Litter Decomposition in Pacific Northwest Prairies Depends on Fire, with Differential Responses of Saprotrophic and Pyrophilous Fungi
Abstract
1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Site Management Activities During the Experiment
2.3. Experimental Design
2.4. Nutrient Analyses
2.5. Sequencing
2.6. Bioinformatics
2.7. Data Analyses
3. Results
3.1. Does Litter Decomposition Depend on Treatment? Hypothesis 1
3.2. Does Fungal Diversity Depend on Treatment, and if So, Does Fungal Diversity Contribute to Decomposition? Hypothesis 2–3
3.3. How Does Fire Alter Saprotrophic and Pyrophilous Fungal Community Composition in Prairies?
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rillig, M.C.; Aguilar-Trigueros, C.A.; Bergmann, J.; Verbruggen, E.; Veresoglou, S.D.; Lehmann, A. Plant Root and Mycorrhizal Fungal Traits for Understanding Soil Aggregation. New Phytol. 2015, 205, 1385–1388. [Google Scholar] [CrossRef]
- Filialuna, O.; Cripps, C. Evidence That Pyrophilous Fungi Aggregate Soil after Forest Fire. For. Ecol. Manag. 2021, 498, 119579. [Google Scholar] [CrossRef]
- Grinhut, T.; Hadar, Y.; Chen, Y. Degradation and Transformation of Humic Substances by Saprotrophic Fungi: Processes and Mechanisms. Fungal Biol. Rev. 2007, 21, 179–189. [Google Scholar] [CrossRef]
- Osono, T. Ecology of Ligninolytic Fungi Associated with Leaf Litter Decomposition. Ecol. Res. 2007, 22, 955–974. [Google Scholar] [CrossRef]
- Fox, S.; Sikes, B.A.; Brown, S.P.; Cripps, C.L.; Glassman, S.I.; Hughes, K.; Semenova-Nelsen, T.; Jumpponen, A. Fire as a Driver of Fungal Diversity—A Synthesis of Current Knowledge. Mycologia 2022, 114, 215–241. [Google Scholar] [CrossRef]
- Hopkins, J.R.; Bennett, A.E. Leveraging Traits for Insight into the Fungal Ecology of Burned Ecosystems. Ecosphere 2024, 15, e70008. [Google Scholar] [CrossRef]
- Enright Unraveling Fire Adaptation Traits in Pyrophilous Bacteria and Fungi–ProQuest. Available online: https://www.proquest.com/docview/3162716040?pqorigsite=gscholar&fromopenview=true&sourcetype=Dissertations%20&%20Theses (accessed on 9 May 2025).
- Risser, P.G. Abiotic Controls on Primary Productivity and Nutrient Cycles in North American Grasslands. In Concepts of Ecosystem Ecology; Pomeroy, L.R., Alberts, J.J., Eds.; Springer: New York, NY, USA, 1988; pp. 115–129. [Google Scholar]
- Delgado-Baquerizo, M.; Maestre, F.T.; Gallardo, A.; Quero, J.L.; Ochoa, V.; García-Gómez, M.; Escolar, C.; García-Palacios, P.; Berdugo, M.; Valencia, E.; et al. Aridity Modulates N Availability in Arid and Semiarid Mediterranean Grasslands. PLoS ONE 2013, 8, e59807. [Google Scholar] [CrossRef] [PubMed]
- Joshi, D.R.; Clay, D.E.; Clay, S.A.; Smart, A.J. Seasonal Losses of Surface Litter in Northern Great Plains Mixed-Grass Prairies. Rangel. Ecol. Manag. 2020, 73, 259–264. [Google Scholar] [CrossRef]
- Reed, P.B.; Pfeifer-Meister, L.E.; Roy, B.A.; Johnson, B.R.; Bailes, G.T.; Nelson, A.A.; Boulay, M.C.; Hamman, S.T.; Bridgham, S.D. Prairie Plant Phenology Driven More by Temperature than Moisture in Climate Manipulations across a Latitudinal Gradient in the Pacific Northwest, USA. Ecol. Evol. 2019, 9, 3637–3650. [Google Scholar] [CrossRef]
- Epstein, H.E.; Burke, I.C.; Lauenroth, W.K. Regional Patterns of Decomposition and Primary Production Rates in the U.S. Great Plains. Ecology 2002, 83, 320–327. [Google Scholar] [CrossRef]
- Bell, C.; McIntyre, N.; Cox, S.; Tissue, D.; Zak, J. Soil Microbial Responses to Temporal Variations of Moisture and Temperature in a Chihuahuan Desert Grassland. Microb. Ecol. 2008, 56, 153–167. [Google Scholar] [CrossRef]
- Xiong, S.; Nilsson, C. The Effects of Plant Litter on Vegetation: A Meta-Analysis. J. Ecol. 1999, 87, 984–994. [Google Scholar] [CrossRef]
- Anthony, M.A.; Tedersoo, L.; De Vos, B.; Croisé, L.; Meesenburg, H.; Wagner, M.; Andreae, H.; Jacob, F.; Lech, P.; Kowalska, A.; et al. Fungal Community Composition Predicts Forest Carbon Storage at a Continental Scale. Nat. Commun. 2024, 15, 2385. [Google Scholar] [CrossRef] [PubMed]
- Fukasawa, Y.; Osono, T.; Takeda, H. Microfungus Communities of Japanese Beech Logs at Different Stages of Decay in a Cool Temperate Deciduous Forest. Can. J. For. Res. 2009, 39, 1606–1614. [Google Scholar] [CrossRef]
- Santonja, M.; Rancon, A.; Fromin, N.; Baldy, V.; Hättenschwiler, S.; Fernandez, C.; Montès, N.; Mirleau, P. Plant Litter Diversity Increases Microbial Abundance, Fungal Diversity, and Carbon and Nitrogen Cycling in a Mediterranean Shrubland. Soil Biol. Biochem. 2017, 111, 124–134. [Google Scholar] [CrossRef]
- Howard, P.J.A.; Frankland, J.C. Effects of Certain Full and Partial Sterilization Treatments on Leaf Litter. Soil Biol. Biochem. 1974, 6, 117–123. [Google Scholar] [CrossRef]
- King, W.L.; Grandinette, E.M.; Trase, O.; Rolon, M.L.; Salis, H.M.; Wood, H.; Bell, T.H. Autoclaving Is at Least as Effective as Gamma Irradiation for Biotic Clearing and Intentional Microbial Recolonization of Soil. mSphere 2024, 9, e00476-24. [Google Scholar] [CrossRef]
- McMullan-Fisher, S.J.M.; May, T.W.; Robinson, R.M.; Bell, T.L.; Lebel, T.; Catcheside, P.; York, A. Fungi and Fire in Australian Ecosystems: A Review of Current Knowledge, Management Implications and Future Directions. Aust. J. Bot. 2011, 59, 70. [Google Scholar] [CrossRef]
- Fischer, M.S.; Stark, F.G.; Berry, T.D.; Zeba, N.; Whitman, T.; Traxler, M.F. Pyrolyzed Substrates Induce Aromatic Compound Metabolism in the Post-Fire Fungus, Pyronema Domesticum. Front. Microbiol. 2021, 12, 729289. [Google Scholar] [CrossRef]
- Challacombe, J.F.; Hesse, C.N.; Bramer, L.M.; McCue, L.A. Genomes and Secretomes of Ascomycota Fungi Reveal Diverse Functions in Plant Biomass Decomposition and Pathogenesis. BMC Genom. 2019, 20, 976. [Google Scholar] [CrossRef]
- Purahong, W.; Wubet, T.; Lentendu, G.; Schloter, M.; Pecyna, M.J.; Kapturska, D.; Hofrichter, M.; Krüger, D.; Buscot, F. Life in Leaf Litter: Novel Insights into Community Dynamics of Bacteria and Fungi during Litter Decomposition. Mol. Ecol. 2016, 25, 4059–4074. [Google Scholar] [CrossRef]
- Hamman, S.T.; Dunwiddie, P.W.; Nuckols, J.L.; McKinley, M. Fire as a Restoration Tool in Pacific Northwest Prairies and Oak Woodlands: Challenges, Successes, and Future Directions. Northwest Sci. 2011, 85, 317–328. [Google Scholar] [CrossRef]
- GARDES, M.; BRUNS, T.D. ITS Primers with Enhanced Specificity for Basidiomycetes–Application to the Identification of Mycorrhizae and Rusts. Mol. Ecol. 1993, 2, 113–118. [Google Scholar] [CrossRef] [PubMed]
- Nieuwerburgh, F.V.; Soetaert, S.; Podshivalova, K.; Wang, E.A.-L.; Schaffer, L.; Deforce, D.; Salomon, D.R.; Head, S.R.; Ordoukhanian, P. Quantitative Bias in Illumina TruSeq and a Novel Post Amplification Barcoding Strategy for Multiplexed DNA and Small RNA Deep Sequencing. PLoS ONE 2011, 6, e26969. [Google Scholar] [CrossRef] [PubMed]
- Martin, M. Cutadapt Removes Adapter Sequences from High-Throughput Sequencing Reads. EMBnet J. 2011, 17, 10–12. [Google Scholar] [CrossRef]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-Resolution Sample Inference from Illumina Amplicon Data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, Interactive, Scalable and Extensible Microbiome Data Science Using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef]
- Põlme, S.; Abarenkov, K.; Henrik Nilsson, R.; Lindahl, B.D.; Clemmensen, K.E.; Kauserud, H.; Nguyen, N.; Kjøller, R.; Bates, S.T.; Baldrian, P.; et al. Correction to: FungalTraits: A User Friendly Traits Database of Fungi and Fungus-like Stramenopiles. Fungal Divers. 2021, 107, 129–132. [Google Scholar] [CrossRef]
- Barbour, K.M.; Weihe, C.; Walters, K.E.; Martiny, J.B.H. Testing the Contribution of Dispersal to Microbial Succession Following a Wildfire. mSystems 2023, 8, e00579-23. [Google Scholar] [CrossRef]
- Packard, E.E.; Durall, D.M.; Jones, M.D. Successional Changes in Fungal Communities Occur a Few Weeks Following Wildfire in a Mixed Douglas-Fir-Ponderosa Pine Forest. Fungal Ecol. 2023, 63, 101246. [Google Scholar] [CrossRef]
- Olson, J.S. Energy Storage and the Balance of Producers and Decomposers in Ecological Systems. Ecology 1963, 44, 322–331. [Google Scholar] [CrossRef]
- Oksanen, J.; Simpson, G.L.; Blanchet, F.G.; Kindt, R.; Legendre, P.; Minchin, P.R.; O’Hara, R.B.; Solymos, P.; Stevens, M.H.H.; Szoecs, E.; et al. Vegan: Community Ecology Package. R Package Version 2.8-0. Available online: https://vegandevs.github.io/vegan/ (accessed on 23 May 2025).
- Martino, C.; Morton, J.T.; Marotz, C.A.; Thompson, L.R.; Tripathi, A.; Knight, R.; Zengler, K. A Novel Sparse Compositional Technique Reveals Microbial Perturbations. mSystems 2019, 4, e00016-19. [Google Scholar] [CrossRef] [PubMed]
- De Cáceres, M.; Legendre, P.; Moretti, M. Improving Indicator Species Analysis by Combining Groups of Sites. Oikos 2010, 119, 1674–1684. [Google Scholar] [CrossRef]
- Semenova-Nelsen, T.A.; Platt, W.J.; Patterson, T.R.; Huffman, J.; Sikes, B.A. Frequent Fire Reorganizes Fungal Communities and Slows Decomposition across a Heterogeneous Pine Savanna Landscape. New Phytol. 2019, 224, 916–927. [Google Scholar] [CrossRef]
- Otte, J.M.; Blackwell, N.; Soos, V.; Rughöft, S.; Maisch, M.; Kappler, A.; Kleindienst, S.; Schmidt, C. Sterilization Impacts on Marine Sediment---Are We Able to Inactivate Microorganisms in Environmental Samples? FEMS Microbiol. Ecol. 2018, 94, fiy189. [Google Scholar] [CrossRef]
- Carpenter, S.E.; Trappe, J.M.; Ammirati, J., Jr. Observations of Fungal Succession in the Mount St. Helens Devastation Zone, 1980–1983. Can. J. Bot. 1987, 65, 716–728. [Google Scholar] [CrossRef]
- Revillini, D.; David, A.S.; Menges, E.S.; Main, K.N.; Afkhami, M.E.; Searcy, C.A. Microbiome-Mediated Response to Pulse Fire Disturbance Outweighs the Effects of Fire Legacy on Plant Performance. New Phytol. 2022, 233, 2071–2082. [Google Scholar] [CrossRef]
- CARPENTER, S.E.; TRAPPE, J.M. Phoenicoid Fungi: A Proposed Term for Fungi That Fruit after Heat Treatment of Substrates. Mycotaxon 1985, 23, 203–206. [Google Scholar]
- Bruns, T.D.; Chung, J.A.; Carver, A.A.; Glassman, S.I. A Simple Pyrocosm for Studying Soil Microbial Response to Fire Reveals a Rapid, Massive Response by Pyronema Species. PLoS ONE 2020, 15, e0222691. [Google Scholar] [CrossRef]
- Hernández, D.L.; Hobbie, S.E. Effects of Fire Frequency on Oak Litter Decomposition and Nitrogen Dynamics. Oecologia 2008, 158, 535–543. [Google Scholar] [CrossRef]
- Marañón-Jiménez, S.; Castro, J. Effect of Decomposing Post-Fire Coarse Woody Debris on Soil Fertility and Nutrient Availability in a Mediterranean Ecosystem. Biogeochemistry 2013, 112, 519–535. [Google Scholar] [CrossRef]
- Knelman, J.E.; Graham, E.B.; Ferrenberg, S.; Lecoeuvre, A.; Labrado, A.; Darcy, J.L.; Nemergut, D.R.; Schmidt, S.K. Rapid Shifts in Soil Nutrients and Decomposition Enzyme Activity in Early Succession Following Forest Fire. Forests 2017, 8, 347. [Google Scholar] [CrossRef]
- Kohmann, M.M.; Silveira, M.L.; Brandani, C.B.; Sanchez, J.M.D.; da Silva, H.M.S.; Vendramini, J.M.B. Plant Litter Chemical Characteristics Drive Decomposition in Subtropical Rangelands Under Prescribed Fire Management. Rangel. Ecol. Manag. 2022, 84, 22–30. [Google Scholar] [CrossRef]
- Sugar Degradation during Autoclaving: Effects of Duration and Solution Volume on Breakdown of Glucose-Wang-1995-Physiologia Plantarum-Wiley Online Library. Available online: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1399-3054.1995.tb00947.x (accessed on 23 May 2025).
- Beaudet, J.M.; Weyers, A.; Solakyildirim, K.; Yang, B.; Takieddin, M.; Mousa, S.; Zhang, F.; Linhardt, R.J. Impact of Autoclave Sterilization on the Activity and Structure of Formulated Heparin. J. Pharm. Sci. 2011, 100, 3396–3404. [Google Scholar] [CrossRef]
- Kollu, V.K.R.; Kumar, P.; Gautam, K. Comparison of Microwave and Autoclave Treatment for Biomedical Waste Disinfection. Syst. Microbiol. Biomanuf. 2022, 2, 732–742. [Google Scholar] [CrossRef]
- Pendergrass, K.L.; Miller, P.M.; Kauffman, J.B. Prescribed Fire and the Response of Woody Species in Willamette Valley Wetland Prairies. Restor. Ecol. 1998, 6, 303–311. [Google Scholar] [CrossRef]
- Abatzoglou, J.T.; Williams, A.P.; Barbero, R. Global Emergence of Anthropogenic Climate Change in Fire Weather Indices. Geophys. Res. Lett. 2019, 46, 326–336. [Google Scholar] [CrossRef]
- Lisiewska, M. Macrofungi on special substrates. In Fungi in Vegetation Science; Springer: Berlin/Heidelberg, Germany, 1992; pp. 151–182. [Google Scholar]
- Dix, N.J.; Webster, J. Phoenicoid fungi. In Fungal Ecology; Springer: Dordrecht, The Netherlands, 1995; pp. 302–321. [Google Scholar]
- Healy, R.; Arnold, A.; Bonito, G.; Huang, Y.; Lemmond, B.; Pfister, D.; Smith, M. Endophytism and endolichenism in Pezizomycetes: The exception or the rule? New Phytol. 2022, 233, 1974–1983. [Google Scholar] [CrossRef]
- Adamczyk, J.J.; Kruk, A.; Penczak, T.; Minter, D. Factors shaping communities of pyrophilous macrofungi in microhabitats destroyed by illegal campfires. Fungal Biol. 2012, 116, 995–1002. [Google Scholar] [CrossRef]
- Petersen, P.M. Fireplace fungi in an arctic area: Middle west Greenland. Friesia 1974, 10, 270–280. [Google Scholar]
- Larsen, H.J. The Genus Anthracobia Boudier (Pezizales, Ascomycetes). Ph.D. Dissertation, Oregon State University, Corvallis, OR, USA, 1976. [Google Scholar]
- Egger, K.; Paden, J. Pathogenicity of postfire ascomycetes (Pezizales) on seeds and germinants of lodgepole pine. Can. J. Bot. 1986, 64, 2368–2371. [Google Scholar] [CrossRef]
- Hughes, K.W.; Matheny, P.B.; Miller, A.N.; Petersen, R.H.; Iturriaga, T.M.; Johnson, K.D.; Methven, A.S.; Raudabaugh, D.B.; Swenie, R.A.; Bruns, T.D. Pyrophilous fungi detected after wildfires in the Great Smoky Mountains National Park expand known species ranges arid biodiversity estimates. Mycologia 2020, 112, 677–698. [Google Scholar] [CrossRef] [PubMed]
- Enright, D.; Frangioso, K.; Isobe, K.; Rizzo, D.; Glassman, S. Mega-fire in redwood tanoak forest reduces bacterial and fungal richness and selects for pyrophilous taxa that are phylogenetically conserved. Mol. Ecol. 2022, 31, 2475–2493. [Google Scholar] [CrossRef] [PubMed]
- Hughes, K.W.; Case, A.; Matheny, P.B.; Kivlin, S.; Petersen, R.H.; Miller, A.N.; Iturriaga, T. Secret lifestyles of pyrophilous fungi in the genus Sphaerosporella. Am. J. Bot. 2020, 107, 876–885. [Google Scholar] [CrossRef] [PubMed]
- Raudabaugh, D.B.; Matheny, P.B.; Hughes, K.W.; Iturriaga, T.; Sargent, M.; Miller, A.N. Where are they hiding? Testing the body snatchers hypothesis in pyrophilous fungi. Fungal Ecol. 2020, 43, 100870. [Google Scholar] [CrossRef]
- Van Vooren, N.; Hairaud, M.; Biancardini, S.; Cadene, F.; Chabrol, J.; Chasle, J.-C.; Clowez, P.; Constant, J.-L.; Courio, P.Y.; D’Angelo, M.-R.; et al. La Fonge Carbonicole. Résultats du Suivi de Sites Incendiés en France en 2022. Available online: https://ascomycete.org/Portals/0/Documents/Rapport-fonge-carbonicole.pdf (accessed on 23 May 2025).
- Claridge, A.W.; Trappe, J.M.; Hansen, K. Do fungi have a role as soil stabilizers and remediators after forest fire? For. Ecol. Manag. 2009, 257, 1063–1069. [Google Scholar] [CrossRef]
- Vasiliauskas, R.; Stenlid, J. Fungi inhabiting stems of Picea abies in a managed stand in Lithuania. For. Ecol. Manag. 1998, 109, 119–126. [Google Scholar] [CrossRef]
- Roy, B.; Delevitch, C.; Dawson, H.; Burrill, H. Macrofungi at H. J. Andrews. 2025. (In Preparation) [Google Scholar]
- Penttilä, R.; Kotiranta, H. Short-term effects of prescribed burning on wood-rotting fungi. Silva Fenn. 1996, 30, 399–419. [Google Scholar] [CrossRef]
- Parsa, S.; García-Lemos, A.M.; Castillo, K.; Ortiz, V.; López-Lavalle, L.A.B.; Braun, J.; Vega, F.E. Fungal endophytes in germinated seeds of the common bean, Phaseolus vulgaris. Fungal Biol. 2016, 120, 783–790. [Google Scholar] [CrossRef]
- Kebli, H.; Brais, S.; Kernaghan, G.; Drouin, P. Impact of harvesting intensity on wood-inhabiting fungi in boreal aspen forests of Eastern Canada. For. Ecol. Manag. 2012, 279, 45–54. [Google Scholar] [CrossRef]
- Glassman, S.I.; Levine, C.R.; DiRocco, A.M.; Battles, J.J.; Bruns, T.D. Ectomycorrhizal fungal spore bank recovery after a severe forest fire: Some like it hot. ISME J. 2016, 10, 1228–1239. [Google Scholar] [CrossRef]
- Rojas, D.S.; Gilbert, G.S. The response of Botrytis cinerea to fire in a coast redwood forest. Int. J. Plant Biol. 2024, 15, 94–101. [Google Scholar] [CrossRef]
- Van Kan, J.A.; Shaw, M.W.; Grant-Downton, R.T. Botrytis species: Relentless necrotrophic thugs or endophytes gone rogue? Mol. Plant Pathol. 2014, 15, 957–961. [Google Scholar] [CrossRef]
- Orumaa, A.; Agan, A.; Anslan, S.; Drenkhan, T.; Drenkhan, R.; Kauer, K.; Köster, K.; Tedersoo, L.; Metslaid, M. Long-term effects of forest fires on fungal community and soil properties along a hemiboreal Scots pine forest fire chronosequence. Sci. Total Environ. 2022, 851, 158173. [Google Scholar] [CrossRef] [PubMed]
- Pfister, D.H. A synopsis of the North American species of Byssonectria (Pezizales) with comments on the ontogeny of two species. Mycologia 1993, 85, 952–962. [Google Scholar] [CrossRef]
- Fischer, M.S.; Patel, N.J.; de Lorimier, P.J.; Traxler, M.F. Prescribed fire selects for a pyrophilous soil sub-community in a northern California mixed conifer forest. Environ. Microbiol. 2023, 25, 2498–2515. [Google Scholar] [CrossRef]
- Whitman, T.; Whitman, E.; Woolet, J.; Flannigan, M.D.; Thompson, D.K.; Parisien, M.-A. Soil bacterial and fungal response to wildfires in the Canadian boreal forest across a burn severity gradient. Soil Biol. Biochem. 2019, 138, 107571. [Google Scholar] [CrossRef]
- Hughes, K.W.; Franklin, J.A.; Schweitzer, J.; Kivlin, S.N.; Case, A.; Aldrovandi, M.; Matheny, P.B.; Miller, A.N. Post-fire Quercus mycorrhizal associations are dominated by Russulaceae, Thelephoraceae, and Laccaria in the southern Appalachian Mountains. Mycol. Prog. 2025, 24, 16. [Google Scholar] [CrossRef]
- Li, M.; Yuan, C.; Zhang, X.; Pang, W.; Zhang, P.; Xie, R.; Lian, C.; Zhang, T. The transcriptional responses of ectomycorrhizal fungus, Cenococcum geophilum, to drought stress. J. Fungi 2022, 9, 15. [Google Scholar] [CrossRef]
- LoBuglio, K. Cenococcum. In Ectomycorrhizal Fungi Key Genera in Profile; Springer: Berlin/Heidelberg, Germany, 1999; pp. 287–309. [Google Scholar]
- Bergemann, S.; Garbelotto, M. High diversity of fungi recovered from the roots of mature tanoak (Lithocarpus densiflorus) in northern California. Botany 2006, 84, 1380–1394. [Google Scholar] [CrossRef]
- Coronado-Ruiz, C.; Avendaño, R.; Escudero-Leyva, E.; Conejo-Barboza, G.; Chaverri, P.; Chavarría, M. Two new cellulolytic fungal species isolated from a 19th-century art collection. Sci. Rep. 2018, 8, 7492. [Google Scholar] [CrossRef]
- Wicklow, D.T. Fire as an environmental cue initiating ascomycete development in a tallgrass prairie. Mycologia 1975, 67, 852–862. [Google Scholar] [CrossRef] [PubMed]
- Wicklow, D.T. Microfungal populations in surface soils of manipulated prairie stands. Ecology 1973, 54, 1302–1310. [Google Scholar] [CrossRef]
- Kiser, J.; Daniels, H.; Scrivani, J. Isolation of endophytic fungi from Douglas-Fir (Pseudotsuga menziesii) foliage with bioprospecting potential for natural pharmaceuticals. Curr. Trends For. Res. 2019, 3, 1035. [Google Scholar] [CrossRef]
- Petrini, O.; Fisher, P. A comparative study of fungal endophytes in xylem and whole stem of Pinus sylvestris and Fagus sylvatica. Trans. Br. Mycol. Soc. 1988, 91, 233–238. [Google Scholar] [CrossRef]
- Steindorff, A.S.; Carver, A.; Calhoun, S.; Stillman, K.; Liu, H.; Lipzen, A.; He, G.; Yan, M.; Pangilinan, J.; LaButti, K. Comparative genomics of pyrophilous fungi reveals a link between fire events and developmental genes. Environ. Microbiol. 2021, 23, 99–109. [Google Scholar] [CrossRef]
- Noordeloos, M.E.; CB, U. Type studies in Coprinus subsect. Alachuani. Proc. K. Ned. Akad. Wet.-Biol. Chem. Geol. Phys. Med. Sci. 1996, 99, 105–124. [Google Scholar]
- Steindorff, A.S.; Seong, K.; Carver, A.; Calhoun, S.; Fischer, M.S.; Stillman, K.; Liu, H.; Drula, E.; Henrissat, B.; Simpson, H.J. Diversity of genomic adaptations to the post-fire environment in Pezizales fungi points to crosstalk between charcoal tolerance and sexual development. New Phytol. 2022, 236, 1154–1167. [Google Scholar] [CrossRef]
- Johannesson, H.; Gustafsson, M.; Stenlid, J. Local population structure of the wood decay ascomycete Daldinia loculata. Mycologia 2001, 93, 440–446. [Google Scholar] [CrossRef]
- Gierczyk, B.; Szczepkowski, A.; Kujawa, A.; Ślusarczyk, T.; Zaniewski, P. Contribution to the knowledge of fungi of the Kampinos National Park (Poland) with particular emphasis on the species occurring in burnt places. Acta Mycol. 2017, 52, 1–18. [Google Scholar] [CrossRef]
- Yu, M.; Chen, S.; Shi, J.; Chen, W.; Qiu, Y.; Lan, J.; Qu, S.; Feng, J.; Wang, R.; Lin, F. Structures and Biological Activities of Secondary Metabolites from Daldinia spp. J. Fungi 2024, 10, 833. [Google Scholar] [CrossRef] [PubMed]
- Dougoud, R. Clé des Discomycètes carbonicoles. Doc. Mycol. 2001, 30, 15–29. [Google Scholar]
- Gulde, G. Three new agarics in Norway. Agarica 2011, 30, 103–109. [Google Scholar]
- Diez-Hermano, S.; Poveda, J.; Benito, Á.; Peix, Á.; Martín-Pinto, P.; Diez, J.J. Soil mycobiome and forest endophytic fungi: Is there a relationship between them? For. Ecol. Manag. 2024, 562, 121924. [Google Scholar] [CrossRef]
- Fujimura, K.; Smith, J.; Horton, T.; Weber, N.; Spatafora, J. Pezizalean mycorrhizas and sporocarps in ponderosa pine (Pinus ponderosa) after prescribed fires in eastern Oregon, USA. Mycorrhiza 2005, 15, 79–86. [Google Scholar] [CrossRef]
- Wang, X.H.; Huhtinen, S.; Hansen, K. Multilocus phylogenetic and coalescent-based methods reveal dilemma in generic limits, cryptic species, and a prevalent intercontinental disjunct distribution in Geopyxis (Pyronemataceae s. l., Pezizomycetes). Mycologia 2016, 108, 1189–1215. [Google Scholar]
- Turnau, K. Investigations on post-fire Discomycetes: Geopyxis rehmii sp. nov. and G. carbonaria (Alb. & Schw. ex Fr.) Sacc. Nova Hedwig. 1985, 40, 157–170. [Google Scholar]
- Egger, K.N. Substrate hydrolysis patterns of post-fire ascomycetes (Pezizales). Mycologia 1986, 78, 771–780. [Google Scholar] [CrossRef]
- Marchi, M.; Bosc-Bierne, A.; Lerenard, T.; Le Corff, J.; Aligon, S.; Rolland, A.; Simonin, M.; Marais, C.; Briand, M.; Cordovez, V. Unexplored Yeast diversity in Seed Microbiota. bioRxiv 2024. [Google Scholar] [CrossRef]
- Caiafa, M.V.; Nelson, A.R.; Borch, T.; Roth, H.K.; Fegel, T.S.; Rhoades, C.C.; Wilkins, M.J.; Glassman, S.I. Distinct fungal and bacterial responses to fire severity and soil depth across a ten-year wildfire chronosequence in beetle-killed lodgepole pine forests. For. Ecol. Manag. 2023, 544, 121160. [Google Scholar] [CrossRef]
- Vohník, M.; Réblová, M. Fungi in hair roots of Vaccinium spp.(Ericaceae) growing on decomposing wood: Colonization patterns, identity, and in vitro symbiotic potential. Mycorrhiza 2023, 33, 69–86. [Google Scholar] [CrossRef]
- Halbwachs, H.; Dentinger, B.T.M.; Detheridge, A.P.; Karasch, P.; Griffith, G.W. Hyphae of waxcap fungi colonise plant roots. Fungal Ecol. 2013, 6, 487–492. [Google Scholar] [CrossRef]
- Voyron, S.; Ercole, E.; Ghignone, S.; Perotto, S.; Girlanda, M. Fine-scale spatial distribution of orchid mycorrhizal fungi in the soil of host-rich grasslands. New Phytol. 2017, 213, 1428–1439. [Google Scholar] [CrossRef] [PubMed]
- Pressel, S.; Ligrone, R.; Duckett, J.G.; Davis, E.C. A novel ascomycetous endophytic association in the rhizoids of the leafy liverwort family, Schistochilaceae (Jungermanniidae, Hepaticopsida). Am. J. Bot. 2008, 95, 531–541. [Google Scholar] [CrossRef] [PubMed]
- Durán, M.; San Emeterio, L.; Múgica, L.; Zabalgogeazcoa, I.; Vázquez de Aldana, B.R.; Canals, R.M. Disruption of traditional grazing and fire regimes shape the fungal endophyte assemblages of the tall-grass Brachypodium rupestre. Front. Microbiol. 2021, 12, 679729. [Google Scholar] [CrossRef]
- Lou, H.; Guo, C.; Fan, B.; Fu, R.; Su, H.; Zhang, J.; Sun, L. Lingonberry (Vaccinium vitis-idaea L.) interact with Lachnum pygmaeum to mitigate drought and promote growth. Front. Plant Sci. 2022, 13, 920338. [Google Scholar] [CrossRef]
- Vega, M.; Janošík, L.; Sochorová, Z.; Martínez-Gil, R.; Eckstein, J. Lamprospora densireticulata sp. nov., L. dictydiola and L. carbonicola (Pyronemataceae, Pezizales)—Three very similar species from very different hosts and habitats. Mycol. Prog. 2019, 18, 1013–1026. [Google Scholar] [CrossRef]
- Salo, K.; Domisch, T.; Kouki, J. Forest wildfire and 12 years of post-disturbance succession of saprotrophic macrofungi (Basidiomycota, Ascomycota). For. Ecol. Manag. 2019, 451, 117454. [Google Scholar] [CrossRef]
- Schumacher, T. Notes on taxonomy, ecology, and distribution of operculate discomycetes (Pezizales) from river banks in Norway. Nor. J. Bot. 1979, 1, 53–83. [Google Scholar]
- Kuo, M.; Dewsbury, D.R.; O’Donnell, K.; Carter, M.C.; Rehner, S.A.; Moore, J.D.; Moncalvo, J.-M.; Canfield, S.A.; Stephenson, S.L.; Methven, A.S. Taxonomic revision of true morels (Morchella) in Canada and the United States. Mycologia 2012, 104, 1159–1177. [Google Scholar] [CrossRef]
- Richard, F.; Bellanger, J.-M.; Clowez, P.; Hansen, K.; O’Donnell, K.; Urban, A.; Mathieu, S.; Courtecuisse, R.; Moreau, P.-A. True morels (Morchella, Pezizales) of Europe and North America: Evolutionary relationships inferred from multilocus data and a unified taxonomy. Mycologia 2015, 107, 359–382. [Google Scholar] [CrossRef] [PubMed]
- Baynes, M.; Newcombe, G.; Dixon, L.; Castlebury, L.; O’Donnell, K. A novel plant–fungal mutualism associated with fire. Fungal Biol. 2012, 116, 133–144. [Google Scholar] [CrossRef] [PubMed]
- Perry, B.A. A Taxonomic Investigation of Mycena in California. Master’s Thesis, San Francisco State University, San Francisco, CA, USA, 2002. [Google Scholar]
- Thoen, E.; Harder, C.B.; Kauserud, H.; Botnen, S.S.; Vik, U.; Taylor, A.F.S.; Menkis, A.; Skrede, I. In vitro evidence of root colonization suggests ecological versatility in the genus Mycena. New Phytol. 2020, 227, 601–612. [Google Scholar] [CrossRef] [PubMed]
- Philpott, T.J.; Danyagri, G.; Wallace, B.; Frank, M. Low-severity wildfire prevents catastrophic impacts on fungal communities and soil carbon stability in a fire-affected Douglas-fir ecosystem. Geoderma 2025, 454, 117189. [Google Scholar] [CrossRef]
- Jacobson, D.J.; Powell, A.J.; Dettman, J.R.; Saenz, G.S.; Barton, M.M.; Hiltz, M.D.; Dvorachek Jr, W.H.; Glass, N.L.; Taylor, J.W.; Natvig, D.O. Neurospora in temperate forests of western North America. Mycologia 2004, 96, 66–74. [Google Scholar] [CrossRef]
- Hildén, K.; Hakala, T.K.; Maijala, P.; Lundell, T.K.; Hatakka, A. Novel thermotolerant laccases produced by the white-rot fungus Physisporinus rivulosus. Appl. Microbiol. Biotechnol. 2007, 77, 301–309. [Google Scholar] [CrossRef]
- Toghueo, R.M.K.; Boyom, F.F. Endophytic Penicillium species and their agricultural, biotechnological, and pharmaceutical applications. 3 Biotech 2020, 10, 107. [Google Scholar] [CrossRef]
- Lantieri, A.; Medardi, G.; Alvarado, P. Morphological and phylogenetic clarification of Peziza arvernensis, P. pseudovesiculosa, P. pseudosylvestris, and P. domiciliana. Mycotaxon 2016, 131, 827–839. [Google Scholar] [CrossRef]
- Hennebert, G.; Korf, R.P. The peat mould, Chromelosporium ollare, conidial state of Peziza ostracoderma, and its misapplied names, Botrytis crystallina, Botrytis spectabilis, Ostracoderma epigaeum and Peziza atrovinosa. Mycologia 1975, 67, 214–240. [Google Scholar] [CrossRef]
- Nanagulyan, S.; Margaryan, L. Mycobiota of Armenia. In Biodiversity of Armenia; Springer: Berlin/Heidelberg, Germany, 2023; pp. 143–164. [Google Scholar]
- Matheny, P.B.; Swenie, R.A.; Miller, A.N.; Petersen, R.H.; Hughes, K.W. Revision of pyrophilous taxa of Pholiota described from North America reveals four species—P. brunnescens, P. castanea, P. highlandensis, and P. molesta. Mycologia 2018, 110, 997–1016. [Google Scholar] [CrossRef]
- Crous, P.; Wingfield, M.; Burgess, T.; Hardy, G.; Gene, J.; Guarro, J.; Baseia, I.; Garcia, D.; Gusmao, L.; Souza-Motta, C.; et al. Fungal Planet description sheets: 716-784. Persoonia 2018, 40, 240–393. [Google Scholar] [CrossRef]
- Pfister, D.H. A synopsis of the genus Pulvinula. Occas. Pap. Farlow Herb. Cryptogam. Bot. 1976, 9, 1–19. [Google Scholar] [CrossRef]
- Egger, K.N. Pyropyxis, a new pyrophilous operculate discomycte with a Dichobotrys anamorph. Can. J. Bot.-Rev. Can. Bot. 1984, 62, 705–708. [Google Scholar] [CrossRef]
- Peay, K.G.; Garbelotto, M.; Bruns, T.D. Spore heat resistance plays an important role in disturbance-mediated assemblage shift of ectomycorrhizal fungi colonizing Pinus muricata seedlings. J. Ecol. 2009, 97, 537–547. [Google Scholar] [CrossRef]
- Kipfer, T.; Moser, B.; Egli, S.; Wohlgemuth, T.; Ghazoul, J. Ectomycorrhiza succession patterns in Pinus sylvestris forests after stand-replacing fire in the Central Alps. Oecologia 2011, 167, 219–228. [Google Scholar] [CrossRef] [PubMed]
- Glushakova, A.; Kachalkin, A. Endophytic yeasts in Malus domestica and Pyrus communis fruits under anthropogenic impact. Microbiology 2017, 86, 128–135. [Google Scholar] [CrossRef]
- Hansen, K.; Perry, B.A.; Dranginis, A.W.; Pfister, D.H. A phylogeny of the highly diverse cup-fungus family Pyronemataceae (Pezizomycetes, Ascomycota) clarifies relationships and evolution of selected life history traits. Mol. Phylogenetics Evol. 2013, 67, 311–335. [Google Scholar] [CrossRef] [PubMed]
- Motiejūnaitė, J.; Adamonytė, G.; Iršėnaitė, R.; Juzėnas, S.; Kasparavičius, J.; Kutorga, E.; Markovskaja, S. Early fungal community succession following crown fire in Pinus mugo stands and surface fire in Pinus sylvestris stands. Eur. J. For. Res. 2014, 133, 745–756. [Google Scholar] [CrossRef]
- Kleijburg, F.E.; Wösten, H.A. The versatility of Schizophyllum commune in nature and application. Fungal Biol. Rev. 2025, 53, 100431. [Google Scholar] [CrossRef]
- Yang, T.; Tedersoo, L.; Lin, X.; Fitzpatrick, M.C.; Jia, Y.; Liu, X.; Ni, Y.; Shi, Y.; Lu, P.; Zhu, J. Distinct fungal successional trajectories following wildfire between soil horizons in a cold-temperate forest. New Phytol. 2020, 227, 572–587. [Google Scholar] [CrossRef]
- Li, S.; Yan, Q.; Wang, J.; Peng, Q. Endophytic fungal and bacterial microbiota shift in rice and barnyardgrass grown under co-culture condition. Plants 2022, 11, 1592. [Google Scholar] [CrossRef]
- Van Vooren, N.; Lindemann, U.; Healy, R. Emendation of the genus Tricharina (Pezizales) based on phylogenetic, morphological and ecological data. Ascomycete.org 2017, 9, 101–123. [Google Scholar]
- Gervers, K.A.; Thomas, D.C.; Roy, B.A.; Spatafora, J.W.; Busby, P.E. Crown closure affects endophytic leaf mycobiome compositional dynamics over time in Pseudotsuga menziesii var. menziesii. Fungal Ecol. 2022, 57, 101155. [Google Scholar] [CrossRef]
- Poveda, J. Trichoderma as biocontrol agent against pests: New uses for a mycoparasite. Biol. Control 2021, 159, 104634. [Google Scholar] [CrossRef]
- Tedersoo, L.; May, T.W.; Smith, M.E. Ectomycorrhizal lifestyle in fungi: Global diversity, distribution, and evolution of phylogenetic lineages. Mycorrhiza 2010, 20, 217–263. [Google Scholar] [CrossRef]
- Paden, J.W.; Cameron, J.V. Morphology of Warcupia terrestris, a new ascomycete genus and species from soil. Can. J. Bot. 1972, 50, 999–1001. [Google Scholar] [CrossRef]
- Pulido-Chavez, M.F.; Alvarado, E.C.; DeLuca, T.H.; Edmonds, R.L.; Glassman, S.I. High-severity wildfire reduces richness and alters composition of ectomycorrhizal fungi in low-severity adapted ponderosa pine forests. For. Ecol. Manag. 2021, 485, 118923. [Google Scholar] [CrossRef]
Site | Name | Burned? | Aira caryophyllaea (I, G) | Arrhenatherum elatius (I, G) | Anthoxanthum odoratum (I, G) | Daucus carota (I, F) | Eriophyllum lanatum (N, F) | Festuca roemeri (N, G) | Hypochaeris radiata (I, F) | Vulpia spp. (I, G) | Lat | Long | Elevation (m) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N | Pisgah | No | P | A | A | P | A | P | P | P | 43.999809 | 122.943102 | 161 |
South | Pisgah | Yes | P | A | A | P | A | P | P | P | 43.996911 | 122.944631 | 161 |
South | Eaton | No | P | A | A | P | P | P | P | P | 44.101167 | 123.259355 | 113 |
North | Eaton | Yes | P | P | A | P | A | P | P | P | 44.102437 | 123.259369 | 113 |
East | Spire | No | P | P | P | P | A | P | P | P | 44.100123 | 123.262949 | 113 |
West | Spire | Yes | P | A | A | P | P | P | P | P | 44.098619 | 123.264431 | 113 |
Decomposition Rates | ||||
---|---|---|---|---|
Estimate | Std Error | t Value | Pr (>F) | |
Burn | −0.007 | 0.006 | −1.294 | 0.20 |
Autoclaved | −0.010 | 0.005 | −1.757 | 8.02 × 10−2 |
Months.out | −0.004 | 0.001 | −5.691 | 3.68 × 10−8 |
Fresh.Weight | 0.006 | 0.007 | 0.825 | 0.41 |
Site-Pisgah | −0.011 | 0.005 | −2.092 | 0.04 |
Site-Spire | −0.010 | 0.005 | −1.883 | 0.06 |
Burn: Autoclaved | −0.001 | 0.008 | −0.081 | 0.94 |
Diversity Response | ||||||||
---|---|---|---|---|---|---|---|---|
Saprotrophs | Pyrophiles | |||||||
Estimate | Std. Error | t value | Pr (>|t|) | Estimate | Std. Error | t value | Pr (>|t|) | |
Burn | −0.056 | 0.060 | −0.935 | 0.352 | 0.088 | 0.058 | 1.516 | 0.133 |
Autoclaved | −0.156 | 0.057 | −2.736 | 0.007 | 0.286 | 0.056 | 5.147 | 1.23 × 10−6 |
Time | −0.079 | 0.056 | −1.403 | 0.163 | −0.402 | 0.055 | −7.317 | 5.10 × 10−11 |
Site | 0.106 | 0.057 | 1.856 | 0.066 | −0.025 | 0.056 | −0.449 | 0.654 |
Burn: Autoclaved | 0.187 | 0.088 | 2.130 | 0.035 | −0.209 | 0.086 | −2.445 | 0.016 |
Residual dev. | 5.44, 106 df | 5.15, 106 df |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burrill, H.M.; Ralston, E.B.; Dawson, H.A.; Roy, B.A. Litter Decomposition in Pacific Northwest Prairies Depends on Fire, with Differential Responses of Saprotrophic and Pyrophilous Fungi. Microorganisms 2025, 13, 1834. https://doi.org/10.3390/microorganisms13081834
Burrill HM, Ralston EB, Dawson HA, Roy BA. Litter Decomposition in Pacific Northwest Prairies Depends on Fire, with Differential Responses of Saprotrophic and Pyrophilous Fungi. Microorganisms. 2025; 13(8):1834. https://doi.org/10.3390/microorganisms13081834
Chicago/Turabian StyleBurrill, Haley M., Ellen B. Ralston, Heather A. Dawson, and Bitty A. Roy. 2025. "Litter Decomposition in Pacific Northwest Prairies Depends on Fire, with Differential Responses of Saprotrophic and Pyrophilous Fungi" Microorganisms 13, no. 8: 1834. https://doi.org/10.3390/microorganisms13081834
APA StyleBurrill, H. M., Ralston, E. B., Dawson, H. A., & Roy, B. A. (2025). Litter Decomposition in Pacific Northwest Prairies Depends on Fire, with Differential Responses of Saprotrophic and Pyrophilous Fungi. Microorganisms, 13(8), 1834. https://doi.org/10.3390/microorganisms13081834