Chemophotothermal Combined Therapy with 5-Fluorouracil and Branched Gold Nanoshell Hyperthermia Induced a Reduction in Tumor Size in a Xenograft Colon Cancer Model
Abstract
1. Introduction
2. Materials and Methods
2.1. Synthesis of BGNSs
2.2. Physical and Chemical Characterization of the BGNSs
2.3. Cell Culture
2.4. In Vitro Cytotoxicity Assays of Chemotherapy
2.5. In Vitro Assays of Hyperthermia
2.6. Chemophotothermal In Vitro Assays
2.7. Chemophotothermal in Vivo Assays
3. Results
3.1. Characterization of BGNSs
3.2. In Vitro Cytotoxicity of Chemotherapy and Hyperthermia
3.3. In Vivo Chemophotothermal Treatment
3.3.1. Standardization
3.3.2. Control Group
3.3.3. Treatment Group: 5-FU
3.3.4. Treatment Group: NIR
3.3.5. Treatment Group: NIR + BGNS
3.3.6. Treatment Group: 5-FU + NIR + BGNS
3.3.7. Comparison of the Treatment and Control Groups
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baidoun, F.; Elshiwy, K.; Elkeraie, Y.; Merjaneh, Z.; Khoudari, G.; Sarmini, M.T.; Gad, M.; Al-Husseini, M.; Saad, A. Colorectal Cancer Epidemiology: Recent Trends and Impact on Outcomes. Curr. Drug Targets 2020, 22, 998–1009. [Google Scholar] [CrossRef]
- Shin, A.E.; Giancotti, F.G.; Rustgi, A.K. Metastatic colorectal cancer: Mechanisms and emerging therapeutics. Trends Pharmacol. Sci. 2023, 44, 222–236. [Google Scholar] [CrossRef] [PubMed]
- Biller, L.H.; Schrag, D. Diagnosis and treatment of metastatic colorectal cancer: A review. JAMA 2021, 325, 669–685. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Zhang, H.; Song, P.; Wang, D.; Wang, Y. Colorectal cancer therapy mediated by nanomedicines. Chem. Commun. 2023, 59, 4423–4435. [Google Scholar] [CrossRef] [PubMed]
- Ochoa-Hugo, S.E.; Gutiérrez-Mercado, Y.K.; Canales-Aguirre, A.A.; Hernández-Gutiérrez, R. Hyperthermia on colorectal cancer: Gold nanoshells-mediated photothermal therapy. Rev. Med. Inst. Mex. Seguro Soc. 2024, 62, 1–8. [Google Scholar] [CrossRef]
- Farzam, O.R.; Mehran, N.; Bilan, F.; Aghajani, E.; Dabbaghipour, R.; Shahgoli, G.A.; Baradaran, B. Nanoparticles for imaging-guided photothermal therapy of colorectal cancer. Heliyon 2023, 9, e21334. [Google Scholar] [CrossRef]
- Li, C.H.; Chan, M.H.; Chang, Y.C.; Hsiao, M. Gold Nanoparticles as a Biosensor for Cancer Biomarker Determination. Molecules 2023, 28, 364. [Google Scholar] [CrossRef]
- Kurokawa, H.; Taninaka, A.; Yoshitomi, T.; Shigekawa, H.; Matsui, H. Near-Infrared Light Irradiation of Porphyrin-Modified Gold Nanoparticles Promotes Cancer-Cell-Specific Cytotoxicity. Molecules 2022, 27, 1238. [Google Scholar] [CrossRef]
- Kaur, I.; Tieu, T.; Deepagan, V.G.; Ali, M.A.; Alsunaydih, F.; Rudd, D.; Moghaddam, M.A.; Bourgeois, L.; Adams, T.E.; Thurecht, K.J.; et al. Combination of Chemotherapy and Mild Hyperthermia Using Targeted Nanoparticles: A Potential Treatment Modality for Breast Cancer. Pharmaceutics 2023, 15, 1389. [Google Scholar] [CrossRef]
- Tsai, T.F.; Hwang, T.I.; Chen, P.-C.; Chen, Y.-C.; Chou, K.-Y.; Ho, C.-Y.; Chen, H.-E.; Chang, A.-C. Hyperthermia reduces cancer cell invasion and combats chemoresistance and immune evasion in human bladder cancer. Int. J. Oncol. 2024, 65, 116. [Google Scholar] [CrossRef]
- Zhou, T.; Wu, L.; Ma, N.; Tang, F.; Chen, J.; Jiang, Z.; Li, Y.; Ma, T.; Yang, N.; Zong, Z. Photothermally responsive theranostic nanocomposites for near-infrared light triggered drug release and enhanced synergism of photothermo-chemotherapy for gastric cancer. Bioeng. Transl. Med. 2023, 8, e10368. [Google Scholar] [CrossRef]
- Shimizu, T.; Sonoda, H.; Murata, S.; Takebayashi, K.; Ohta, H.; Miyake, T.; Mekata, E.; Shiomi, H.; Naka, S.; Tani, T. Hyperthermic intraperitoneal chemotherapy using a combination of mitomycin C,5-fluorouracil, and oxaliplatin in patients at high risk of colorectal peritoneal metastasis: A Phase I clinical study. Eur. J. Surg. Oncol. 2014, 40, 521–528. [Google Scholar] [CrossRef]
- Topete, A.; Alatorre-Meda, M.; Villar-Álvarez, E.M.; Cambón, A.; Barbosa, S.; Taboada, P.; Mosquera, V. Simple control of surface topography of gold nanoshells by a surfactant-less seeded-growth method. ACS Appl. Mater. Interfaces 2014, 6, 11142–11157. [Google Scholar] [CrossRef] [PubMed]
- Ai, K.; Chen, M.; Liang, Z.; Ding, X.; Gao, Y.; Zhang, H.; Wu, S.; He, Y.; Li, Y. Inhibition of Tumoral VISTA to Overcome TKI Resistance via Downregulation of the AKT/mTOR and JAK2/STAT5 Pathways in Chronic Myeloid Leukemia. Biomol. Ther. 2024, 32, 582. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.J.; Huang, H.T.; Huang, C.H.; Pai, J.A.; Wang, C.H.; Shieh, M.J. The synergistic effect of chemo-photothermal therapies in SN-38-loaded gold-nanoshell-based colorectal cancer treatment. Nanomedicine 2022, 17, 23–40. [Google Scholar] [CrossRef] [PubMed]
- Rosales, S.; Hernández-Gutiérrez, R.; Oaxaca, A.; López, Z.; Casillas, N.; Knauth, P.; Quintero, L.H.; Paz, J.A.; Cholico, F.; Velásquez, C.; et al. The Fluorescent Cell Line SW620-GFP Is a Valuable Model to Monitor Magnetic Hyperthermia. Bioengineering 2024, 11, 638. [Google Scholar] [CrossRef] [PubMed]
- Sang, J.; Tang, R.; Yang, M.; Sun, Q. Metformin Inhibited Proliferation and Metastasis of Colorectal Cancer and presented a Synergistic Effect on 5-FU. Biomed. Res. Int. 2020, 2020, 9312149. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Eng, C.; Yoshino, T.; Ruíz-García, E.; Mostafa, N.; Cann, C.G.; O’Brian, B.; Benny, A.; Perez, R.O.; Cremolini, C. Colorectal cancer. Lancet 2024, 404, 294–310. [Google Scholar] [CrossRef]
- Yu, S.; Xu, X.; Feng, J.; Liu, M.; Hu, K. Chitosan and chitosan coating nanoparticles for the treatment of brain disease. Int. J. Pharm. 2019, 560, 282–293. [Google Scholar] [CrossRef]
- Bala, V.M.; Lampropoulou, D.I.; Grammatikaki, S.; Kouloulias, V.; Lagopati, N.; Aravantinos, G.; Gazouli, M. Nanoparticle-Mediated Hyperthermia and Cytotoxicity Mechanisms in Cancer. Int. J. Mol. Sci. 2023, 25, 296. [Google Scholar] [CrossRef]
- Hossain, M.S.; Karuniawati, H.; Jairoun, A.A.; Urbi, Z.; Ooi, J.; John, A.; Lim, Y.C.; Kibria, K.M.K.; Mohiuddin, A.K.M.; Ming, L.C.; et al. Colorectal Cancer: A Review of Carcinogenesis, Global Epidemiology, Current Challenges, Risk Factors, Preventive and Treatment Strategies. Cancers 2022, 14, 1732. [Google Scholar] [CrossRef]
- Ramović Hamzagić, A.; Cvetković, D.; Gazdić Janković, M.; Milivojević Dimitrijević, N.; Nikolić, D.; Živanović, M.; Kastratović, N.; Petrović, I.; Nikolić, S.; Jovanović, M.; et al. Modeling 5-FU-Induced Chemotherapy Selection of a Drug-Resistant Cancer Stem Cell Subpopulation. Curr. Oncol. 2024, 31, 1221–1234. [Google Scholar] [CrossRef]
- Nunes, T.; Hamdan, D.; Leboeuf, C.; El Bouchtaoui, M.; Gapihan, G.; Nguyen, T.T.; Meles, S.; Angeli, E.; Ratajczak, P.; Lu, H.; et al. Targeting Cancer Stem Cells to Overcome Chemoresistance. Int. J. Mol. Sci. 2018, 19, 4036. [Google Scholar] [CrossRef]
Sample | Hydrodynamic Diameter (nm) 1 | Z-Potential (mV) 1 |
---|---|---|
PLGA NPs | 126.3 ± 7.1 | −12.1 ± 2.6 |
PLGA-oligochitosan | 160.3 ± 2.2 | +18.5 ± 1.2 |
PLGA-seeds | 165.9 ± 4.2 | +13.4 ± 1.3 |
BGNS | 194.5 ± 2.5 | −12.1 ± 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ochoa-Hugo, S.E.; Valdivia-Aviña, K.; Gutiérrez-Mercado, Y.K.; Canales-Aguirre, A.A.; Chaparro-Huerta, V.; Aguilar-Lemarroy, A.; Jave-Suárez, L.F.; Cano-González, M.E.; Topete, A.; Molina-Pineda, A.; et al. Chemophotothermal Combined Therapy with 5-Fluorouracil and Branched Gold Nanoshell Hyperthermia Induced a Reduction in Tumor Size in a Xenograft Colon Cancer Model. Pharmaceutics 2025, 17, 988. https://doi.org/10.3390/pharmaceutics17080988
Ochoa-Hugo SE, Valdivia-Aviña K, Gutiérrez-Mercado YK, Canales-Aguirre AA, Chaparro-Huerta V, Aguilar-Lemarroy A, Jave-Suárez LF, Cano-González ME, Topete A, Molina-Pineda A, et al. Chemophotothermal Combined Therapy with 5-Fluorouracil and Branched Gold Nanoshell Hyperthermia Induced a Reduction in Tumor Size in a Xenograft Colon Cancer Model. Pharmaceutics. 2025; 17(8):988. https://doi.org/10.3390/pharmaceutics17080988
Chicago/Turabian StyleOchoa-Hugo, Sarah Eliuth, Karla Valdivia-Aviña, Yanet Karina Gutiérrez-Mercado, Alejandro Arturo Canales-Aguirre, Verónica Chaparro-Huerta, Adriana Aguilar-Lemarroy, Luis Felipe Jave-Suárez, Mario Eduardo Cano-González, Antonio Topete, Andrea Molina-Pineda, and et al. 2025. "Chemophotothermal Combined Therapy with 5-Fluorouracil and Branched Gold Nanoshell Hyperthermia Induced a Reduction in Tumor Size in a Xenograft Colon Cancer Model" Pharmaceutics 17, no. 8: 988. https://doi.org/10.3390/pharmaceutics17080988
APA StyleOchoa-Hugo, S. E., Valdivia-Aviña, K., Gutiérrez-Mercado, Y. K., Canales-Aguirre, A. A., Chaparro-Huerta, V., Aguilar-Lemarroy, A., Jave-Suárez, L. F., Cano-González, M. E., Topete, A., Molina-Pineda, A., & Hernández-Gutiérrez, R. (2025). Chemophotothermal Combined Therapy with 5-Fluorouracil and Branched Gold Nanoshell Hyperthermia Induced a Reduction in Tumor Size in a Xenograft Colon Cancer Model. Pharmaceutics, 17(8), 988. https://doi.org/10.3390/pharmaceutics17080988