Application of NIR Fluorescent Materials in Imaging and Treatment of Tumors of Different Depths
Abstract
:1. Introduction
2. Superficial Tumor
2.1. Indocyanine Green (ICG) Fluorescent Dyes
2.2. Targeting the NIR Fluorescent Probe
3. Subcutaneous Tumor
3.1. Methylene Blue (MB)
3.2. NIR-I Cyanine Dyes
4. Deep Tumor
4.1. Nanoparticle
4.2. Quantum Dots (QDs)
4.3. NIR-II Cyanine Dye
4.4. Rare Earth Nanomaterials
4.5. Conjugated Polymer
4.6. D-A-D Small Organic Molecule
5. NIR-Based FMT Systems and Reconstruction Algorithms
6. Conclusions and Prospect
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, W.; Wu, C.; Qin, M.; Cai, F.; Huang, J. The aura of malignant tumor: Clinical analysis of malignant tumor-related pyogenic liver abscess. Medicine 2020, 99, e19282. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Meng, Y.; Jiang, R.; Ge, S.; Song, M. Effect of Multimodal Exercise on Cancer-Related Fatigue in Patients Undergoing Simultaneous Radiotherapy and Chemotherapy: A Randomized Trial in Patients with Breast Cancer. Altern. Ther. Health Med. 2023, 29, 233–237. [Google Scholar] [PubMed]
- Edwards, C.M.; Russell, R.G.G. Advances in the molecular pharmacology of bone and cancer-related bone diseases. Br. J. Pharmacol. 2021, 178, 1889–1890. [Google Scholar] [CrossRef]
- Donegan, W.L. Recent trends in the management of breast cancer. 3. Controversies in the use of adjuvant chemotherapy, hormonotherapy and radiotherapy for breast cancer. Can. J. Surg. 1992, 35, 371–377. [Google Scholar]
- Wu, M.; Huang, Y.; Huang, X.; Wang, F.; Wei, X. Copolymerized carbon nitride nanoparticles for near-infrared II photoacoustic-guided synergistic photothermal/radiotherapy. Front. Chem. 2023, 11, 1124559. [Google Scholar] [CrossRef]
- Chen, K.; Yin, B.; Luo, Q.; Liu, Y.; Wang, Y.; Liao, Y.; Li, Y.; Chen, X.; Sun, B.; Zhou, N.; et al. Endoscopically guided interventional photodynamic therapy for orthotopic pancreatic ductal adenocarcinoma based on NIR-II fluorescent nanoparticles. Theranostics 2023, 13, 4469–4481. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, Y.; Weng, J.; Wen, X.; Liu, Y.; Ye, D. A carbonic anhydrase-targeted NIR-II fluorescent cisplatin theranostic nanoparticle for combined therapy of pancreatic tumors. Biomaterials 2024, 305, 122454. [Google Scholar] [CrossRef]
- Luan, X.; Hu, H.; Sun, Z.; He, P.; Zhu, D.; Xu, Y.; Liu, B.; Wei, G. Assembling Ag2S quantum dots onto peptide nanosheet as a biomimetic two-dimensional nanoplatform for synergistic near infrared-II fluorescent imaging and photothermal therapy of tumor. J. Colloid Interface Sci. 2024, 663, 111–122. [Google Scholar] [CrossRef]
- Xiong, H.; Shao, S.; Yang, Y.; Wang, W.; Xiong, H.; Han, Y.; Wang, Z.; Hu, X.; Zeng, L.; Yang, Z.; et al. Near-infrared-II Ag2S quantum dot probes targeting podoplanin enhance immunotherapy in oral squamous cell carcinoma. Biomed. Pharm. 2024, 170, 116011. [Google Scholar] [CrossRef]
- Liu, H.; Li, C.; Qian, Y.; Hu, L.; Fang, J.; Tong, W.; Nie, R.; Chen, Q.; Wang, H. Magnetic-induced graphene quantum dots for imaging-guided photothermal therapy in the second near-infrared window. Biomaterials 2020, 232, 119700. [Google Scholar] [CrossRef]
- Peng, T.; Pu, R.; Wang, B.; Zhu, Z.; Liu, K.; Wang, F.; Wei, W.; Liu, H.; Zhan, Q. The Spectroscopic Properties and Microscopic Imaging of Thulium-Doped Upconversion Nanoparticles Excited at Different NIR-II Light. Biosensors 2021, 11, 148. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Wu, Z.; Yang, Y.; Shi, J.; Lv, J.; Fang, Y.; Shen, Z.; Lv, Z.; Li, P.; Yao, X.; et al. A multifunctional antibacterial coating on bone implants for osteosarcoma therapy and enhanced osteointegration. Chem. Eng. J. 2021, 428, 131155. [Google Scholar] [CrossRef]
- Gao, S.; Yu, S.; Zhang, Y.; Wu, A.; Zhang, S.; Wei, G.; Wang, H.; Xiao, Z.; Lu, W. Molecular Engineering of Near-Infrared-II Photosensitizers with Steric-Hindrance Effect for Image-Guided Cancer Photodynamic Therapy. Adv. Funct. Mater. 2021, 31, 2008356. [Google Scholar] [CrossRef]
- Pu, T.; Liu, Y.; Pei, Y.; Peng, J.; Wang, Z.; Du, M.; Liu, Q.; Zhong, F.; Zhang, M.; Li, F.; et al. NIR-II Fluorescence Imaging for the Detection and Resection of Cancerous Foci and Lymph Nodes in Early-Stage Orthotopic and Advanced-Stage Metastatic Ovarian Cancer Models. ACS Appl. Mater. Interfaces 2023, 15, 32226–32239. [Google Scholar] [CrossRef]
- Ma, S.; Sun, B.; Li, M.; Han, T.; Yu, C.; Wang, X.; Zheng, X.; Li, S.; Zhu, S.; Wang, Q. High-precision detection and navigation surgery of colorectal cancer micrometastases. J. Nanobiotechnol. 2023, 21, 403. [Google Scholar] [CrossRef]
- Luo, H.; Gao, S. Recent advances in fluorescence imaging-guided photothermal therapy and photodynamic therapy for cancer: From near-infrared-I to near-infrared-II. J. Control. Release 2023, 362, 425–445. [Google Scholar] [CrossRef]
- Roy, S.; Bag, N.; Bardhan, S.; Hasan, I.; Guo, B. Recent progress in NIR-II fluorescence imaging-guided drug delivery for cancer theranostics. Adv. Drug Deliv. Rev. 2023, 197, 114821. [Google Scholar] [CrossRef]
- Ullah, Z.; Roy, S.; Gu, J.; Ko Soe, S.; Jin, J.; Guo, B. NIR-II Fluorescent Probes for Fluorescence-Imaging-Guided Tumor Surgery. Biosensors 2024, 14, 282. [Google Scholar] [CrossRef]
- Kang, H.; Kang, M.-W.; Kashiwagi, S.; Choi, H.S. NIR fluorescence imaging and treatment for cancer immunotherapy. J. Immunother. Cancer 2022, 10, e004936. [Google Scholar] [CrossRef]
- Carr, J.A.; Franke, D.; Caram, J.R.; Perkinson, C.F.; Saif, M.; Askoxylakis, V.; Datta, M.; Fukumura, D.; Jain, R.K.; Bawendi, M.G.; et al. Shortwave infrared fluorescence imaging with the clinically approved near-infrared dye indocyanine green. Proc. Natl. Acad. Sci. USA 2018, 115, 4465–4470. [Google Scholar] [CrossRef]
- Hao, Y.; Chen, Y.; He, X.; Yang, F.; Han, R.; Yang, C.; Li, W.; Qian, Z. Near-infrared responsive 5-fluorouracil and indocyanine green loaded MPEG-PCL nanoparticle integrated with dissolvable microneedle for skin cancer therapy. Bioact. Mater. 2020, 6, 297–298. [Google Scholar] [CrossRef] [PubMed]
- Ito, A.; Ohta, M.; Kato, Y.; Inada, S.; Kato, T.; Nakata, S.; Yatabe, Y.; Goto, M.; Kaneda, N.; Kurita, K.; et al. A Real-Time Near-Infrared Fluorescence Imaging Method for the Detection of Oral Cancers in Mice Using an Indocyanine Green-Labeled Podoplanin Antibody. Technol. Cancer Res. Treat. 2018, 17, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Zeng, H.-C.; Hu, J.-L.; Bai, J.-W.; Zhang, G.-J. Detection of Sentinel Lymph Nodes with Near-Infrared Imaging in Malignancies. Mol. Imaging Biol. 2018, 21, 219–227. [Google Scholar] [CrossRef]
- Tang, C.; Du, Y.; Liang, Q.; Cheng, Z.; Tian, J. A Novel Estrogen Receptor α-Targeted Near-Infrared Fluorescent Probe for in Vivo Detection of Breast Tumor. Mol. Pharm. 2018, 15, 4702–4709. [Google Scholar] [CrossRef]
- Sun, W.; Du, Y.; Liang, X.; Yu, C.; Fang, J.; Lu, W.; Guo, X.; Tian, J.; Jin, Y.; Zheng, J. Synergistic triple-combination therapy with hyaluronic acid-shelled PPy/CPT nanoparticles results in tumor regression and prevents tumor recurrence and metastasis in 4T1 breast cancer. Biomaterials 2019, 217, 119264. [Google Scholar] [CrossRef]
- Gao, R.W.; Teraphongphom, N.; de Boer, E.; van den Berg, N.S.; Divi, V.; Kaplan, M.J.; Oberhelman, N.J.; Hong, S.S.; Capes, E.; Colevas, A.D.; et al. Safety of panitumumab-IRDye800CW and cetuximab-IRDye800CW for fluorescence-guided surgical navigation in head and neck cancers. Theranostics 2018, 8, 2488–2495. [Google Scholar] [CrossRef]
- Xiao, J.; Qiu, S.; Ma, Q.; Bai, S.; Guo, X.; Wang, L. Near-infrared dye IRDye800CW-NHS coupled to Trastuzumab for near-infrared II fluorescence imaging in tumor xenograft models of HER-2-positive breast cancer. J. Mater. Chem. B 2023, 11, 10738–10746. [Google Scholar] [CrossRef]
- Zeng, S.; Chen, J.; Gao, R.; Chen, R.; Xue, Q.; Ren, Y.; Liu, L.; Tang, C.; Hu, H.; Zeng, N.; et al. NIR-II Photoacoustic Imaging-Guided Oxygen Delivery and Controlled Release Improves Photodynamic Therapy for Hepatocellular Carcinoma. Adv. Mater. 2023, 34, 2308780. [Google Scholar] [CrossRef]
- Li, S.; Johnson, J.; Peck, A.; Xie, Q. Near infrared fluorescent imaging of brain tumor with IR780 dye incorporated phospholipid nanoparticles. J. Transl. Med. 2017, 15, 18. [Google Scholar] [CrossRef]
- Pan, Q.; Li, K.; Kang, X.; Li, K.; Cheng, Z.; Wang, Y.; Xu, Y.; Li, L.; Li, N.; Wu, G.; et al. Rational design of NIR-II molecule-engineered nanoplatform for preoperative downstaging and imaging-guided surgery of orthotopic hepatic tumor. J. Nanobiotechnol. 2023, 21, 489. [Google Scholar] [CrossRef]
- Sun, P.; Qu, F.; Zhang, C.; Cheng, P.; Li, X.; Shen, Q.; Li, D.; Fan, Q. NIR-II Excitation Phototheranostic Platform for Synergistic Photothermal Therapy/Chemotherapy/Chemodynamic Therapy of Breast Cancer Bone Metastases. Adv. Sci. 2022, 9, 2204718. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Zeng, X.; Li, A.; Zhou, W.; Tang, L.; Hu, W.; Fan, Q.; Meng, X.; Deng, H.; Duan, L.; et al. Upconversion NIR-II fluorophores for mitochondria-targeted cancer imaging and photothermal therapy. Nat. Commun. 2020, 11, 6183. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Yan, D.; Wang, M.; Wu, Q.; Song, R.; Huang, Y.; Rao, J.; Wang, D.; Zhou, F.; Tang, B.Z. A Versatile 980 nm Absorbing Aggregation-Induced Emission Luminogen for NIR-II Imaging-Guided Synergistic Photo-Immunotherapy Against Advanced Pancreatic Cancer. Adv. Funct. Mater. 2022, 9, 2204718. [Google Scholar] [CrossRef]
- Li, B.; Li, J.; Fu, Y.; Ye, X.; Xie, M.; Feng, L.; Niu, X.; You, Z. Ultra-homogeneous Cu2−xSe nanoparticles as near-infrared II plasmonic phototheranstics for photothermal/chemodynamic synergistic therapy of liver cancer. Particuology 2022, 76, 23–31. [Google Scholar] [CrossRef]
- Xu, Q.; Hu, H.; Mo, Z.; Chen, T.; He, Q.; Xu, Z. A multifunctional nanotheranostic agent based on Lenvatinib for multimodal synergistic hepatocellular carcinoma therapy with remarkably enhanced efficacy. J. Colloid Interface Sci. 2023, 638, 375–391. [Google Scholar] [CrossRef]
- Wei, Z.; Duan, G.; Huang, B.; Qiu, S.; Zhou, D.; Zeng, J.; Cui, J.; Hu, C.; Wang, X.; Wen, L.; et al. Rapidly liver-clearable rare-earth core–shell nanoprobe for dual-modal breast cancer imaging in the second near-infrared window. J. Nanobiotechnol. 2021, 19, 369. [Google Scholar] [CrossRef]
- Lou, K.-L.; Wang, P.-Y.; Yang, R.-Q.; Gao, Y.-Y.; Tian, H.-N.; Dang, Y.-Y.; Li, Y.; Huang, W.-H.; Chen, M.; Liu, X.-L.; et al. Fabrication of tumor targeting rare-earth nanocrystals for real-time NIR-IIb fluorescence imaging-guided breast cancer precise surgery. Nanomed. Nanotechnol. Biol. Med. 2022, 2, 283. [Google Scholar] [CrossRef]
- Cui, X.; Hu, Z.; Li, R.; Jiang, P.; Wei, Y.; Chen, Z. CA IX-targeted Ag2S quantum dots bioprobe for NIR-II imaging-guided hypoxia tumor chemo-photothermal therapy. J. Pharm. Anal. 2024, 14, 100969. [Google Scholar] [CrossRef]
- Li, H.; Du, Z.; Zhu, L.; Zhang, C.; Xiong, J.; Zhou, B.; Dong, B.; Zhang, X.; Alifu, N. Ultrabright NIR-IIb Fluorescence Quantum Dots for Targeted Imaging-Guided Surgery. ACS Appl. Mater. Interfaces 2024, 16, 32045–32057. [Google Scholar] [CrossRef]
- Han, W.; Liu, F.; Muhammad, M.; Liu, G.; Li, H.; Xu, Y.; Sun, S. Application of biomacromolecule-based passive penetration enhancement technique in superficial tumor therapy: A review. Int. J. Biol. Macromol. 2024, 272, 132745. [Google Scholar] [CrossRef]
- Wang, M.; Li, X.; Du, W.; Sun, M.; Ling, G.; Zhang, P. Microneedle-mediated treatment for superficial tumors by combining multiple strategies. Drug Deliv. Transl. Res. 2023, 13, 1600–1620. [Google Scholar] [CrossRef] [PubMed]
- Weinberg, B.D.; Kuruva, M.; Shim, H.; Mullins, M.E. Clinical Applications of Magnetic Resonance Spectroscopy in Brain Tumors From Diagnosis to Treatment. Radiol. Clin. N. Am. 2021, 59, 349–362. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Ban, X.; Yang, L.; Chen, Y.; Zhang, F.; Wang, Y.; Cao, P.; Yu, M.; Duan, X. MRI-visualized PTT/CDT for breast cancer ablation and distant metastasis prevention. Appl. Mater. Today 2024, 36, 102059. [Google Scholar] [CrossRef]
- Shamsi, M.; Pirayesh Islamian, J. Breast cancer: Early diagnosis and effective treatment by drug delivery tracing. Nucl. Med. Rev. Cent. East. Eur. 2017, 20, 45–48. [Google Scholar] [CrossRef]
- Sukhanova, A.; Ramos-Gomes, F.; Chames, P.; Sokolov, P.; Baty, D.; Alves, F.; Nabiev, I. Multiphoton Deep-Tissue Imaging of Micrometastases and Disseminated Cancer Cells Using Conjugates of Quantum Dots and Single-Domain Antibodies. Mol. Biol. 2021, 2350, 105–123. [Google Scholar]
- Zhou, J.; Yang, F.; Jiang, G.; Wang, J. Applications of indocyanine green based near-infrared fluorescence imaging in thoracic surgery. J. Thorac. Dis. 2016, 8, S738–S743. [Google Scholar] [CrossRef]
- Teng, C.W.; Huang, V.; Arguelles, G.R.; Zhou, C.; Cho, S.S.; Harmsen, S.; Lee, J.Y.K. Applications of indocyanine green in brain tumor surgery: Review of clinical evidence and emerging technologies. Neurosurg. Focus 2021, 50, E4. [Google Scholar] [CrossRef]
- Mahmut, Z.; Zhang, C.; Ruan, F.; Shi, N.; Zhang, X.; Wang, Y.; Zheng, X.; Tang, Z.; Dong, B.; Gao, D.; et al. Medical Applications and Advancement of Near Infrared Photosensitive Indocyanine Green Molecules. Molecules 2023, 28, 6085. [Google Scholar] [CrossRef]
- Starosolski, Z.; Bhavane, R.; Ghaghada, K.B.; Vasudevan, S.A.; Kaay, A.; Annapragada, A. Indocyanine green fluorescence in second near-infrared (NIR-II) window. PLoS ONE 2017, 12, e0187563. [Google Scholar] [CrossRef] [PubMed]
- Mao, H.; Long, Y.; Sheng, X.; Zhou, X.; Zhou, B. Progress in application of near-infrared fluorescence imaging in the diagnosis and treatment of oral cancer. J. Cent. South Univ. (Med. Sci.) 2021, 46, 316–321. [Google Scholar]
- Ledezma, D.K.; Balakrishnan, P.B.; Cano-Mejia, J.; Sweeney, E.E.; Hadley, M.; Bollard, C.M.; Villagra, A.; Fernandes, R. Indocyanine Green-Nexturastat A-PLGA Nanoparticles Combine Photothermal and Epigenetic Therapy for Melanoma. Nanomaterials 2020, 10, 161. [Google Scholar] [CrossRef] [PubMed]
- Egloff-Juras, C.; Bezdetnaya, L.; Dolivet, G.; Lassalle, H.-P. NIR fluorescence-guided tumor surgery: New strategies for the use of indocyanine green. Int. J. Nanomed. 2019, 14, 7823–7838. [Google Scholar] [CrossRef] [PubMed]
- Dai, Q.; Ren, E.; Xu, D.; Zeng, Y.; Chen, C.; Liu, G. Indocyanine green-based nanodrugs: A portfolio strategy for precision medicine. Prog. Nat. Sci. Mater. Int. 2020, 30, 577–588. [Google Scholar] [CrossRef]
- van Manen, L.; Handgraaf, H.J.M.; Diana, M.; Dijkstra, J.; Ishizawa, T.; Vahrmeijer, A.L.; Mieog, J.S.D. A practical guide for the use of indocyanine green and methylene blue in fluorescence-guided abdominal surgery. J. Surg. Oncol. 2018, 118, 283–300. [Google Scholar] [CrossRef]
- Luo, L.; Yan, L.; Amirshaghaghi, A.; Wei, Y.; You, T.; Singhal, S.; Tsourkas, A.; Cheng, Z. Indocyanine Green-Coated Polycaprolactone Micelles for Fluorescence Imaging of Tumors. ACS Appl. Bio Mater. 2020, 3, 2344–2349. [Google Scholar] [CrossRef]
- An, F.; Yang, Z.; Zheng, M.; Mei, T.; Deng, G.; Guo, P.; Li, Y.; Sheng, R. Rationally assembled albumin/indocyanine green nanocomplex for enhanced tumor imaging to guide photothermal therapy. J. Nanobiotechnol. 2020, 18, 49. [Google Scholar] [CrossRef]
- Xu, H.; Wang, H.; Xu, Z.; Bian, S.; Xu, Z.; Zhang, H. The multifaceted roles of peptides in “always-on” near-infrared fluorescent probes for tumor imaging. Bioorg. Chem. 2022, 129, 106182. [Google Scholar] [CrossRef]
- Wang, Y.; Niu, C.; Fan, S.; Li, Y.; Li, X.; Dai, Y.; Shi, J.; Wang, X. Indocyanine Green Loaded Modified Mesoporous Silica Nanoparticles as an Effective Photothermal Nanoplatform. Int. J. Mol. Sci. 2020, 21, 4789. [Google Scholar] [CrossRef]
- von Kiedrowski, V.; Hübner, R.; Kail, D.; Cheng, X.; Schirrmacher, R.; Wängler, C.; Wängler, B. Synthesis, characterization and optimization of in vitro properties of NIR-fluorescent cyclic α-MSH peptides for melanoma imaging. J. Mater. Chem. B 2020, 8, 10602–10608. [Google Scholar] [CrossRef]
- Hui, X.; Wang, Y.; Li, W.; Yuan, Y.; Tao, X.; Lv, R. Nd-Mn Molecular Cluster with Searched Targets for Oral Cancer Imaging. Mol. Imaging Biol. 2023, 25, 875–886. [Google Scholar] [CrossRef]
- Suganya, S.A.A.; Johnson, K.K.; Nair, M.; Louis, J.M.; Sankaran, S.; Rajagopal, R.; Kumar, K.S.; Abraham, P.; Balagopal, P.G.; Sebastian, P.; et al. TM1-IR680 peptide for assessment of surgical margin and lymph node metastasis in murine orthotopic model of oral cancer. Sci. Rep. 2016, 6, 36726. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Pei, S.; Wen, K.; Peng, A.; Ma, H.; Huang, H. MC1R-targeted NIR-II aggregation-induced emission nanoparticles for melanoma imaging. Sci. China Mater. 2023, 66, 4100–4108. [Google Scholar] [CrossRef]
- Wu, Y.X.; Kang, Y.F.; Mao, Q.Y.; Li, Z.M.; Shan, X.F.; Cai, Z.G. Application of methylene blue near-infrared fluorescence imaging for oral sentinel lymph node mapping in rats. J. Peking Univ. Health Sci. 2023, 55, 684–688. [Google Scholar]
- Wu, Y.-X.; Mao, Q.-Y.; Kang, Y.-F.; Xie, S.; Shan, X.-F.; Cai, Z.-G. In Vivo Oral Sentinel Lymph Node Mapping by Near-Infrared Fluorescent Methylene Blue in Rats. Diagnostics 2022, 12, 2574. [Google Scholar] [CrossRef]
- Cwalinski, T.; Polom, W.; Marano, L.; Roviello, G.; D’Angelo, A.; Cwalina, N.; Matuszewski, M.; Roviello, F.; Jaskiewicz, J.; Polom, K. Methylene Blue—Current Knowledge, Fluorescent Properties, and Its Future Use. J. Clin. Med. 2020, 9, 3538. [Google Scholar] [CrossRef]
- Hillary, S.L.; Guillermet, S.; Brown, N.J.; Balasubramanian, S.P. Use of methylene blue and near-infrared fluorescence in thyroid and parathyroid surgery. Langenbeck’s Arch. Surg. 2017, 100, 33–36. [Google Scholar] [CrossRef]
- Bonni, S.; Brindley, D.N.; Chamberlain, M.D.; Daneshvar-Baghbadorani, N.; Freywald, A.; Hemmings, D.G.; Hombach-Klonisch, S.; Klonisch, T.; Raouf, A.; Shemanko, C.S.; et al. Breast Tumor Metastasis and Its Microenvironment: It Takes Both Seed and Soil to Grow a Tumor and Target It for Treatment. Cancers 2024, 16, 911. [Google Scholar] [CrossRef]
- Belinske, S.H.; Spellman, J.; Henry, L.; Shannon, M. Timeliness of Breast Cancer Treatment in Delaware. Del. J. Public Health 2017, 3, 80–87. [Google Scholar] [CrossRef]
- Sturesdotter, L.; Larsson, A.-M.; Zackrisson, S.; Sartor, H. Investigating the prognostic value of mammographic breast density and mammographic tumor appearance in women with invasive breast cancer: The Malmo Diet and cancer study. Breast 2023, 70, 8–17. [Google Scholar] [CrossRef]
- Zhang, C.; Mao, Y.; Wang, K.; Tian, J. The identification of breast cancer by Near-Infrared fluorescence imaging with methylene blue. J. Clin. Oncol. 2018, 36, E12591. [Google Scholar] [CrossRef]
- König, S.G.; Krämer, R. Accessing Structurally Diverse Near-Infrared Cyanine Dyes for Folate Receptor-Targeted Cancer Cell Staining. Chem.—Eur. J. 2017, 23, 9306–9312. [Google Scholar] [CrossRef] [PubMed]
- Usama, S.M.; Lin, C.-M.; Burgess, K. On the Mechanisms of Uptake of Tumor-Seeking Cyanine Dyes. Bioconjugate Chem. 2018, 29, 3886–3895. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Fan, D.; Shao, Z.; Xu, B.; Ren, G.; Jiang, Z.; Wang, Y.; Jin, F.; Zhang, J.; Zhang, Q.; et al. CACA Guidelines for Holistic Integrative Management of Breast Cancer. Holist. Integr. Oncol. 2022, 1, 7. [Google Scholar] [CrossRef]
- Swamy, M.M.M.; Murai, Y.; Monde, K.; Tsuboi, S.; Jin, T. Shortwave-Infrared Fluorescent Molecular Imaging Probes Based on π-Conjugation Extended Indocyanine Green. Bioconjugate Chem. 2021, 32, 1541–1547. [Google Scholar] [CrossRef]
- Yamaguchi, H.; Pantarat, N.; Suzuki, T.; Evdokiou, A. Near-Infrared Photoimmunotherapy Using a Small Protein Mimetic for HER2-Overexpressing Breast Cancer. Int. J. Mol. Sci. 2019, 20, 5835. [Google Scholar] [CrossRef]
- Park, Y.; Park, M.H.; Hyun, H. Structure-Inherent Tumor-Targeted IR-783 for Near-Infrared Fluorescence-Guided Photothermal Therapy. Int. J. Mol. Sci. 2024, 25, 5309. [Google Scholar] [CrossRef]
- Liu, Z.; Yan, L.; Hu, Q.; Yin, D. NIR-II fluorescence imaging in liver tumor surgery: A narrative review. J. Innov. Opt. Health Sci. 2024, 17, 2330010. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, M.; Fang, J.; Ye, S.; Wang, A.; Zhao, Y.; Cui, C.; He, L.; Shi, H. Smart On-Site Immobilizable Near-Infrared II Fluorescent Nanoprobes for Ultra-Long-Term Imaging-Guided Tumor Surgery and Photothermal Therapy. ACS Appl. Mater. Interfaces 2021, 13, 12857–12865. [Google Scholar] [CrossRef]
- He, S.; Cheng, Z. Chapter 23—Near-Infrared II Optical Imaging. In Molecular Imaging, 2nd ed.; Ross, B.D., Gambhir, S.S., Eds.; Academic Press: Cambridge, MA, USA, 2021; Volume 12, pp. 397–420. [Google Scholar]
- Cui, H.; Zhao, S.; Hong, G. Wireless deep-brain neuromodulation using photovoltaics in the second near-infrared spectrum. Device 2023, 1, 100113. [Google Scholar] [CrossRef]
- Li, n.; Wang, M.; Zhou, J.; Wang, Z.; Cao, L.; Ye, J.; Sun, G. Progress of NIR-II fluorescence imaging technology applied to disease diagnosis and treatment. Eur. J. Med. Chem. 2024, 267, 116173. [Google Scholar] [CrossRef]
- Du, Y.; Ni, S.; Ma, Q.; Song, X.; Yang, H. Engineering NIR-II luminescent lanthanide nanoprobes for imaging brain diseases in vivo. Coord. Chem. Rev. 2023, 496, 215401. [Google Scholar] [CrossRef]
- Pei, P.; Hu, H.; Chen, Y.; Wang, S.; Chen, J.; Ming, J.; Yang, Y.; Sun, C.; Zhao, S.; Zhang, F. NIR-II Ratiometric Lanthanide-Dye Hybrid Nanoprobes Doped Bioscaffolds for In Situ Bone Repair Monitoring. Nano Lett. 2022, 22, 783–791. [Google Scholar] [CrossRef]
- Li, T.; Cao, K.; Yang, X.; Liu, Y.; Wang, X.; Wu, F.; Chen, G.; Wang, Q. An oral ratiometric NIR-II fluorescent probe for reliable monitoring of gastrointestinal diseases in vivo. Biomaterials 2023, 293, 121956. [Google Scholar] [CrossRef]
- Feng, X.; Cao, Y.; Zhuang, P.; Cheng, R.; Zhang, X.; Liu, H.; Wang, G.; Sun, S.-K. Rational synthesis of IR820-albumin complex for NIR-II fluorescence imaging-guided surgical treatment of tumors and gastrointestinal obstruction. RSC Adv. 2022, 12, 12136–12144. [Google Scholar] [CrossRef]
- Feng, X.; Wang, G.; Pan, J.; Wang, X.; Wang, J.; Sun, S.-K. Purification-free synthesis of bright lactoglobulin@dye nanoprobe for second near-infrared fluorescence imaging of kidney dysfunction in vivo. Colloids Surf. B Biointerfaces 2024, 236, 113796. [Google Scholar] [CrossRef]
- Ma, R.; Tang, X.; Wang, M.; Du, Z.; Chen, S.; Heng, Y.; Zhu, L.; Alifu, N.; Zhang, X.; Ma, C. Clinical indocyanine green-based silk fibroin theranostic nanoprobes for in vivo NIR-I/II fluorescence imaging of cervical diseases. Nanomed. Nanotechnol. Biol. Med. 2023, 47, 102615. [Google Scholar] [CrossRef]
- Huang, H.; Sun, Z.; Yang, H.; Yang, X.; Wu, F.; Sun, Y.; Li, C.; Tian, M.; Zhang, H.; Wang, Q. Precise Examination of Peripheral Vascular Disease for Diabetics with a Novel Multiplexed NIR-II Fluorescence Imaging Technology. Nano Today 2022, 43, 101378. [Google Scholar] [CrossRef]
- Choi, J.; Rustique, E.; Henry, M.; Guidetti, M.; Josserand, V.; Sancey, L.; Boutet, J.; Coll, J.-L. Targeting tumors with cyclic RGD-conjugated lipid nanoparticles loaded with an IR780 NIR dye: In vitro and in vivo evaluation. Int. J. Pharmaceut. 2017, 532, 677–685. [Google Scholar] [CrossRef]
- Huang, H.; Li, M.; Gu, J.; Roy, S.; Jin, J.; Kuang, T.; Zhang, Y.; Hu, G.; Guo, B. Bright NIR-II emissive cyanine dye-loaded lipoprotein-mimicking nanoparticles for fluorescence imaging-guided and targeted NIR-II photothermal therapy of subcutaneous glioblastoma. J. Nanobiotechnol. 2024, 22, 788. [Google Scholar] [CrossRef]
- Huang, X.; Zhu, J.; Dong, C.; Li, Y.; Yu, Q.; Wang, X.; Chen, Z.; Li, J.; Yang, Y.; Wang, H. Polyvalent Aptamer-Functionalized NIR-II Quantum Dots for Targeted Theranostics in High PD-L1-Expressing Tumors. ACS Appl. Mater. Interfaces 2024, 16, 21571–21581. [Google Scholar] [CrossRef]
- Yang, L.-L.; Zhao, W.; Liu, Z.-Y.; Ren, M.; Kong, J.; Zong, X.; Luo, M.-Y.; Tang, B.; Xie, J.; Pang, D.-W.; et al. Acid-Resistant Near-Infrared II Ag2Se Quantum Dots for Gastrointestinal Imaging. Anal. Chem. 2023, 45, 15540–15548. [Google Scholar] [CrossRef]
- Yang, L.; Yuan, M.; Ma, P.; Chen, X.; Cheng, Z.; Lin, J. Assembling AgAuSe Quantum Dots with Peptidoglycan and Neutrophils to Realize Enhanced Tumor Targeting, NIR (II) Imaging, and Sonodynamic Therapy. Small Methods 2023, 7, 2201706. [Google Scholar] [CrossRef]
- Dhole, N.V.; Dixit, V.V. Review of brain tumor detection from MRI images with hybrid approaches. Multimed. Tools Appl. 2022, 81, 10189–10220. [Google Scholar] [CrossRef]
- Jia, F.; Li, G.; Yang, B.; Yu, B.; Shen, Y.; Cong, H. Investigation of rare earth upconversion fluorescent nanoparticles in biomedical field. Nanotechnol. Rev. 2019, 8, 1–17. [Google Scholar] [CrossRef]
- Meng, J.; Cui, Y.; Wang, Y. Rare earth-doped nanocrystals for bioimaging in the near-infrared region. J. Mater. Chem. B 2022, 10, 8596–8615. [Google Scholar] [CrossRef]
- Guo, Y.; Hu, J.; Wang, P.; Yang, H.; Liang, S.; Chen, D.; Xu, K.; Huang, Y.; Wang, Q.; Liu, X.; et al. In Vivo NIR-II Fluorescence Lifetime Imaging of Whole-Body Vascular Using High Quantum Yield Lanthanide-Doped Nanoparticles. Small 2023, 19, 2300392. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, Q.; Zhang, X.; Ding, Y.; Yang, G.; Zhou, H.; Li, P.; Chen, Y.; Yin, C.; Fan, Q. Size Modulation of Conjugated Polymer Nanoparticles for Improved NIR-II Fluorescence Imaging and Photothermal Therapy. ACS Appl. Mater. Interfaces 2024, 16, 4420–4429. [Google Scholar] [CrossRef]
- Sun, P.; Yang, Z.; Qu, F.; Du, X.; Shen, Q.; Fan, Q. Conjugated/nonconjugated alternating copolymers for enhanced NIR-II fluorescence imaging and NIR-II photothermal-ferrotherapy. J. Mater. Chem. B 2022, 10, 9830–9837. [Google Scholar] [CrossRef]
- Bao, Y.; Zhu, Y.; He, C.; Zhao, Y.; Duan, Y.; Chen, L.; Guo, X.; Wang, H.; Xiao, C. Regulating Electron Acceptor Unit to Construct Conjugated Polymer Probe for Raman Imaging of Tumor and Sentinel Lymph Nodes. Anal. Chem. 2024, 96, 19422–19429. [Google Scholar] [CrossRef]
- Terayama, K.; Habuchi, S.; Michinobu, T. Structural design of conjugated polymers for fluorescence bioimaging in the second near-infrared window. J. Polym. Sci. 2023, 61, 2276–2291. [Google Scholar] [CrossRef]
- Dahal, D.; Ray, P.; Pan, D. Unlocking the power of optical imaging in the second biological window: Structuring near-infrared II materials from organic molecules to nanoparticles. WIREs Nanomed. Nanobiotech. 2021, 13, E1734. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Song, T.; Wu, X.; Lin, Y.; Shi, X.; Qian, J.; Nie, R.; Wang, H. NIR-II Responsive Fe-Doped Carbon Nanoparticles for Photothermal-Enhanced Chemodynamic Synergistic Oncotherapy. ACS Appl. Mater. Interfaces 2024, 17, 7211–7212. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Li, S.; Ma, R.; Ji, C.; Müllen, K.; Yin, M. NIR-triggered dual sensitization of nanoparticles for mild tumor phototherapy. Nano Today 2022, 42, 101363. [Google Scholar] [CrossRef]
- Mehanna, S.; Mansour, N.; Daher, C.F.; Elias, M.G.; Dagher, C.; Khnayzer, R.S. Drug-free phototherapy of superficial tumors: White light at the end of the tunnel. J. Photochem. Photobiol. B Biol. 2021, 224, 112324. [Google Scholar] [CrossRef]
- Zhang, X.; Wan, J.; Mo, F.; Tang, D.; Xiao, H.; Li, Z.; Jia, J.; Liu, T. Targeting Bone Tumor and Subcellular Endoplasmic Reticulum via Near Infrared II Fluorescent Polymer for Photodynamic-Immunotherapy to Break the Step-Reduction Delivery Dilemma. Adv. Sci. 2022, 9, e2201819. [Google Scholar] [CrossRef]
- Yu, Y.; Tang, D.; Liu, C.; Zhang, Q.; Tang, L.; Lu, Y.; Xiao, H. Biodegradable Polymer with Effective Near-Infrared-II Absorption as a Photothermal Agent for Deep Tumor Therapy. Adv. Mater. 2022, 34, 112324. [Google Scholar] [CrossRef]
- Wen, G.; Li, X.; Zhang, Y.; Han, X.; Xu, X.; Liu, C.; Chan, K.W.Y.; Lee, C.S.; Yin, C.; Bian, L.; et al. Effective Phototheranostics of Brain Tumor Assisted by Near-Infrared-II Light-Responsive Semiconducting Polymer Nanoparticles. Mater. Interfaces 2020, 12, 33492–33499. [Google Scholar] [CrossRef]
- Li, Z.; Wang, C.; Chen, J.; Lian, X.; Xiong, C.; Tian, R.; Hu, L.; Xiong, X.; Tian, J. uPAR targeted phototheranostic metal-organic framework nanoprobes for MR/NIR-II imaging-guided therapy and surgical resection of glioblastoma. Mater. Des. 2021, 198, 109396. [Google Scholar] [CrossRef]
- Wang, J.; Liu, Y.; Morsch, M.; Lu, Y.; Shangguan, P.; Han, L.; Wang, Z.; Chen, X.; Song, C.; Liu, S.; et al. Brain-Targeted Aggregation-Induced-Emission Nanoparticles with Near-Infrared Imaging at 1550 nm Boosts Orthotopic Glioblastoma Theranostics. Adv. Mater. 2022, 34, 2106082. [Google Scholar] [CrossRef]
- Huang, B.; Tang, T.; Liu, F.; Chen, S.-H.; Zhang, Z.-L.; Zhang, M.; Cui, R. Quantum dots boost large-view NIR-II imaging with high fidelity for fluorescence-guided tumor surgery. Chin. Chem. Lett. 2024, 35, 109694. [Google Scholar] [CrossRef]
- Zebibula, A.; Alifu, N.; Xia, L.; Sun, C.; Yu, X.; Xue, D.; Liu, L.; Li, G.; Qian, J. Ultrastable and Biocompatible NIR-II Quantum Dots for Functional Bioimaging. Adv. Funct. Mater. 2017, 28, 1703451. [Google Scholar] [CrossRef]
- Xu, Y.; Zhao, Y.; Zhang, Y.; Cui, Z.; Wang, L.; Fan, C.; Gao, J.; Sun, Y. Angiopep-2-conjugated Ag2S Quantum Dot for NIR-II Imaging of Brain Tumors. Acta Chim. Sin. 2018, 76, 393–399. [Google Scholar] [CrossRef]
- Wu, Y.; Cao, H.; Yang, S.; Liu, C.; Han, Z. Progress of near-infrared-II fluorescence in precision diagnosis and treatment of colorectal cancer. Heliyon 2023, 9, e23209. [Google Scholar] [CrossRef]
- Lu, S.; Xue, L.; Yang, M.; Wang, J.; Li, Y.; Jiang, Y.; Hong, X.; Wu, M.; Xiao, Y. NIR-II fluorescence/photoacoustic imaging of ovarian cancer and peritoneal metastasis. Nano Res. 2022, 15, 9183–9191. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, L.; Zhang, C.; Zhang, J.; Yuan, L.; Jin, S.; Zhou, W.; Guan, X.; Kang, P.; Zhang, C.; et al. Preclinical assessment of IRDye800CW-labeled gastrin-releasing peptide receptor-targeting peptide for near infrared-II imaging of brain malignancies. Bioeng. Transl. Med. 2023, 8, E10532. [Google Scholar] [CrossRef]
- Damasco, J.A.; Yu, G.; Kumar, A.; Perez, J.; Lirag, R.C.M.; Whitley, E.M.; Lin, S.-H.; Melancon, M.P. Alendronate conjugate for targeted delivery to bone-forming prostate cancer. Talanta 2023, 256, 124308. [Google Scholar] [CrossRef]
- Li, X.; Guo, S.; Deng, W.; Wu, S.; Sun, P.; Liu, Y. Water-soluble polymer brush-substituted squaraine NIR-II dye for efficient photothermal therapy. J. Mater. Chem. B 2023, 11, 4389–4395. [Google Scholar] [CrossRef]
- Qian, H.; Cheng, Q.; Tian, Y.; Dang, H.; Teng, C.; Yan, L. An anti-aggregation NIR-II heptamethine-cyanine dye with a stereo-specific cyanine for imaging-guided photothermal therapy. J. Mater. Chem. B 2021, 9, 2688–2696. [Google Scholar] [CrossRef]
- Feng, L.; Ting, Z.; Xiaojun, S.; Zuqiang, W.; Quli, F.; Wei, H. Rare-earth Doped Nanoparticles with Narrow NIR-II Emission for Optical Imaging with Reduced Autofluorescence. Chem. Res. Chin. Univ. 2021, 37, 943–950. [Google Scholar]
- Liu, Z.; Yun, B.; Han, Y.; Jiang, Z.; Zhu, H.; Ren, F.; Li, Z. Dye-Sensitized Rare Earth Nanoparticles with Up/Down Conversion Luminescence for On-Demand Gas Therapy of Glioblastoma Guided by NIR-II Fluorescence Imaging. Adv. Healthc. Mater. 2021, 11, 2102042. [Google Scholar] [CrossRef]
- Xi, X.; Feng, W. Fine-tuning of composition in multi-layered core-shell rare earth nanoparticles for the enhanced NIR-II emission. Mater. Res. Bull. 2024, 178, 112889. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, C.; Liu, H.; Li, Y.; Xu, Z.; Li, L.; Whittaker, A. Controllable synthesis of up-conversion nanoparticles UCNPs@MIL-PEG for pH-responsive drug delivery and potential up-conversion luminescence/magnetic resonance dual-mode imaging. J. Alloys Compd. 2018, 749, 939–947. [Google Scholar] [CrossRef]
- Khan, M.Y.; Chen, J.-K.; Jain, V.; Agrawal, L.; Lin, C.-A.J.; Chen, M.-H. The Influence of Surface Modification on the Shortwave Infrared Emission of Rare-Earth-Doped Nanoparticles. J. Med. Biol. Eng. 2023, 44, 49–56. [Google Scholar] [CrossRef]
- Zhong, Y.; Dai, H. A mini-review on rare-earth down-conversion nanoparticles for NIR-II imaging of biological systems. Nano Res. 2020, 13, 1281–1294. [Google Scholar] [CrossRef]
- Zhao, J.; Hu, H.; Liu, W.; Wang, X. Multifunctional NaYF4:Nd/NaDyF4 nanocrystals as a multimodal platform for NIR-II fluorescence and magnetic resonance imaging. Nanoscale Adv. 2020, 3, 463–470. [Google Scholar] [CrossRef]
- Wang, C.; Xu, L.; Xu, J.; Yang, D.; Liu, B.; Gai, S.; He, F.; Yang, P. Multimodal imaging and photothermal therapy were simultaneously achieved in the core–shell UCNR structure by using single near-infrared light. Dalton Trans. 2017, 36, 12147–12157. [Google Scholar] [CrossRef]
- Zhang, X.; He, S.; Ding, B.; Qu, C.; Zhang, Q.; Chen, H.; Sun, Y.; Fang, H.; Long, Y.; Zhang, R.; et al. Cancer Cell Membrane-Coated Rare Earth Doped Nanoparticles for Tumor Surgery Navigation in NIR-II Imaging Window. Chem. Eng. J. 2019, 385, 123959. [Google Scholar] [CrossRef]
- Lu, F.; Wang, X.; Ge, Y.; Sun, X.; Zhao, T.; Lu, X.; Fan, Q. Nd3+-sensitized multilayered rare-earth nanocrystals with enhanced NIR-IIb luminescence for high resolution optical imaging. Ceram. Int. 2024, 50, 25060–25067. [Google Scholar] [CrossRef]
- Zhou, J.; Luo, P.; Sun, C.; Meng, L.; Ye, W.; Chen, S.; Du, B. A “win-win” nanoplatform: TiO2:Yb,Ho,F for NIR light-induced synergistic therapy and imaging. Nanoscale 2017, 9, 4244–4254. [Google Scholar] [CrossRef]
- Khanmohammadi, M.; Volpi, M.; Walejewska, E.; Olszewska, A.; Swieszkowski, W. Printing of 3D biomimetic structures for the study of bone metastasis: A review. Acta Biomater. 2024, 178, 24–40. [Google Scholar] [CrossRef]
- Chao, B.; Jiao, J.; Yang, L.; Wang, Y.; Jiang, W.; Yu, T.; Wang, L.; Liu, H.; Zhang, H.; Wang, Z.; et al. Application of advanced biomaterials in photothermal therapy for malignant bone tumors. Biomater. Res. 2023, 27, 116. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Chen, S.; Li, D.; Wu, Y.; Zhang, X.; Liu, J.; Song, J.; Liu, L.; Qu, J.; Cheng, Z. High Affinity to Skeleton Rare Earth Doped Nanoparticles for Near-Infrared II Imaging. Nano Lett. 2019, 19, 2985–2992. [Google Scholar] [CrossRef] [PubMed]
- Lv, R.; Wang, Y.; Lin, B.; Peng, X.; Liu, J.; Lu, W.-d.; Tian, J. Targeted Luminescent Probes for Precise Upconversion/NIR II Luminescence Diagnosis of Lung Adenocarcinoma. Anal. Chem. 2021, 93, 4984–4992. [Google Scholar] [CrossRef]
- Chen, Y.; Meng, W.; Chen, M.; Zhang, L.; Chen, M.; Chen, X.; Peng, J.; Huang, N.; Zhang, W.; Chen, J. Biotin-decorated hollow gold nanoshells for dual-modal imaging-guided NIR-II photothermal and radiosensitizing therapy toward breast cancer. J. Mater. Chem. B 2023, 11, 10003–10018. [Google Scholar] [CrossRef]
- Lu, X.; Yuan, P.; Zhang, W.; Wu, Q.; Wang, X.; Zhao, M.; Sun, P.; Huang, W.; Fan, Q. A highly water-soluble triblock conjugated polymer for in vivo NIR-II imaging and photothermal therapy of cancer. Polym. Chem. 2018, 9, 3118–3126. [Google Scholar] [CrossRef]
- Jiang, Y.; Duan, X.; Liu, L.; Shi, Y.; Liu, C.; Ding, D.; Deng, Y.; Han, Y.; Geng, Y. NIR-II-absorbing conjugated polymers based on tetra-fused isoindigo ribbons for photothermal conversion and photoacoustic imaging. Cell Rep. Phys. Sci. 2022, 3, 100957. [Google Scholar] [CrossRef]
- Hu, Z.; He, J.; Xi, C.; Xu, S.; Shen, Q.; Chen, P.; Sun, P.; Fan, Q. Aggregation-Induced Emission Near-Infrared (NIR)-II-Conjugated Polymers Coupled With Nonconjugated Segments for NIR-II Fluorescence Imaging–Guided NIR-II Photothermal Therapy. Macromol. Chem. Phys. 2024, 225, 2400268. [Google Scholar] [CrossRef]
- Su, Y.; Miao, Y.; Zhu, Y.; Zou, W.; Yu, B.; Shen, Y.; Cong, H. A design strategy for D–A conjugated polymers for NIR-II fluorescence imaging. Polym. Chem. 2021, 12, 4707–4713. [Google Scholar] [CrossRef]
- Song, X.; Lu, X.; Sun, B.; Zhang, H.; Sun, P.; Miao, H.; Fan, Q.; Huang, W. Conjugated Polymer Nanoparticles with Absorption beyond 1000 nm for NIR-II Fluorescence Imaging System Guided NIR-II Photothermal Therapy. ACS Appl. Polym. Mater. 2020, 2, 4171–4179. [Google Scholar] [CrossRef]
- Sun, P.; Jiang, X.; Sun, B.; Wang, H.; Li, J.; Fan, Q.; Huang, W. Electron-acceptor density adjustments for preparation conjugated polymers with NIR-II absorption and brighter NIR-II fluorescence and 1064 nm active photothermal/gas therapy. Biomaterials 2021, 280, 121319. [Google Scholar] [CrossRef]
- Chang, K.; Sun, X.; Qi, Q.; Fu, M.; Han, B.; Zhang, Y.; Zhao, W.; Ni, T.; Li, Q.; Yang, Z.; et al. NIR-II Absorbing Conjugated Polymer Nanotheranostics for Thermal Initiated NO Enhanced Photothermal Therapy. Biosensors 2023, 13, 642. [Google Scholar] [CrossRef] [PubMed]
- Xie, Q.; Zhang, W.; Yang, X.; Zhou, C.; Zhang, L.; Sun, T.; Gong, M.; Zhang, D. Bright “D–A–D” semiconducting small molecule aggregates for NIR-II fluorescence bioimaging guiding photothermal therapy. J. Mater. Chem. B 2024, 13, 1316–1325. [Google Scholar] [CrossRef] [PubMed]
- Yuan, L.; Su, Y.; Zhang, R.; Gao, J.; Yu, B.; Cong, H.; Shen, Y. NIR-II organic small molecule probe for labeling lymph nodes and guiding tumor imaging. Talanta 2023, 266, 125123. [Google Scholar] [CrossRef] [PubMed]
- Yuan, L.; Su, Y.; Yu, B.; Shen, Y.; Cong, H. D–A–D organic small molecules with AIE effect for fluorescence imaging guided photothermal therapy. Biomater. Sci. 2022, 11, 985–997. [Google Scholar] [CrossRef]
- Zhang, J.-Q.; Xu, X.-Y.; Cao, S.-Q.; Zou, Y.-Q. Structures and Applications of NIR-II AIEgens Containing Benzobisthiadiazole Derivatives. Eur. J. Org. Chem. 2022, 44, e202201131. [Google Scholar] [CrossRef]
- Zhang, X.; Dou, Y.; Liu, S.; Chen, P.; Wen, Y.; Li, J.; Sun, Y.; Zhang, R. Rationally Designed Benzobisthiadiazole-Based Covalent Organic Framework for High-Performance NIR-II Fluorescence Imaging-Guided Photodynamic Therapy. Adv. Healthc. Mater. 2024, 13, 2303842. [Google Scholar] [CrossRef]
- Han, K.; Li, C.; Xiao, A.; Tian, Y.; Tian, J.; Hu, Z. TSPE: Reconstruction of multi-morphological tumors of NIR-II fluorescence molecular tomography based on positional encoding. Comput. Methods Programs Biomed. 2025, 261, 108554. [Google Scholar] [CrossRef]
- Song, F.; Zhang, P.; Wu, H.; Ma, C.; Liu, Z.; Cai, R.; Feng, Y.; He, Y.; Dong, X.; Tian, Y.; et al. Advances of Fluorescence Molecular Imaging: NIR-II Window, Probes, and Tomography. Laser Photonics Rev. 2025, 19, 2400275. [Google Scholar] [CrossRef]
- Ouyang, J.; Sun, L.; Zeng, Z.; Zeng, C.; Zeng, F.; Wu, S. Nanoaggregate Probe for Breast Cancer Metastasis through Multispectral Optoacoustic Tomography and Aggregation-Induced NIR-I/II Fluorescence Imaging. Angew. Chem. 2019, 59, 10111–10121. [Google Scholar] [CrossRef]
- Minegishi, Y.; Nomura, Y. Fluorescence molecular imaging-guided photodynamic therapy for early breast cancer in the prone position: Feasibility evaluation with Monte Carlo simulations. Photodiagn. Photodyn. Ther. 2025, 52, 104498. [Google Scholar] [CrossRef]
- Li, X.; Qi, L.; Zhang, S.; Huang, S.; Wu, J.; Lu, L.; Feng, Y.; Feng, Q.; Chen, W. Model-Based Optoacoustic Tomography Image Reconstruction With Non-local and Sparsity Regularizations. IEEE Access 2019, 7, 102136–102148. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, T.; Ye, J.; Tian, X.; Zhang, W.; Yang, B.; Dai, M.; Xu, C.; Fu, F. Fast Iterative Shrinkage-Thresholding Algorithm with Continuation for Brain Injury Monitoring Imaging Based on Electrical Impedance Tomography. Sensors 2022, 22, 9934. [Google Scholar] [CrossRef] [PubMed]
- Cai, M.; Zhang, Z.; Shi, X.; Hu, Z.; Tian, J. NIR-II/NIR-I Fluorescence Molecular Tomography of Heterogeneous Mice Based on Gaussian Weighted Neighborhood Fused Lasso Method. IEEE Trans. Med. Imaging 2020, 39, 2213–2222. [Google Scholar] [CrossRef]
- Cao, C.; Xiao, A.; Cai, M.; Shen, B.; Guo, L.; Shi, X.; Tian, J.; Hu, Z. Excitation-based fully connected network for precise NIR-II fluorescence molecular tomography. Biomed. Opt. Express 2022, 13, 6284–6299. [Google Scholar] [CrossRef]
- Darwan, D.; Lim, K.R.G.; Wijaya, H.; Lim, Z.C.; Wang, T.; Ang, W.H.; Tan, Z.-K. Deep Fluorescence Imaging by Laser-Scanning Excitation and Artificial Neural Network Processing. Adv. Opt. Mater. 2020, 8, 2000390. [Google Scholar] [CrossRef]
Type | Fluorophore | EX/EM Wavelength | Applications in Tumor | Object Element | Diagnosis/Treatment | References | |
---|---|---|---|---|---|---|---|
Cyanine dye | ICG | 5-Fu-ICG-MPEG-PCL | 808/820 nm | Skin cancer | Nonspecificity | PTT synergistic chemotherapy | [20,21] |
ICG | 808 nm | Oral squamous cell carcinoma (OSCC) | Podoplanin antibody | NIR-II FLI | [22] | ||
ICG | 765/840 nm | Sentinel lymph node tumor | Nonspecificity | NIR-II FLI | [23] | ||
IRDye800CW category | IRDye800CW–E2 | 808/820 nm | Breast cancer | Estrogen receptor-α (ERα) | NIR-II FLI | [24] | |
PPy @ CPT-HA-IRDye800CW | 808 nm | Breast cancer | Nonspecificity | Chemotherapy, PTT, and PAI dual-modality imaging | [25] | ||
IRDye800CW | 775/805 nm | Squamous cell carcinoma of the head and neck | Panizumab, cetuximab | NIR-II FLI | [26] | ||
IRDye800CW-NHS | 808/1064 nm | HER2+ positive breast cancer | Trastuzumab | NIR-II FLI | [27] | ||
IR | IR1048 | 690/1064 nm | Liver cancer | Nonspecificity | PDT | [28] | |
IR780 | 745/815 nm | Brain tumors | Nonspecificity | NIR-II FLI | [29] | ||
Conjugated polymer | Donor-acceptor—donor (D-A-D) | FE-2PEG | 808 nm | Colorectal cancer | Nonspecificity | NIR-II FLI | [15] |
IRFEP-FA-DOTA-Gd | 808 nm | Liver cancer | Nonspecificity | NIR-II/PAI/MRI, FGS | [30] | ||
BTZ/Fe2+@BTF/ALD | 1060 nm | bone tumor | Nonspecificity | PTT, chemotherapy, CDT | [31] | ||
Benzodithiadiazole (BBTD) | H4-PEG-PT | 808/1060 nm | Bone tumour | Nonspecificity | NIR-II FLI | [32] | |
αPD-L1@TPE-BT-BBTD | 980 nm | Pancreatic cancer | Nonspecificity | NIR-II FI/PIT | [33] | ||
Nano-particles (NPs) | Nanoparticle | Cu2-XSe | 980/1064 nm | Liver cancer | Nonspecificity | NIR-II FLI, PTT/PDT combination therapy | [34] |
CAL@PG NPs | 1064 nm | Liver cancer | Nonspecificity | NIR-II FLI, PTT/CDT/Chemotherapy | [35] | ||
Rare earth nanoparticles (REMP) | Nd@NaLuF4 | 808 nm | Breast cancer | Nonspecificity | NIR, MRI dual-modal imaging | [36] | |
ErNPs@cRGD | 808 nm | Breast cancer | Nonspecificity | NIR-II FLI | [37] | ||
Quantum dot (QDs) | Ag2S | Ag2S@PEG-ABS | 808 nm | Hypoxic tumor | Carbonic Anhydrase (CAIX) | Chemotherapy/PTT | [38] |
PNS/PEG-Ag2S QDs | 808 nm | Liver cancer | Nonspecificity | NIR-II FLI, PTT | [8] | ||
PbS, CdS | PbS@CdS | 980/1064 nm | Cervical cancer | Nonspecificity | NIR-II FLI | [39] |
Types of NIR-II Fluorescent Materials | Advantages | Limitations | Ref. |
---|---|---|---|
Nanoparticle | Superior biocompatibility. High loading capacity of hydrophobic materials. High photothermal stability. Easy surface modification and specific targeting. | The synthesis process is complex. The biological safety awaits further study. | [89,90] |
Quantum dots | The penetration depth can reach up to 15 mm. High photothermal stability. The emission wavelength is located in NIR-IIb (1500–1700 nm). High photothermal efficiency. | Typically contain heavy metals (e.g., Pb, Cd) and exhibit toxicity. Targeting efficiency is not high. Low solubility. The kidneys clear quickly. | [91,92,93] |
NIR-II cyanine dye | High biocompatibility. Targeted modification is flexible. Excellent light stability with minimal photobleaching. | Most dyes emit wavelengths at the edge of NIR-I and require molecular engineering optimization to extend to NIR-IIb. | [79,94] |
Rare earth nanomaterials | Good light stability. High signal-to-noise ratio. Stokes has a large displacement. Multimodal imaging. | Fluorescence quenching leads to a low quantum yield. A specific excitation light source is required. The synthesis process is complex. | [95,96,97] |
Conjugated polymer | High photothermal efficiency. Structural adjustability. High light stability. Superior biocompatibility. | Low water solubility. Fluorescence quenching leads to a low quantum yield. Slow metabolism requires consideration of toxicity issues. | [98,99] |
D-A-D small organic molecule | High photothermal efficiency. Rapid metabolism has good safety. Stokes has a large displacement. High light stability. Excellent compatibility. | Shorter emission wavelengths. Complex synthesis. | [100,101] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, M.; Liu, X.; Wang, S.; Qin, Z.; Hu, B.; Li, Z.; Sun, S. Application of NIR Fluorescent Materials in Imaging and Treatment of Tumors of Different Depths. Nanomaterials 2025, 15, 811. https://doi.org/10.3390/nano15110811
Yu M, Liu X, Wang S, Qin Z, Hu B, Li Z, Sun S. Application of NIR Fluorescent Materials in Imaging and Treatment of Tumors of Different Depths. Nanomaterials. 2025; 15(11):811. https://doi.org/10.3390/nano15110811
Chicago/Turabian StyleYu, Mengdi, Xuan Liu, Shuqiong Wang, Ziyao Qin, Beibei Hu, Zhiwei Li, and Shiguo Sun. 2025. "Application of NIR Fluorescent Materials in Imaging and Treatment of Tumors of Different Depths" Nanomaterials 15, no. 11: 811. https://doi.org/10.3390/nano15110811
APA StyleYu, M., Liu, X., Wang, S., Qin, Z., Hu, B., Li, Z., & Sun, S. (2025). Application of NIR Fluorescent Materials in Imaging and Treatment of Tumors of Different Depths. Nanomaterials, 15(11), 811. https://doi.org/10.3390/nano15110811