcântara, A.C.S. Preparation, Characterization and in Vitro Anticancer Performance of Nanoconjugate Based on Carbon Quantum Dots and 5-Fluorouracil. Mater. Sci. Eng. C 2021, 120, 111781. [Google Scholar] [CrossRef]
- Rai, S.; Arun, S.; Kureel, A.K.; Dutta, P.K.; Mehrotra, G.K. Preparation of Dextran Aldehyde and BSA Conjugates from Ligno-Cellulosic Biowaste for Antioxidant and Anti-Cancer Efficacy. Waste Biomass Valor. 2021, 12, 1327–1339. [Google Scholar] [CrossRef]
- Ansi, V.A.; Renuka, N.K. Table Sugar Derived Carbon Dot—A Naked Eye Sensor for Toxic Pb2+ Ions. Sens. Actuators B Chem. 2018, 264, 67–75. [Google Scholar] [CrossRef]
- Li, J.; Wang, W.; An, B.; Jia, X.; Zhang, Y.; Li, J.; Bai, Y.; Xu, J. Luminescence Color Regulation of Carbon Quantum Dots by Surface Modification. J. Lumin. 2022, 246, 118811. [Google Scholar] [CrossRef]
- Ganesan, S.; Kalimuthu, R.; Kanagaraj, T.; Kulandaivelu, R.; Nagappan, R.; Pragasan, L.A.; Ponnusamy, V.K. Microwave-Assisted Green Synthesis of Multi-Functional Carbon Quantum Dots as Efficient Fluorescence Sensor for Ultra-Trace Level Monitoring of Ammonia in Environmental Water. Environ. Res. 2022, 206, 112589. [Google Scholar] [CrossRef]
- Arrondo, J.L.R.; Muga, A.; Castresana, J.; Goñi, F.M. Quantitative Studies of the Structure of Proteins in Solution by Fourier-Transform Infrared Spectroscopy. Prog. Biophys. Mol. Biol. 1993, 59, 23–56. [Google Scholar] [CrossRef]
- Sabet, M.; Mahdavi, K. Green Synthesis of High Photoluminescence Nitrogen-Doped Carbon Quantum Dots from Grass via a Simple Hydrothermal Method for Removing Organic and Inorganic Water Pollutions. Appl. Surf. Sci. 2019, 463, 283–291. [Google Scholar] [CrossRef]
- Liang, Q.; Ma, W.; Shi, Y.; Li, Z.; Yang, X. Easy Synthesis of Highly Fluorescent Carbon Quantum Dots from Gelatin and Their Luminescent Properties and Applications. Carbon 2013, 60, 421–428. [Google Scholar] [CrossRef]
- Mai, X.-D.; Phan, Y.T.H.; Nguyen, V.-Q. Excitation-Independent Emission of Carbon Quantum Dot Solids. Adv. Mater. Sci. Eng. 2020, 1, 1–5. [Google Scholar] [CrossRef]
- Widyasari, D.A.; Kristiani, A.; Randy, A.; Manurung, R.V.; Dewi, R.T.; Andreani, A.S.; Yuliarto, B.; Jenie, S.N.A. Optimized Antibody Immobilization on Natural Silica-Based Nanostructures for the Selective Detection of E. coli. RSC Adv. 2022, 12, 21582–21590. [Google Scholar] [CrossRef]
- Larsson, M.A.; Ramachandran, P.; Jarujamrus, P.; Lee, H.L. Microwave Synthesis of Blue Emissive N-Doped Carbon Quantum Dots as a Fluorescent Probe for Free Chlorine Detection. J. Sex. Med. 2022, 51, 1197–1212. [Google Scholar] [CrossRef]
- Arya, B.D.; Malik, N. Quantitative Estimation of Bovine Serum Albumin Protein Using UV—Visible Spectroscopy. World Wide J. Multidiscip. Res. Dev. 2025, 1, 66–69. [Google Scholar]
- Buddanavar, A.T.; Nandibewoor, S.T. Multi-Spectroscopic Characterization of Bovine Serum Albumin upon Interaction with Atomoxetine. J. Pharm. Anal. 2017, 7, 148–155. [Google Scholar] [CrossRef]
- Feng, S.; Gao, Z.; Liu, H.; Huang, J.; Li, X.; Yang, Y. Feasibility of Detection Valence Speciation of Cr(III) and Cr(VI) in Environmental Samples by Spectrofluorimetric Method with Fluorescent Carbon Quantum Dots. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 212, 286–292. [Google Scholar] [CrossRef]
- Vibhute, A.; Patil, T.; Gambhir, R.; Tiwari, A.P. Fluorescent Carbon Quantum Dots: Synthesis Methods, Functionalization and Biomedical Applications. Appl. Surf. Sci. Adv. 2022, 11, 100311. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, X.; Yang, Y.; Kang, L.; Yang, Z.; Liu, W.; Chen, L. Carbon Dots: From Intense Absorption in Visible Range to Excitation-Independent and Excitation-Dependent Photoluminescence. Fuller. Nanotub. Carbon Nanostruct. 2015, 23, 922–929. [Google Scholar] [CrossRef]
- Bano, D.; Kumar, V.; Singh, V.K.; Hasan, S.H. Green Synthesis of Fluorescent Carbon Quantum Dots for the Detection of Mercury(Ii) and Glutathione. New J. Chem. 2018, 8, 5814–5821. [Google Scholar] [CrossRef]
- Vela, J.; Htoon, H.; Chen, Y.; Park, Y.-S.; Ghosh, Y.; Goodwin, P.M.; Werner, J.H.; Wells, N.P.; Casson, J.L.; Hollingsworth, J.A. Effect of Shell Thickness and Composition on Blinking Suppression and the Blinking Mechanism in ‘Giant’ CdSe/CdS Nanocrystal Quantum Dots. J. Biophoton. 2010, 3, 706–717. [Google Scholar] [CrossRef]
- Javed, M.; Saqib, A.N.S.; Ata-ur-Rehman; Ali, B.; Faizan, M.; Anang, D.A.; Iqbal, Z.; Abbas, S.M. Carbon Quantum Dots from Glucose Oxidation as a Highly Competent Anode Material for Lithium and Sodium-Ion Batteries. Electrochim. Acta 2019, 297, 250–257. [Google Scholar] [CrossRef]
- Wang, M.; Zhou, G.; Pan, Y.; Xue, Y.; Zhu, S.; Yan, Y.; Yuan, H.; Li, S.; Huang, Q. Design and Fabrication of Cascade Novel Fenton Catalytic Nanocomposite as Theranostic Agent for Chemodynamic/Photothermal Synergistic Tumor Therapy. Mater. Des. 2022, 219, 110794. [Google Scholar] [CrossRef]
- Alkilany, A.M.; Bani Yaseen, A.I.; Kailani, M.H. Synthesis of Monodispersed Gold Nanoparticles with Exceptional Colloidal Stability with Grafted Polyethylene Glycol-g-Polyvinyl Alcohol. J. Nanomater. 2015, 1, 712359. [Google Scholar] [CrossRef]
- Singh, I.; Arora, R.; Dhiman, H.; Pahwa, R. Carbon quantum dots: Synthesis, characterization and biomedical applications. Turk. J. Pharm. Sci. 2018, 15, 219–230. [Google Scholar] [CrossRef] [PubMed]
- Ghataty, D.S.; Amer, R.I.; Amer, M.A.; Abdel Rahman, M.F.; Shamma, R.N. Green Synthesis of Highly Fluorescent Carbon Dots from Bovine Serum Albumin for Linezolid Drug Delivery as Potential Wound Healing Biomaterial: Bio-Synergistic Approach, Antibacterial Activity, and In Vitro and Ex Vivo Evaluation. Pharmaceutics 2023, 15, 234. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.R.F.; Alves, M.F.R.P.; Ananias, D.; Ivanov, M.; Fernandes, M.H.V.; Vilarinho, P.M.; Ferreira, P. Development of Carbon Quantum Dots-Based Transparent Coatings for Enhanced UV Shielding. Appl. Surf. Sci. 2024, 669, 160414. [Google Scholar] [CrossRef]
Sample | BSA | CQDs | CQDs (pH 7.4) | CQDs (pH 7.2) | CQDs (pH 4.1) |
---|---|---|---|---|---|
TSI | 75.87 | 74.85 | 30.38 | 77.49 | 100 |
Sample | CQDs (pH 7) | CQDs (pH 7.4) | CQDs (pH 7.2) | CQDs (pH 4.1) |
---|---|---|---|---|
Potential Zeta (mV) | +200.0 | +140.2 | +160.7 | +200.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amezaga Gonzalez, M.F.; Ramirez-Reyes, A.; Mendoza-Duarte, M.E.; Vega-Rios, A.; Martinez-Ozuna, D.; Rodriguez-Gonzalez, C.A.; Martel-Estrada, S.-A.; Olivas-Armendariz, I. Stability of Carbon Quantum Dots for Potential Photothermal and Diagnostic Applications. C 2025, 11, 56. https://doi.org/10.3390/c11030056
Amezaga Gonzalez MF, Ramirez-Reyes A, Mendoza-Duarte ME, Vega-Rios A, Martinez-Ozuna D, Rodriguez-Gonzalez CA, Martel-Estrada S-A, Olivas-Armendariz I. Stability of Carbon Quantum Dots for Potential Photothermal and Diagnostic Applications. C. 2025; 11(3):56. https://doi.org/10.3390/c11030056
Chicago/Turabian StyleAmezaga Gonzalez, María Fernanda, Abdiel Ramirez-Reyes, Monica Elvira Mendoza-Duarte, Alejandro Vega-Rios, Daniel Martinez-Ozuna, Claudia A. Rodriguez-Gonzalez, Santos-Adriana Martel-Estrada, and Imelda Olivas-Armendariz. 2025. "Stability of Carbon Quantum Dots for Potential Photothermal and Diagnostic Applications" C 11, no. 3: 56. https://doi.org/10.3390/c11030056
APA StyleAmezaga Gonzalez, M. F., Ramirez-Reyes, A., Mendoza-Duarte, M. E., Vega-Rios, A., Martinez-Ozuna, D., Rodriguez-Gonzalez, C. A., Martel-Estrada, S.-A., & Olivas-Armendariz, I. (2025). Stability of Carbon Quantum Dots for Potential Photothermal and Diagnostic Applications. C, 11(3), 56. https://doi.org/10.3390/c11030056