Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (10,509)

Search Parameters:
Keywords = treatment cycle

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1270 KiB  
Article
Litter Decomposition in Pacific Northwest Prairies Depends on Fire, with Differential Responses of Saprotrophic and Pyrophilous Fungi
by Haley M. Burrill, Ellen B. Ralston, Heather A. Dawson and Bitty A. Roy
Microorganisms 2025, 13(8), 1834; https://doi.org/10.3390/microorganisms13081834 (registering DOI) - 6 Aug 2025
Abstract
Fungi contribute to ecosystem function through nutrient cycling and decomposition but may be affected by major disturbances such as fire. Some ecosystems are fire-adapted, such as prairies which require cyclical burning to mitigate woody plant encroachment and reduce litter. While fire suppresses fire-sensitive [...] Read more.
Fungi contribute to ecosystem function through nutrient cycling and decomposition but may be affected by major disturbances such as fire. Some ecosystems are fire-adapted, such as prairies which require cyclical burning to mitigate woody plant encroachment and reduce litter. While fire suppresses fire-sensitive fungi, pyrophilous fungi may continue providing ecosystem functions. Using litter bags, we measured the litter decomposition at three prairies with unburned and burned sections, and we used Illumina sequencing to examine litter communities. We hypothesized that (H1) decomposition would be higher at unburned sites than burned, (H2) increased decomposition at unburned sites would be correlated with higher overall saprotroph diversity, with a lower diversity in autoclaved samples, and (H3) pyrophilous fungal diversity would be higher at burned sites and overall higher in autoclaved samples. H1 was not supported; decomposition was unaffected by burn treatments. H2 and H3 were somewhat supported; saprotroph diversity was lowest in autoclaved litter at burned sites, but pyrophilous fungal diversity was the highest. Pyrophilous fungal diversity significantly contributed to litter decomposition rates, while saprotroph diversity did not. Our findings indicate that fire-adapted prairies host a suite of pyrophilous saprotrophic fungi, and that these fungi play a primary role in litter decomposition post-fire when other fire-sensitive fungal saprotrophs are less abundant. Full article
(This article belongs to the Special Issue Fungal Ecology on a Changing Planet)
Show Figures

Figure 1

14 pages, 340 KiB  
Article
FLOT Versus CROSS—What Is the Optimal Therapeutic Approach for Locally Advanced Adenocarcinoma of the Esophagus and the Esophagogastric Junction?
by Martin Leu, Hannes Mahler, Johanna Reinecke, Ute Margarethe König, Leif Hendrik Dröge, Manuel Guhlich, Benjamin Steuber, Marian Grade, Michael Ghadimi, Volker Ellenrieder, Stefan Rieken and Alexander Otto König
Cancers 2025, 17(15), 2587; https://doi.org/10.3390/cancers17152587 (registering DOI) - 6 Aug 2025
Abstract
Background/Objectives: Neoadjuvant radiochemotherapy and perioperative chemotherapy are both well-established treatment strategies for locally advanced adenocarcinoma of the esophagus (EAC) and the esophagogastric junction (AEGJ). However, recent knowledge controversially discusses whether neoadjuvant radiotherapy or perioperative chemotherapy represents superior therapeutic options to prolong survival or [...] Read more.
Background/Objectives: Neoadjuvant radiochemotherapy and perioperative chemotherapy are both well-established treatment strategies for locally advanced adenocarcinoma of the esophagus (EAC) and the esophagogastric junction (AEGJ). However, recent knowledge controversially discusses whether neoadjuvant radiotherapy or perioperative chemotherapy represents superior therapeutic options to prolong survival or cause less toxicity. Methods: We retrospectively analyzed 76 patients with locally advanced EAC or AEGJ treated at our tertiary cancer center between January 2015 and March 2023. Patients received either perioperative FLOT chemotherapy (n = 36) or neoadjuvant radiochemotherapy following the CROSS protocol (n = 40), followed by surgical resection and standardized follow-up. We compared survival outcomes, toxicity profiles, treatment compliance, and surgical results between the two groups. Results: There were no statistically significant differences between FLOT and CROSS treatments in five-year loco-regional controls (LRC: 61.5% vs. 68.6%; p = 0.81), progression-free survival (PFS: 33.9% vs. 42.8%; p = 0.82), overall survival (OS: 60.2% vs. 63.4%; p = 0.91), or distant controls (DC: 42.1% vs. 56.5%; p = 0.39). High-grade hematologic toxicities did not significantly differ between groups (p > 0.05). Treatment compliance was lower in the FLOT group, with 50% (18/36) not completing all the planned chemotherapy cycles, compared to 17.5% (7/40) in the CROSS group. All the patients in the CROSS group received the full radiotherapy dose. Surgical outcomes and post-surgical tumor status were comparable between the groups. Conclusions: Although perioperative chemotherapy with FLOT has recently become a standard of care for locally advanced EAC and AEGJ, neoadjuvant radiochemotherapy per the CROSS protocol remains a well-tolerated alternative. In appropriately selected patients, both approaches yield comparable oncological outcomes. Full article
(This article belongs to the Special Issue Current Treatments of Esophageal and Esophagogastric Junction Cancers)
Show Figures

Figure 1

23 pages, 3314 KiB  
Article
Functional Express Proteomics for Search and Identification of Differentially Regulated Proteins Involved in the Reaction of Wheat (Triticum aestivum L.) to Nanopriming by Gold Nanoparticles
by Natalia Naraikina, Tomiris Kussainova, Andrey Shelepchikov, Alexey Tretyakov, Alexander Deryabin, Kseniya Zhukova, Valery Popov, Irina Tarasova, Lev Dykman and Yuliya Venzhik
Int. J. Mol. Sci. 2025, 26(15), 7608; https://doi.org/10.3390/ijms26157608 (registering DOI) - 6 Aug 2025
Abstract
Proteomic profiling using ultrafast chromatography–mass spectrometry provides valuable insights into plant responses to abiotic factors by linking molecular changes with physiological outcomes. Nanopriming, a novel approach involving the treatment of seeds with nanoparticles, has demonstrated potential for enhancing plant metabolism and productivity. However, [...] Read more.
Proteomic profiling using ultrafast chromatography–mass spectrometry provides valuable insights into plant responses to abiotic factors by linking molecular changes with physiological outcomes. Nanopriming, a novel approach involving the treatment of seeds with nanoparticles, has demonstrated potential for enhancing plant metabolism and productivity. However, the molecular mechanisms underlying nanoparticle-induced effects remain poorly understood. In this study, we investigated the impact of gold nanoparticle (Au-NP) seed priming on the proteome of wheat (Triticum aestivum L.) seedlings. Differentially regulated proteins (DRPs) were identified, revealing a pronounced reorganization of the photosynthetic apparatus (PSA). Both the light-dependent reactions and the Calvin cycle were affected, with significant upregulation of chloroplast-associated protein complexes, including PsbC (CP43), chlorophyll a/b-binding proteins, Photosystem I subunits (PsaA and PsaB), and the γ-subunit of ATP synthase. The large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCo) exhibited over a threefold increase in expression in Au-NP-treated seedlings. The proteomic changes in the large subunit RuBisCo L were corroborated by transcriptomic data. Importantly, the proteomic changes were supported by physiological and biochemical analyses, ultrastructural modifications in chloroplasts, and increased photosynthetic activity. Our findings suggest that Au-NP nanopriming triggers coordinated molecular responses, enhancing the functional activity of the PSA. Identified DRPs may serve as potential biomarkers for further elucidation of nanopriming mechanisms and for the development of precision strategies to improve crop productivity. Full article
(This article belongs to the Special Issue Molecular Research and Applications of Nanomaterials)
Show Figures

Figure 1

12 pages, 486 KiB  
Article
Efficacy and Safety of Dose-Dense Chemotherapy in Breast Cancer: Real Clinical Data and Literature Review
by Keiko Yanagihara, Masato Yoshida, Tamami Yamakawa, Sena Kato, Miki Tamura and Koji Nagata
Curr. Oncol. 2025, 32(8), 441; https://doi.org/10.3390/curroncol32080441 (registering DOI) - 6 Aug 2025
Abstract
Dose-dense chemotherapy shortens the interval between chemotherapy cycles and has shown improved outcomes in high-risk breast cancer patients. We retrospectively evaluated the efficacy and safety of dose-dense chemotherapy in 80 breast cancer patients treated at our hospital from 2020 to 2024. The regimen [...] Read more.
Dose-dense chemotherapy shortens the interval between chemotherapy cycles and has shown improved outcomes in high-risk breast cancer patients. We retrospectively evaluated the efficacy and safety of dose-dense chemotherapy in 80 breast cancer patients treated at our hospital from 2020 to 2024. The regimen included epirubicin and cyclophosphamide followed by paclitaxel or docetaxel, with pegfilgrastim support. The overall treatment completion rate was 82.5%. Of the 80 patients, 55 underwent neoadjuvant chemotherapy, and the pathological complete response rate was significantly higher in triple-negative breast cancer (59.1%) compared to that in luminal-type cancer (9.1%). Common adverse events included anemia, liver dysfunction, myalgia, and peripheral neuropathy. Febrile neutropenia occurred in 8.8% of patients, with some cases linked to pegfilgrastim body pod use, particularly in individuals with low subcutaneous fat. Notably, two patients developed pneumocystis pneumonia, potentially associated with steroid administration. Despite these toxicities, most were manageable and resolved after treatment. Our findings support the efficacy of dose-dense chemotherapy, particularly in triple-negative breast cancer, while highlighting the importance of individualized supportive care and vigilance regarding hematologic and infectious complications. Full article
Show Figures

Figure 1

13 pages, 1625 KiB  
Article
Difficulties of Eating and Masticating Solid Food in Children with Spinal Muscular Atrophy—Preliminary Study
by Ewa Winnicka, Adrianna Łabuz, Zbigniew Kułaga, Tomasz Grochowski and Piotr Socha
Nutrients 2025, 17(15), 2561; https://doi.org/10.3390/nu17152561 - 6 Aug 2025
Abstract
Background: Spinal muscular atrophy (SMA) is a neuromuscular disorder that frequently affects bulbar function, including feeding and swallowing. Although disease-modifying therapies have improved motor outcomes, little is known about the persistence of oromotor difficulties, particularly with regard to solid food intake. Objective: [...] Read more.
Background: Spinal muscular atrophy (SMA) is a neuromuscular disorder that frequently affects bulbar function, including feeding and swallowing. Although disease-modifying therapies have improved motor outcomes, little is known about the persistence of oromotor difficulties, particularly with regard to solid food intake. Objective: This study aimed to evaluate mastication and swallowing performance in children with SMA undergoing treatment, and to investigate the association between tongue strength and feeding efficiency. Methods: Twenty-two children with SMA types 1–3 were assessed using the Test of Masticating and Swallowing Solids in Children (TOMASS-C) and the Iowa Oral Performance Instrument (IOPI). Key TOMASS-C outcomes included the number of bites, chewing cycles, swallows, and total eating time. Tongue strength was measured in kilopascals. Results: Most participants showed deviations from age-specific normative values in at least one TOMASS-C parameter. Tongue strength was significantly lower than reference values in 86% of participants and correlated negatively with all TOMASS-C outcomes (p < 0.001). Children with weaker tongue pressure required more swallows, more chewing cycles, and longer eating times. Conclusions: Despite pharmacological treatment, children with SMA experience persistent difficulties in eating solid foods. Tongue strength may serve as a non-invasive biomarker for bulbar dysfunction and support dietary decision-making and therapeutic planning. Full article
Show Figures

Figure 1

24 pages, 10588 KiB  
Article
Genome-Wide Identification, Evolution, and Expression Patterns of the Fructose-1,6-Bisphosphatase Gene Family in Saccharum Species
by Chunyan Tian, Xiuting Hua, Peifang Zhao, Chunjia Li, Xujuan Li, Hongbo Liu and Xinlong Liu
Plants 2025, 14(15), 2433; https://doi.org/10.3390/plants14152433 - 6 Aug 2025
Abstract
Fructose-1,6-bisphosphatase (FBP) is a crucial regulatory enzyme in sucrose synthesis and photosynthetic carbon assimilation, functioning through two distinct isoforms: cytosolic FBP (cyFBP) and chloroplastic FBP (cpFBP). However, the identification and functional characterization of FBP genes in Saccharum remains limited. In this study, we [...] Read more.
Fructose-1,6-bisphosphatase (FBP) is a crucial regulatory enzyme in sucrose synthesis and photosynthetic carbon assimilation, functioning through two distinct isoforms: cytosolic FBP (cyFBP) and chloroplastic FBP (cpFBP). However, the identification and functional characterization of FBP genes in Saccharum remains limited. In this study, we conducted a systematic identification and comparative genomics analyses of FBPs in three Saccharum species. We further examined their expression patterns across leaf developmental zones, spatiotemporal profiles, and responses to diurnal rhythms and hormonal treatments. Our analysis identified 95 FBP genes, including 44 cyFBPs and 51 cpFBPs. Comparative analyses revealed significant divergence in physicochemical properties, gene structures, and motif compositions between the two isoforms. Expression profiling indicated that both cyFBPs and cpFBPs were predominantly expressed in leaves, particularly in maturing and mature zones. During diurnal cycles, their expression peaked around the night–day transition, with cpFBPs exhibiting earlier peaks than cyFBPs. FBP genes in Saccharum spontaneum displayed greater diurnal sensitivity than those in Saccharum officinarum. Hormonal treatments further revealed significant regulatory divergence in FBP genes, both between isoforms and across species. Notably, cyFBP_2 and cpFBP_2 members consistently exhibited higher expression levels across all datasets, suggesting their pivotal roles in sugarcane physiology. These findings not only identify potential target genes for enhancing sucrose accumulation, but also highlight the breeding value of S. spontaneum and S. officinarum in sugarcane breeding. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

23 pages, 406 KiB  
Systematic Review
Advances in Bidirectional Therapy for Peritoneal Metastases: A Systematic Review of Pressurized Intraperitoneal Aerosol Chemotherapy (PIPAC) Combined with Systemic Chemotherapy
by Manuela Robella, Marco Vitturini, Andrea Di Giorgio, Matteo Aulicino, Martin Hubner, Emanuele Koumantakis, Felice Borghi, Paolo Catania, Armando Cinquegrana and Paola Berchialla
Cancers 2025, 17(15), 2580; https://doi.org/10.3390/cancers17152580 - 6 Aug 2025
Abstract
Background: Peritoneal metastases (PM) represent a common and challenging manifestation of several gastrointestinal and gynecologic malignancies. Bidirectional treatment—combining Pressurized Intraperitoneal Aerosol Chemotherapy (PIPAC) with systemic chemotherapy—has emerged as a strategy to enhance locoregional control while maintaining systemic coverage. Objective: This systematic [...] Read more.
Background: Peritoneal metastases (PM) represent a common and challenging manifestation of several gastrointestinal and gynecologic malignancies. Bidirectional treatment—combining Pressurized Intraperitoneal Aerosol Chemotherapy (PIPAC) with systemic chemotherapy—has emerged as a strategy to enhance locoregional control while maintaining systemic coverage. Objective: This systematic review aimed to analyze the study design, characteristics, and timing of the treatments administered—including the type of systemic chemotherapy, intraperitoneal agents used in PIPAC, and interval between administrations—as well as the clinical outcomes, safety profile, and overall methodological quality of the available literature on bidirectional treatment for peritoneal metastases. Methods: A systematic literature search was conducted across the PubMed, Embase, and Cochrane Library databases up to April 2025. Studies were included if they reported clinical outcomes of patients undergoing bidirectional treatment. Data extraction focused on survival, response assessment (PRGS, PCI), adverse events, systemic and intraperitoneal regimens, treatment interval, and study methodology. Results: A total of 22 studies involving 1015 patients (742 treated with bidirectional therapy) were included. Median overall survival ranged from 2.8 to 19.6 months, with the most favorable outcomes observed in gastric and colorectal cancer cohorts. PRGS improvement after multiple PIPAC cycles was reported in >80% of evaluable cases. High-grade adverse events (CTCAE ≥ 3) occurred in up to 17% of patients in most studies, with only one study reporting treatment-related mortality. However, methodological quality was generally moderate, with considerable heterogeneity in treatment protocols, response criteria, systemic regimens, and toxicity attribution. Conclusions: Bidirectional therapy with PIPAC and systemic chemotherapy appears to be a feasible and potentially effective strategy for selected patients with peritoneal metastases. Despite encouraging outcomes, definitive conclusions are limited by the retrospective nature and heterogeneity of available studies. Prospective standardized trials are needed to confirm efficacy, clarify patient selection, and optimize treatment protocols. Full article
(This article belongs to the Section Cancer Therapy)
Show Figures

Figure 1

16 pages, 5358 KiB  
Article
Oxidative Ferritin Destruction: A Key Mechanism of Iron Overload in Acetaminophen-Induced Hepatocyte Ferroptosis
by Kaishuo Gong, Kaiying Liang, Hui Li, Hongjun Luo, Yingtong Chen, Ke Yin, Zhixin Liu, Wenhong Luo and Zhexuan Lin
Int. J. Mol. Sci. 2025, 26(15), 7585; https://doi.org/10.3390/ijms26157585 - 5 Aug 2025
Abstract
Although acetaminophen (APAP) overdose represents the predominant cause of drug-induced acute liver failure (ALF) worldwide and has been extensively studied, the modes of cell death remain debatable and the treatment approach for APAP-induced acute liver failure is still limited. This study investigated the [...] Read more.
Although acetaminophen (APAP) overdose represents the predominant cause of drug-induced acute liver failure (ALF) worldwide and has been extensively studied, the modes of cell death remain debatable and the treatment approach for APAP-induced acute liver failure is still limited. This study investigated the mechanisms of APAP hepatotoxicity in primary mouse hepatocytes (PMHs) by using integrated methods (MTT assay, HPLC analysis for glutathione (GSH), Calcein-AM for labile iron pool detection, confocal microscopy for lipid peroxidation and mitochondrial superoxide measurements, electron microscopy observation, and Western blot analysis for ferritin), focusing on the role of iron dysregulation under oxidative stress. Our results showed that 20 mM APAP treatment induced characteristic features of ferroptosis, including GSH depletion, mitochondrial dysfunction, and iron-dependent lipid peroxidation. Further results showed significant ferritin degradation and subsequent iron releasing. Iron chelator deferoxamine (DFO) and N-acetylcysteine (NAC) could alleviate APAP-induced hepatotoxicity, while autophagy inhibitors did not provide a protective effect. In vitro experiments confirmed that hydrogen peroxide directly damaged ferritin structure, leading to iron releasing, which may aggravate iron-dependent lipid peroxidation. These findings provide evidence that APAP hepatotoxicity involves a self-amplifying cycle of oxidative stress and iron-mediated oxidative damaging, with ferritin destruction playing a key role as a free iron source. This study offers new insights into APAP-induced liver injury beyond conventional cell death classifications, and highlights iron chelation as a potential therapeutic strategy alongside traditional antioxidative treatment with NAC. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

17 pages, 2353 KiB  
Article
Repurposing a Lipid-Lowering Agent to Inhibit TNBC Growth Through Cell Cycle Arrest
by Yi-Chiang Hsu, Kuan-Ting Lee, Sung-Nan Pei, Kun-Ming Rau and Tai-Hsin Tsai
Curr. Issues Mol. Biol. 2025, 47(8), 622; https://doi.org/10.3390/cimb47080622 - 5 Aug 2025
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive and therapeutically challenging subtype of breast cancer due to its lack of estrogen receptors, progesterone receptors, and HER2 (Human epidermal growth factor receptor 2) expression, which severely limits available treatment options. Recently, Simvastatin—a widely used [...] Read more.
Triple-negative breast cancer (TNBC) is a highly aggressive and therapeutically challenging subtype of breast cancer due to its lack of estrogen receptors, progesterone receptors, and HER2 (Human epidermal growth factor receptor 2) expression, which severely limits available treatment options. Recently, Simvastatin—a widely used HMG-CoA (3-hydroxy-3-methylglutaryl-coenzyme A) reductase inhibitor for hyperlipidemia—has garnered interest for its potential anticancer effects. This study investigates the therapeutic potential of Simvastatin in triple-negative breast cancer (TNBC). The results demonstrate that Simvastatin significantly inhibits the proliferation of TNBC cells, particularly MDA-MB-231, in a dose- and time-dependent manner. Mechanistically, Simvastatin primarily induces G1 phase cell cycle arrest to exert its antiproliferative effects, with no significant evidence of apoptosis or necrosis. These findings support the potential repositioning of Simvastatin as a therapeutic agent to suppress TNBC cell growth. Further analysis shows that Simvastatin downregulates cyclin-dependent kinase 4 (CDK4), a key regulator of the G1/S cell cycle transition and a known marker of poor prognosis in breast cancer. These findings highlight a novel, apoptosis-independent mechanism of Simvastatin’s anticancer action in TNBC. Importantly, given that many breast cancer patients also suffer from hyperlipidemia, Simvastatin offers dual therapeutic benefits—managing both lipid metabolism and tumor cell proliferation. Thus, Simvastatin holds promise as an adjunctive therapy in the treatment of TNBC and warrants further clinical investigation. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

18 pages, 5256 KiB  
Article
Impact of Alginate Oligosaccharides on Ovarian Performance and the Gut Microbial Community in Mice with D-Galactose-Induced Premature Ovarian Insufficiency
by Yan Zhang, Hongda Pan, Dao Xiang, Hexuan Qu and Shuang Liang
Antioxidants 2025, 14(8), 962; https://doi.org/10.3390/antiox14080962 (registering DOI) - 5 Aug 2025
Abstract
Premature ovarian insufficiency (POI) is an important factor in female infertility and is often associated with oxidative stress. Alginate oligosaccharides (AOSs), derived from the degradation of alginate, have been demonstrated to have protective effects against various oxidative stress-related diseases. However, the impact of [...] Read more.
Premature ovarian insufficiency (POI) is an important factor in female infertility and is often associated with oxidative stress. Alginate oligosaccharides (AOSs), derived from the degradation of alginate, have been demonstrated to have protective effects against various oxidative stress-related diseases. However, the impact of AOSs on POI has not been previously explored. The current study explored the effects of AOSs on ovarian dysfunction in a mouse model of POI induced by D-galactose (D-gal). Female C57BL/6 mice were randomly divided into five groups: the control (CON), POI model (D-gal), and low-, medium-, and high-dose AOS groups (AOS-L, 100 mg/kg/day; AOS-M, 150 mg/kg/day; AOS-H, 200 mg/kg/day). For 42 consecutive days, mice in the D-gal, AOS-L, AOS-M, and AOS-H groups received daily intraperitoneal injections of D-gal (200 mg/kg/day), whereas those in the CON group received equivalent volumes of sterile saline. Following D-gal injection, AOSs were administered via gavage at the specified doses; mice in the CON and D-gal groups received sterile saline instead. AOS treatment markedly improved estrous cycle irregularities, normalized serum hormone levels, reduced granulosa cell apoptosis, and increased follicle counts in POI mice. Moreover, AOSs significantly reduced ovarian oxidative stress and senescence in POI mice, as indicated by lower levels of malondialdehyde (MDA), higher activities of catalase (CAT) and superoxide dismutase (SOD), and decreased protein expression of 4-hydroxynonenal (4-HNE), nitrotyrosine (NTY), 8-hydroxydeoxyguanosine (8-OHdG), and p16 in ovarian tissue. Analysis of the gut microbiota through 16S rRNA gene sequencing and short-chain fatty acid (SCFA) analysis revealed significant differences in gut microbiota composition and SCFA levels (acetic acid and total SCFAs) between control and D-gal-induced POI mice. These differences were largely alleviated by AOS treatment. AOSs changed the gut microbiota by increasing the abundance of Ligilactobacillus and decreasing the abundance of Clostridiales, Clostridiaceae, Marinifilaceae, and Clostridium_T. Additionally, AOSs mitigated the decline in acetic acid and total SCFA levels observed in POI mice. Notably, the total SCFA level was significantly correlated with the abundance of Ligilactobacillus, Marinifilaceae, and Clostridium_T. In conclusion, AOS intervention effectively mitigates ovarian oxidative stress, restores gut microbiota homeostasis, and regulates the microbiota–SCFA axis, collectively improving D-gal-induced POI. Therefore, AOSs represent a promising therapeutic strategy for POI management. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Figure 1

18 pages, 2357 KiB  
Article
Nitrogen Fertilizer Reduction in Rice–Eel Co-Culture System Improves the Soil Microbial Diversity and Its Functional Stability
by Mengqian Ma, Weiguang Lv, Yu Huang, Juanqin Zhang, Shuangxi Li, Naling Bai, Haiyun Zhang, Xianpu Zhu, Chenglong Xu and Hanlin Zhang
Plants 2025, 14(15), 2425; https://doi.org/10.3390/plants14152425 - 5 Aug 2025
Abstract
The ecological rice–eel co-culture system is not only beneficial for enhancing productivity and sustainability in agriculture but also plays a crucial role in promoting environmental health. In the present study, based on the long-term positioning trial of the rice–eel co-culture system that began [...] Read more.
The ecological rice–eel co-culture system is not only beneficial for enhancing productivity and sustainability in agriculture but also plays a crucial role in promoting environmental health. In the present study, based on the long-term positioning trial of the rice–eel co-culture system that began in 2016 and was sampled in 2023, the effects of reduced nitrogen fertilizer application on soil physico-chemical properties and the bacterial community were investigated. Treatments included a conventional regular fertilization treatment (RT), rice–eel co-culture system regular fertilization (IT), and nitrogen-reduction 10%, 30%, and 50% fertilization treatments (IT90, IT70, and IT50). Our research demonstrated the following: (1) Compared to RT, IT significantly increased soil water-stable macroaggregates (R0.25), mean weight diameter (MWD), geometric mean diameter (GMD), and available phosphorus content, with the increases of 15.66%, 25.49%, 36.00%, and 18.42%, respectively. Among the nitrogen-reduction fertilization treatments, IT90 showed the most significant effect. Compared to IT, IT90 significantly increased R0.25, MWD, GMD, and available nitrogen content, with increases of 4.4%, 7.81%, 8.82%, and 28.89%, respectively. (2) Compared to RT, at the phylum level, the diversity of Chloroflexi was significantly increased under IT and IT50, and the diversity of Gemmatimonadota was significantly increased under IT90, IT70, and IT50. The diversity of Acidobacteriota was significantly higher in IT90 and IT70 compared to IT. It was shown that the rice–eel co-culture system and nitrogen fertilizer reduction could effectively improve the degradation capacity of organic matter and promote soil nitrogen cycling. In addition, redundancy analysis (RDA) identified total phosphorus, total nitrogen, and available nitrogen (p = 0.007) as the three most important environmental factors driving changes in the bacterial community. (3) The functional prediction analysis of soil microbiota showed that, compared to RT, the diversity of pathways related to biosynthesis (carbohydrate biosynthesis and cell structure biosynthesis) and metabolism (L-glutamate and L-glutamine biosynthesis) was significantly higher under IT70, IT90, IT, and IT50 (in descending order). However, the diversity of pathways associated with degradation/utilization/assimilation (secondary metabolite degradation and amine and polyamine degradation) was significantly lower under all the rice–eel co-culture treatments. In conclusion, the rice–eel co-culture system improved soil physicochemical properties and the soil microbial environment compared with conventional planting, and the best soil improvement was achieved with 10% less N fertilizer application. Full article
(This article belongs to the Special Issue Chemical Properties of Soils and its Impact on Plant Growth)
Show Figures

Figure 1

14 pages, 1400 KiB  
Article
Potential Roles of Extracellular Vesicles in Murine Tear Fluids in the Physiology of Corneal Epithelial Cells In Vitro
by Saya Oya, Kazunari Higa, Tomohiro Yasutake, Risa Yamazaki-Hokama and Masatoshi Hirayama
Int. J. Mol. Sci. 2025, 26(15), 7559; https://doi.org/10.3390/ijms26157559 - 5 Aug 2025
Abstract
Biological extracellular vesicles in tear fluids, such as exosomes, are thought to have physiological functions in the management of healthy ocular surface epithelium, including corneal epithelium. However, the physiological roles of tear extracellular vesicles in the ocular surface remain unclear. In this study, [...] Read more.
Biological extracellular vesicles in tear fluids, such as exosomes, are thought to have physiological functions in the management of healthy ocular surface epithelium, including corneal epithelium. However, the physiological roles of tear extracellular vesicles in the ocular surface remain unclear. In this study, we investigated the physiological function of tear extracellular vesicles in mouse tear fluids in the ocular surface epithelium in vitro. Morphological analysis of the isolated extracellular vesicles from mouse tear fluids was performed using nanoparticle tracking analysis and transmission electron microscopy. The identified particles were characterised by immunoblotting for exosomal markers. After confirming the uptake of tear exosomes in cultured corneal epithelial cells, gene expression changes in mouse cultured corneal epithelial cells after tear exosome treatment were analysed. Immunostaining analysis was performed to confirm cell proliferation in the cultured corneal epithelial cells with tear exosome treatment. Tear fluids from mice contain nanoparticles with exosome-like morphologies, which express the representative exosomal markers CD9 and TSG101. The extracellular vesicles can be taken up by cultivated murine corneal epithelial cells in vitro and induce expression changes in genes related to the cell cycle, cell membranes, microtubules, and signal peptides. Treatment with the tear extracellular vesicles promoted cell proliferation of cultured murine corneal epithelial cells. Our study provides evidence that murine tear fluids contain extracellular vehicles like exosomes and they may contribute to the maintenance of the physiological homeostatic environment of the ocular surface. Full article
(This article belongs to the Special Issue Molecular Advances in Dry Eye Syndrome)
Show Figures

Figure 1

18 pages, 2365 KiB  
Article
Integrated Environmental–Economic Assessment of CO2 Storage in Chinese Saline Formations
by Wentao Zhao, Zhe Jiang, Tieya Jing, Jian Zhang, Zhan Yang, Xiang Li, Juan Zhou, Jingchao Zhao and Shuhui Zhang
Water 2025, 17(15), 2320; https://doi.org/10.3390/w17152320 - 4 Aug 2025
Abstract
This study develops an integrated environmental–economic assessment framework to evaluate the life cycle environmental impacts and economic costs of CO2 geological storage and produced water treatment in saline formations in China. Using a case study of a saline aquifer carbon storage project [...] Read more.
This study develops an integrated environmental–economic assessment framework to evaluate the life cycle environmental impacts and economic costs of CO2 geological storage and produced water treatment in saline formations in China. Using a case study of a saline aquifer carbon storage project in the Ordos Basin, eight full-chain carbon capture, utilization, and storage (CCUS) scenarios were analyzed. The results indicate that environmental and cost performance are primarily influenced by technology choices across carbon capture, transport, and storage stages. The scenario employing potassium carbonate-based capture, pipeline transport, and brine reinjection after a reverse osmosis treatment (S5) achieved the most balanced outcome. Breakeven analyses under three carbon price projection models revealed that carbon price trajectories critically affect project viability, with a steadily rising carbon price enabling earlier profitability. By decoupling CCUS from power systems and focusing on unit CO2 removal, this study provides a transparent and transferable framework to support cross-sectoral deployment. The findings offer valuable insights for policymakers aiming to design effective CCUS support mechanisms under future carbon neutrality targets. Full article
(This article belongs to the Special Issue Mine Water Treatment, Utilization and Storage Technology)
Show Figures

Figure 1

21 pages, 6166 KiB  
Article
Effect of Thermal Cycles on the Compressive Properties of 3D-Printed Polymeric Lattice-Reinforced Cement-Based Materials
by Can Tang, Yujie Zhou, Jing Qiao, Humaira Kanwal, Guoqian Song and Wenfeng Hao
Polymers 2025, 17(15), 2137; https://doi.org/10.3390/polym17152137 - 4 Aug 2025
Abstract
Existing studies have shown that placing 3D-printed lattices in cement matrices can effectively improve the ductility of cement-based composites. However, the influence of thermal fatigue effect on the mechanical properties of 3D-printed lattice-reinforced cement-based composites during service remains to be studied. In this [...] Read more.
Existing studies have shown that placing 3D-printed lattices in cement matrices can effectively improve the ductility of cement-based composites. However, the influence of thermal fatigue effect on the mechanical properties of 3D-printed lattice-reinforced cement-based composites during service remains to be studied. In this paper, cement-based materials without lattices were used as the control group, and the uniaxial compressive mechanical properties of 3D-printed lattice-reinforced cement-based composites after thermal fatigue treatment under a temperature difference of 60 °C were tested. The number of thermal fatigue cycles was set to 45, 90, and 145 times, respectively. During the test, two non-destructive testing technologies, AE and DIC, were used to analyze the strength degradation and deformation law of 3D-printed lattice-reinforced cement-based composites with the increase in cycles. AE adopted the threshold triggering mode, and the channel threshold was 100 mv. The experiment showed that the compressive strength of the control group after 45, 90, and 145 thermal cycles decreased to 72.47% and 49.44% of that of the specimen after 45 thermal cycles, respectively. The strength of RO lattices decreased to 91.07% and 82.14% of that of the specimen after 45 thermal cycles, respectively, while the strength of SO lattices decreased to 83.27% and 77.96% of that of the specimen after 45 thermal cycles, respectively. The compressive strengths of the two types of lattices were higher than that of the control group after three cycles, indicating that 3D-printed lattices can effectively mitigate the influence of environmental thermal fatigue on the mechanical properties of cement-based materials. Full article
(This article belongs to the Special Issue Polymeric Materials and Their Application in 3D Printing, 2nd Edition)
Show Figures

Figure 1

30 pages, 1939 KiB  
Review
A Review on Anaerobic Digestate as a Biofertilizer: Characteristics, Production, and Environmental Impacts from a Life Cycle Assessment Perspective
by Carmen Martín-Sanz-Garrido, Marta Revuelta-Aramburu, Ana María Santos-Montes and Carlos Morales-Polo
Appl. Sci. 2025, 15(15), 8635; https://doi.org/10.3390/app15158635 (registering DOI) - 4 Aug 2025
Abstract
Digestate valorization is essential for sustainable waste management and circular economy strategies, yet large-scale adoption faces technical, economic, and environmental challenges. Beyond waste-to-energy conversion, digestate is a valuable soil amendment, enhancing soil structure and reducing reliance on synthetic fertilizers. However, its agronomic benefits [...] Read more.
Digestate valorization is essential for sustainable waste management and circular economy strategies, yet large-scale adoption faces technical, economic, and environmental challenges. Beyond waste-to-energy conversion, digestate is a valuable soil amendment, enhancing soil structure and reducing reliance on synthetic fertilizers. However, its agronomic benefits depend on feedstock characteristics, treatment processes, and application methods. This study reviews digestate composition, treatment technologies, regulatory frameworks, and environmental impact assessment through Life Cycle Assessment. It analyzes the influence of functional unit selection and system boundary definitions on Life Cycle Assessment outcomes and the effects of feedstock selection, pretreatment, and post-processing on its environmental footprint and fertilization efficiency. A review of 28 JCR-indexed articles (2018–present) analyzed LCA studies on digestate, focusing on methodologies, system boundaries, and impact categories. The findings indicate that Life Cycle Assessment methodologies vary widely, complicating direct comparisons. Transportation distances, nutrient stability, and post-processing strategies significantly impact greenhouse gas emissions and nutrient retention efficiency. Techniques like solid–liquid separation and composting enhance digestate stability and agronomic performance. Digestate remains a promising alternative to synthetic fertilizers despite market uncertainty and regulatory inconsistencies. Standardized Life Cycle Assessment methodologies and policy incentives are needed to promote its adoption as a sustainable soil amendment within circular economy frameworks. Full article
(This article belongs to the Special Issue Novel Research on By-Products and Treatment of Waste)
Show Figures

Figure 1

Back to TopTop