Genome-Wide Identification, Evolution, and Expression Patterns of the Fructose-1,6-Bisphosphatase Gene Family in Saccharum Species
Abstract
1. Introduction
2. Results
2.1. Identification and Physicochemical Properties of FBP Proteins in Saccharum
2.2. Phylogenetic Analysis of FBPs in Saccharum and Other Species
2.3. Analysis of Gene Structure, Motif Distribution, and Conserved Domain of FBPs
2.4. Chromosomal Localization and Duplication Events of FBPs in Saccharum
2.5. Collinearity Analysis of FBPs in Different Species
2.6. Analysis of the Selection Pressure of FBPs in Saccharum
2.7. Analysis of cis-Acting Elements of FBPs Promoter
2.8. Expression Patterns of FBPs in Different Leaf Segments and Developmental Stages in S. spontaneum and S. officinarum
2.9. Expression Changes in FBPs During the Diurnal Rhythm of S. spontaneum and S. officinarum
2.10. Expression Patterns of FBPs in Response to Hormone Treatments
2.11. Expression Patterns of FBPs in Different Tissues of Two Sugarcane Cultivars During the Elongation Stage
3. Discussion
4. Materials and Methods
4.1. Plant Materials
4.2. Identification of FBP Family Members
4.3. Phylogenetic Analysis of the FBP Family
4.4. Visualization of Gene Structures, Motifs, and Protein Domains
4.5. Chromosomal Distribution, Collinearity, and Selection Pressure Analyses
4.6. Cis-Acting Element Analysis
4.7. Analysis of FBP Expression Profiling in S. spontaneum and S. officinarum
4.8. Validation of FBP Expression Levels in Sugarcane Using qRT-PCR
4.9. Detection of Sucrose Content in the Stems of Two Sugarcane Cultivars
4.10. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Marcus, F.; Gontero, B.; Harrsch, P.B.; Rittenhouse, J. Amino acid sequence homology among fructose-1,6-bisphosphatases. Biochem. Biophys. Res. Commun. 1986, 135, 374–381. [Google Scholar] [CrossRef]
- Nel, W.; Terblanche, S.E. Plant fructose-1,6-bisphosphatases: Characteristics and properties. Int. J. Biochem. 1992, 24, 1267–1283. [Google Scholar] [CrossRef]
- Daie, J. Cytosolic fructose-l,6-bisphosphatase_ A key enzyme in the sucrose biosynthetic pathway. Photosynth. Res. 1993, 38, 5–14. [Google Scholar] [CrossRef]
- Koßmann, J.; Müller-Röber, B.; Dyer, T.A.; Raines, C.A.; Sonnewald, U.; Willmitzer, L. Cloning and expression analysis of the plastidic fructose-l,6-bisphosphatase coding sequence from potato: Circumstantial evidence for the import of hexoses into chloroplasts. Planta 1992, 188, 7–12. [Google Scholar] [CrossRef]
- Chueca, A.; Sahrawy, M.; Pagano, E.A.; Gorgé, J.L. Chloroplast fructose-1,6-bisphosphatase: Structure and function. Photosynth. Res. 2002, 74, 235–249. [Google Scholar] [CrossRef]
- Jang, H.K.; Lee, S.W.; Lee, Y.H.; Hahn, T.R. Purification and characterization of a recombinant pea cytoplasmic fructose-1,6-bisphosphatase. Protein Expr. Purif. 2003, 28, 42–49. [Google Scholar] [CrossRef]
- Zimmermann, G.; Kelly, G.J.; Latzko, E. Efficient purification and molecular properties of spinach chloroplast fructose 1,6-bisphosphatase. Eur. J. Biochem. 1976, 15, 361–367. [Google Scholar] [CrossRef]
- Jiang, Q.; Hua, X.T.; Shi, H.H.; Liu, J.; Yuan, Y.; Li, Z.; Li, S.Y.; Zhou, M.Q.; Yin, C.Y.; Dou, M.J.; et al. Transcriptome dynamics provides insights into divergences of the photosynthesis pathway between Saccharum officinarum and Saccharum spontaneum. Plant J. 2023, 113, 1278–1294. [Google Scholar] [CrossRef] [PubMed]
- Hur, Y.; Unger, E.A.; Vasconcelos, A.C. Isolation and characterization of a cDNA encoding cytosolic fructose-1,6-bisphosphatase from spinach. Plant Mol. Biol. 1992, 18, 799–802. [Google Scholar] [CrossRef] [PubMed]
- Tang, G.L.; Wang, Y.F.; Bao, J.S.; Chen, H.B. Overexpression in Escherichia coli and characterization of the chloroplast fructose-1,6-bisphosphatase from wheat. Protein Expr. Purif. 2000, 19, 411–418. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Zhao, X.; He, Y.; Yang, H. Cloning, purification and characterisation of cytosolicfructose-1,6-bisphosphatase from mung bean (Vigna radiata). Food Chem. 2021, 347, 128973. [Google Scholar] [CrossRef]
- Moorhead, G.B.; Hodgson, R.J.; Plaxton, W.C. Copurification of cytosolic fructose-1,6-bisphosphatase and cytosolic aldolase from endosperm of germinating castor oil seeds. Arch Biochem. Biophys. 1994, 12, 326–335. [Google Scholar] [CrossRef]
- Lee, S.K.; Jeon, J.S.; Börnke, F.; Voll, L.; Cho, J.I.; Goh, C.H.; Jeong, S.W.; Park, Y.I.; Kim, S.J.; Choi, S.B.; et al. Loss of cytosolic fructose-1,6-bisphosphatase limits photosynthetic sucrose synthesis and causes severe growth retardations in rice (Oryza sativa). Plant Cell Environ. 2008, 31, 1851–1863. [Google Scholar] [CrossRef] [PubMed]
- Strand, A.; Zrenner, R.; Trevanion, S.; Stitt, M.; Gustafsson, P.; Gardeström, P. Decreased expression of two key enzymes in the sucrose biosynthesis pathway, cytosolic fructose-1,6-bisphosphatase and sucrose phosphate synthase, has remarkably different consequences for photosynthetic carbon metabolism in transgenic Arabidopsis thaliana. Plant J. 2001, 23, 759–770. [Google Scholar] [CrossRef] [PubMed]
- Zrenner, R.; Krause, K.P.; Apel, P.; Sonnewald, U. Reduction of the cytosolic fructose-1,6-bisphosphatase in transgenic potato plants limits photosynthetic sucrose biosynthesis with no impact on plant growth and tuber yield. Plant J. 1996, 9, 671–681. [Google Scholar] [CrossRef]
- Cho, M.H.; Jang, A.; Bhoo, S.H.; Jeon, J.S.; Hahn, T.R. Manipulation of triose phosphate/phosphate translocator and cytosolic fructose-1,6-bisphosphatase, the key components in photosynthetic sucrose synthesis, enhances the source capacity of transgenic Arabidopsis plants. Photosynth. Res. 2012, 111, 261–268. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.Y.; Guo, L.N.; Liang, C.Z.; Meng, Z.G.; Tahira, S.; Guo, S.D.; Zhang, R. Overexpression of Brassica napus cytosolic fructose-1,6-bisphosphatase and sedoheptulose-1,7-bisphosphatase genes significantly enhanced tobacco growth and biomass. J. Integr. Agric. 2022, 21, 49–59. [Google Scholar] [CrossRef]
- Miyagawa, Y.; Tamoi, M.; Shigeoka, S. Overexpression of a cyanobacterial fructose-1,6-/sedoheptulose-1,7-bispho-sphatase in tobacco enhances photosynthesis and growth. Nat. Biotechnol. 2001, 19, 965–969. [Google Scholar] [CrossRef]
- Obiadalla-Ali, H.; Fernie, A.; Lytovchenko, A.; Kossmann, J.; Lloyd, J. Inhibition of chloroplastic fructose 1,6-bisphosphatase in tomato fruits leads to decreased fruit size, but only small changes in carbohydrate metabolism. Planta 2004, 219, 533–540. [Google Scholar] [CrossRef]
- Sahrawy, M.; Avila, C.; Chueca, A.; Cánovas, F.M.; López-Gorgé, J. Increased sucrose level and altered nitrogen metabolism in Arabidopsis thaliana transgenic plants expressing antisense chloroplastic fructose-1,6-bisphosphatase. J. Exp. Bot. 2004, 55, 2495–2503. [Google Scholar] [CrossRef]
- Thorbjørnsen, T.; Asp, T.; Jørgensen, K.; Nielsen, T.H. Starch biosynthesis from triose-phosphate in transgenic potato tubers expressing plastidic fructose-1,6-bisphosphatase. Planta 2002, 214, 616–624. [Google Scholar] [CrossRef]
- Xiao, H.; Chen, C.; Xu, Y.; Ji, D.; Xie, C. Cloning and expression analysis of the chloroplast fructose-1,6-bisphosphatase gene from Pyropia haitanensis. Acta Oceanolog. Sin. 2014, 33, 92–100. [Google Scholar] [CrossRef]
- Xu, W.T.; Wand, C.; Xu, X.Y.; Cai, C.P.; Guo, W.Z. Cloning and expression analysis of a novel gene encoding fructose-1,6-bisphosphatase in cotton. Chin. Cotton Sci. 2013, 25, 549–556. [Google Scholar] [CrossRef]
- Ge, Q.; Cui, Y.L.; Li, J.W.; Gong, J.W.; Lu, Q.W.; Li, P.T.; Shi, Y.Z.; Shang, H.H.; Liu, A.Y.; Deng, X.Y.; et al. Disequilibrium evolution of the Fructose-1,6-bisphosphatase gene family leads to their functional biodiversity in Gossypium species. BMC Genom. 2020, 21, 379. [Google Scholar] [CrossRef] [PubMed]
- Waclawovsky, A.J.; Sato, P.M.; Lembke, C.G.; Moore, P.H.; Souza, G.M. Sugarcane for bioenergy production: An assessment of yield and regulation of sucrose content. Plant Biotechnol. J. 2010, 8, 263–276. [Google Scholar] [CrossRef] [PubMed]
- Moore, P.H.; Botha, F.C. Sugarcane: Physiology, Biochemistry, and Functional Biology, 1st ed.; Wiley Blackwell: New Jersey, NJ, USA, 2014; pp. 1–2. [Google Scholar]
- Bao, Y.X.; Zhang, Q.; Huang, J.F.; Zhang, S.C.; Yao, W.; Yu, Z.H.; Deng, Z.H.; Yu, J.X.; Kong, W.L.; Yu, X.K.; et al. A chromosomal-scale genome assembly of modern cultivated hybrid sugarcane provides insights into origination and evolution. Nat. Commun. 2024, 15, 3041. [Google Scholar] [CrossRef] [PubMed]
- Bull, T.; Glasziou, K. The evolutionary significance of sugar accumulation in Saccharum. Aust. J. Biolog. Sci. 1963, 16, 737–742. [Google Scholar] [CrossRef]
- Grof, C.P.L.; Campbell, J.A. Sugarcane sucrose metabolism: Scope for molecular manipulation. Funct. Plant Biol. 2001, 28, 1–12. [Google Scholar] [CrossRef]
- Zhang, Q.; Hua, X.T.; Liu, H.; Yuan, Y.; Shi, Y.; Wang, Z.C.; Zhang, M.Q.; Ming, R.; Zhang, J.S. Evolutionary expansion and functional divergence of sugar transporters in Saccharum (S. spontaneum and S. officinarum). Plant J. 2020, 105, 884–906. [Google Scholar] [CrossRef]
- Hu, W.C.; Hua, X.T.; Zhang, Q.; Wang, J.P.; Shen, Q.C.; Zhang, X.T.; Wang, K.; Yu, Q.Y.; Lin, Y.R.; Ming, R.; et al. New insights into the evolution and functional divergence of the SWEET family in Saccharum based on comparative genomics. BMC Plant Biol. 2018, 18, 270. [Google Scholar] [CrossRef]
- Dhungana, S.R.; Braun, D.M. Genomic analyses of SUT and TST sugar transporter families in low and high sugar accumulating sugarcane species (S. spontaneum and S. officinarum). Trop. Plant Biol. 2022, 15, 181–196. [Google Scholar] [CrossRef]
- Hua, X.T.; Shen, Q.C.; Li, Y.H.; Zhou, D.; Zhang, Z.; Akbar, S.; Wang, Z.C.; Zhang, J.S. Functional characterization and analysis of transcriptional regulation of sugar transporter SWEET13c in sugarcane Saccharum spontaneum. BMC Plant Biol. 2022, 22, 363. [Google Scholar] [CrossRef]
- Venkataramana, S.; Naidu, K.M.; Singh, S. Invertases and growth factors dependent sucrose accumulation in sugarcane. Plant Sci. 1991, 74, 65–72. [Google Scholar] [CrossRef]
- Rossouw, D.; Kossmann, J.; Botha, F.C.; Groenewald, J.H. Reduced neutral invertase activity in the culm tissues of transgenic sugarcane plants results in a decrease in respiration and sucrose cycling and an increase in the sucrose to hexose ratio. Funct. Plant Biol. 2010, 37, 22–31. [Google Scholar] [CrossRef]
- Liu, H.B.; Lin, X.Q.; Li, X.J.; Luo, Z.L.; Lu, X.; You, Q.; Yang, X.P.; Xu, C.H.; Liu, X.L.; Liu, J.Y.; et al. Haplotype variations of sucrose phosphate synthase B gene among sugarcane accessions with different sucrose content. BMC Genom. 2023, 24, 42. [Google Scholar] [CrossRef] [PubMed]
- Anur, R.M.; Mufithah, N.; Sawitri, W.D.; Sakakibara, H.; Sugiharto, B. Overexpression of sucrose phosphate synthase enhanced sucrose content and biomass production in transgenic sugarcane. Plants 2020, 9, 200. [Google Scholar] [CrossRef]
- Lutfiyya, L.L.; Xu, N.; D’Ordine, R.L.; Morrell, J.A.; Miller, P.W.; Duff, S.M. Phylogenetic and expression analysis of sucrose phosphate synthase isozymes in plants. J. Plant Physiol. 2007, 164, 923–933. [Google Scholar] [CrossRef]
- Ma, P.P.; Zhang, X.T.; Chen, L.P.; Zhao, Q.; Zhang, Q.; Hua, X.T.; Wang, Z.C.; Tang, H.B.; Yu, Q.Y.; Zhang, M.Q.; et al. Comparative analysis of sucrose phosphate synthase (SPS) gene family between Saccharum officinarum and Saccharum spontaneum. BMC Plant Biol. 2020, 20, 422. [Google Scholar] [CrossRef]
- McIntyre, C.L.; Goode, M.L.; Cordeiro, G.; Bundock, P.; Eliott, F.; Henry, R.J.; Casu, R.E.; Bonnett, G.D.; Aitken, K.S. Characterisation of alleles of the sucrose phosphate synthase gene family in sugarcane and their association with sugar-related traits. Mol. Breed. 2015, 35, 286. [Google Scholar] [CrossRef]
- Ye, B.Y.; Huang, J.C.; Shao, W.H.; Chen, Y.Q.; Chen, R.K. Cloning and sequence analysis of fructose-1,6-bisphosphatase cDNA from sugarcane stalk. Sugar Crops China 2009, 1–4. [Google Scholar]
- Zhang, J.S.; Zhang, X.T.; Tang, H.B.; Zhang, Q.; Hua, X.T.; Ma, X.K.; Zhu, F.; Jones, T.; Zhu, X.G.; Bowers, J.; et al. Allele-defined genome of the autopolyploid sugarcane Saccharum spontaneum L. Nat. Genet. 2018, 50, 1565–1573. [Google Scholar] [CrossRef]
- Zhang, J.S.; Zhang, Q.; Li, L.T.; Tang, H.B.; Zhang, Q.; Chen, Y.; Arrow, J.; Zhang, X.T.; Wang, A.Q.; Miao, C.Y.; et al. Recent polyploidization events in three Saccharum founding species. Plant Biotechnol. J. 2019, 17, 264–274. [Google Scholar] [CrossRef]
- Healey, A.L.; Garsmeur, O.; Lovell, J.T.; Shengquiang, S.; Sreedasyam, A.; Jenkins, J.; Plott, C.B.; Piperidis, N.; Pompidor, N.; Liaca, V.; et al. The complex polyploid genome architecture of sugarcane. Nature 2024, 628, 804–810. [Google Scholar] [CrossRef]
- Cannon, S.B.; Mitra, A.; Baumgarten, A.; Young, N.D.; May, G. The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biol. 2004, 4, 10. [Google Scholar] [CrossRef]
- Schaper, E.; Anisimova, M. The evolution and function of protein tandem repeats in plants. New Phytol. 2015, 206, 397–410. [Google Scholar] [CrossRef] [PubMed]
- Panchy, N.; Lehti-Shiu, M.; Shiu, S.H. Evolution of gene duplication in plants. Plant Physiol. 2016, 171, 2294–2316. [Google Scholar] [CrossRef] [PubMed]
- Hurst, L.D. The Ka_Ks ratio_diagnosing the form of sequence evolution. Trends Genet. 2002, 18, 486. [Google Scholar] [CrossRef]
- Chen, S.Y.; Feng, X.X.; Zhang, Z.; Hua, X.T.; Zhang, Q.; Chen, C.J.; Li, J.W.; Liu, X.J.; Weng, C.Y.; Chen, B.S.; et al. ScDB: A comprehensive database dedicated to Saccharum, facilitating functional genomics and molecular biology studies in sugarcane. Plant Biotechnol. J. 2024, 22, 3386–3388. [Google Scholar] [CrossRef]
- Rojas-González, J.A.; Soto-Súarez, M.; García-Díaz, Á.; Romero-Puertas, M.C.; Sandalio, L.M.; Mérida, Á.; Thormählen, I.; Geigenberger, P.; Serrato, A.J.; Sahrawy, M. Disruption of both chloroplastic and cytosolic FBPase genes results in a dwarf phenotype and important starch and metabolite changes in Arabidopsis thaliana. J. Exp. Bot. 2015, 66, 2673–2689. [Google Scholar] [CrossRef]
- Guo, L.N.; Zhang, R.; Sun, G.Q.; Meng, Z.G.; Zhou, T.; Guo, S.D. Overexpression of cyFBPase gene can enhance the drought tolerance of transgenic tobacco. Chin. Biotechnol. Bullet. 2013, 63–68. [Google Scholar] [CrossRef]
- Tamoi, M.; Nagaoka, M.; Miyagawa, Y.; Shigeoka, S. Contribution of fructose-1,6-bisphosphatase and sedoheptulose-1,7-bisphosphatase to the photosynthetic rate and carbon flow in the calvin cycle in transgenic plants. Plant Cell Physiol. 2006, 47, 380–390. [Google Scholar] [CrossRef]
- Henry, R.J. Genetics, Genomics and Breeding of Sugarcane, 1st ed.; Science Publishers: Boca Raton, FL, USA, 2010; pp. 1–7. [Google Scholar]
- Vision, T.J.; Brown, D.G.; Tanksley, S.D. The origins of genomic duplications in Arabidopsis. Science 2000, 290, 2114–2117. [Google Scholar] [CrossRef]
- Huang, F.Y.; Ye, X.W.; Wang, Z.J.; Ding, Y.; Cai, X.J.; Yu, L.; Waseem, M.; Abbas, F.; Ashraf, U.; Chen, X.L.; et al. The prohibitins (PHB) gene family in tomato: Bioinformatic identification and expression analysis under abiotic and phytohormone stresses. GM Crops Food 2021, 12, 535–550. [Google Scholar] [CrossRef]
- Chen, F.; Hu, Y.; Vannozzi, A.; Wu, K.C.; Cai, H.Y.; Qin, Y.; Mullis, A.; Lin, Z.G.; Zhang, L.S. The WRKY transcription factor family in model plants and crops. Criric. Rev. Plant Sci. 2017, 36, 5–6. [Google Scholar] [CrossRef]
- Xiong, R.Q.; Peng, Z.H.; Zhou, H.; Xue, G.X.; He, A.L.; Yao, X.; Weng, W.F.; Wu, W.J.; Ma, C.; Bai, Q.; et al. Genome-wide identification, structural characterization and gene expression analysis of the WRKY transcription factor family in pea (Pisum sativum L.). BMC Plant Biol. 2024, 24, 113. [Google Scholar] [CrossRef] [PubMed]
- Xue, G.X.; Wu, W.J.; Fan, Y.; Ma, C.; Xiong, R.Q.; Bai, Q.; Yao, X.; Weng, W.F.; Cheng, J.P.; Ruan, J.J. Genome-wide identification, evolution, and role of SPL gene family in beet (Beta vulgaris L.) under cold stress. BMC Genom. 2024, 25, 101. [Google Scholar] [CrossRef]
- Lan, X.; Pritchard, J.K. Coregulation of tandem duplicate genes slows evolution of subfunctionalization in mammals. Science 2016, 352, 1009–1013. [Google Scholar] [CrossRef] [PubMed]
- Qiao, X.; Li, Q.; Yin, H.; Qi, K.; Li, L.; Wang, R.; Zhang, S.; Paterson, A.H. Gene duplication and evolution in recurring polyploidization-diploidization cycles in plants. Genome Biol. 2019, 20, 38. [Google Scholar] [CrossRef] [PubMed]
- Niehrs, C.; Pollet, N. Synexpression groups in eukaryotes. Nature 1999, 402, 483–487. [Google Scholar] [CrossRef]
- Bläsing, O.E.; Gibon, Y.; Günther, M.; Höhne, M.; Morcuende, R.; Osuna, D.; Thimm, O.; Usadel, B.; Scheible, W.R.; Stitt, M. Sugars and circadian regulation make major contributions to the global regulation of diurnal gene expression in Arabidopsis. Plant Cell 2005, 17, 3257–3281. [Google Scholar] [CrossRef]
- Haydon, M.J.; Mielczarek, O.; Frank, A.; Román, Á.; Webb, A.A.R. Sucrose and ethylene signaling interact to modulate the circadian clock. Plant Physiol. 2017, 175, 947–958. [Google Scholar] [CrossRef]
- D’Hont, A.; Grivet, L.; Feldmann, P.; Rao, S.; Berding, N.; Glaszmann, J.C. Characterisation of the double genome structure of modern sugarcane cultivars (Saccharum spp.) by molecumar cytogenetics. Mol. Gen. Genet. 1996, 250, 405–413. [Google Scholar] [CrossRef]
- Brown, J.S.; Schnell, R.J.; Power, E.J.; Douglas, S.L.; Kuhn, D.N. Analysis of clonal germplasm from five Saccharum species: S. barberi, S. robustum, S. officinarum, S. sinense and S. spontaneum. A study of inter-and intra species relationships using microsatellite markers. Genet. Resour. Crop Evol. 2007, 54, 627–648. [Google Scholar] [CrossRef]
- Nose, A.; Uehara, M.; Kawamitsu, Y.; Kobamoto, N.; Nakama, M. Variations in leaf gas exchange traits of Saccharum including feral sugarcane, Saccharum spontaneum L. Jpn. J. Crop Sci. 1994, 63, 489–495. [Google Scholar] [CrossRef]
- Zhao, P.F.; Xia, H.M.; Liu, J.Y.; Wu, C.W.; Zhao, J.; Yang, K.; Zan, F.G.; Chen, X.K.; Li, J.; Yao, L.; et al. Registration of ‘YZ081609’ sugarcane. J. Plant Regist. 2019, 13, 362–367. [Google Scholar] [CrossRef]
- Chen, C.J.; Wu, Y.; Li, J.W.; Wang, X.; Zeng, Z.H.; Xu, J.; Liu, Y.L.; Feng, J.T.; Chen, H.; He, Y.H.; et al. TBtools-II: A “one for all, all for one” bioinformatics platform for biological big-data mining. Mol. Plant 2023, 16, 1733–1742. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Ling, H.; Wu, Q.; Guo, J.L.; Xu, L.P.; Que, Y.X. Comprehensive selection of reference genes for gene expression normalization in sugarcane by real time quantitative RT-PCR. PLoS ONE 2014, 9, e97469. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
Cis-Element Name | Description | S. spontaneum | S. officinarum | Cultivar R570 | |||
---|---|---|---|---|---|---|---|
Count | Genes | Count | Genes | Count | Genes | ||
ABRE | abscisic acid responsiveness | 82 | 16 | 198 | 37 | 293 | 34 |
AuxRR-core | auxin responsiveness | 5 | 5 | 24 | 24 | 49 | 29 |
TGA-element | auxin responsiveness | 15 | 8 | 49 | 34 | 40 | 26 |
GARE-motif | gibberellin responsiveness | 3 | 3 | 9 | 3 | 10 | 7 |
P-box | gibberellin responsiveness | 4 | 3 | 0 | 0 | 2 | 2 |
TATC-box | gibberellin responsiveness | 3 | 2 | 14 | 3 | 12 | 5 |
TCA-element | salicylic acid responsiveness | 9 | 5 | 13 | 7 | 19 | 10 |
CGTCA-motif | MeJA responsiveness | 38 | 14 | 110 | 33 | 203 | 34 |
TGACG-motif | MeJA responsiveness | 38 | 14 | 107 | 34 | 203 | 34 |
ARE | anaerobic induction | 26 | 13 | 58 | 33 | 68 | 33 |
TC-rich repeats | defense and stress responsiveness | 2 | 2 | 9 | 3 | 10 | 8 |
MBS | drought-inducibility | 17 | 11 | 43 | 25 | 58 | 28 |
LTR | low-temperature responsiveness | 14 | 11 | 24 | 21 | 18 | 15 |
GT1-motif | light responsiveness | 2 | 2 | 7 | 5 | 19 | 10 |
Sp1 | light responsiveness | 35 | 11 | 66 | 22 | 71 | 19 |
G-box | light responsiveness | 74 | 17 | 181 | 42 | 279 | 34 |
ACE | light responsiveness | 1 | 1 | 2 | 2 | 4 | 3 |
MRE | light responsiveness | 2 | 2 | 3 | 2 | 7 | 6 |
ATC-motif | light responsiveness | 5 | 4 | 9 | 9 | 10 | 10 |
Box 4 | light responsiveness | 7 | 7 | 11 | 9 | 13 | 9 |
AE-box | light responsiveness | 7 | 7 | 15 | 15 | 17 | 16 |
ATCT-motif | light responsiveness | 1 | 1 | 3 | 3 | 2 | 2 |
GATA-motif | light responsiveness | 12 | 11 | 37 | 29 | 51 | 28 |
TCCC-motif | light responsiveness | 9 | 8 | 14 | 14 | 30 | 23 |
TCT-motif | light responsiveness | 4 | 4 | 22 | 13 | 19 | 11 |
I-box | light responsiveness | 4 | 2 | 18 | 12 | 39 | 23 |
L-box | light responsiveness | 0 | 0 | 1 | 1 | 5 | 5 |
GA-motif | light responsiveness | 2 | 2 | 7 | 7 | 4 | 4 |
3-AF1 binding | light responsiveness | 0 | 0 | 3 | 3 | 3 | 3 |
chs-CMA2 | light responsiveness | 5 | 4 | 4 | 2 | 3 | 2 |
AT-rich element | DNA binding | 2 | 2 | 8 | 8 | 6 | 6 |
CCAAT-box | MYBHv1 binding | 26 | 13 | 70 | 32 | 66 | 27 |
O2-site | zein metabolism regulation | 12 | 9 | 28 | 19 | 57 | 27 |
CAT-box | meristem expression | 15 | 9 | 29 | 19 | 21 | 17 |
RY-element | seed-specific regulation | 1 | 1 | 3 | 3 | 3 | 3 |
HD-Zip 1 | palisade mesophyll cells | 3 | 3 | 3 | 3 | 1 | 1 |
MBSI | flavonoid biosynthesis | 0 | 0 | 3 | 3 | 1 | 1 |
circadian | circadian control | 2 | 2 | 6 | 6 | 5 | 5 |
MSA-like | cell cycle regulation | 5 | 5 | 12 | 8 | 11 | 7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, C.; Hua, X.; Zhao, P.; Li, C.; Li, X.; Liu, H.; Liu, X. Genome-Wide Identification, Evolution, and Expression Patterns of the Fructose-1,6-Bisphosphatase Gene Family in Saccharum Species. Plants 2025, 14, 2433. https://doi.org/10.3390/plants14152433
Tian C, Hua X, Zhao P, Li C, Li X, Liu H, Liu X. Genome-Wide Identification, Evolution, and Expression Patterns of the Fructose-1,6-Bisphosphatase Gene Family in Saccharum Species. Plants. 2025; 14(15):2433. https://doi.org/10.3390/plants14152433
Chicago/Turabian StyleTian, Chunyan, Xiuting Hua, Peifang Zhao, Chunjia Li, Xujuan Li, Hongbo Liu, and Xinlong Liu. 2025. "Genome-Wide Identification, Evolution, and Expression Patterns of the Fructose-1,6-Bisphosphatase Gene Family in Saccharum Species" Plants 14, no. 15: 2433. https://doi.org/10.3390/plants14152433
APA StyleTian, C., Hua, X., Zhao, P., Li, C., Li, X., Liu, H., & Liu, X. (2025). Genome-Wide Identification, Evolution, and Expression Patterns of the Fructose-1,6-Bisphosphatase Gene Family in Saccharum Species. Plants, 14(15), 2433. https://doi.org/10.3390/plants14152433