Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (10,847)

Search Parameters:
Keywords = transitional research

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2926 KB  
Article
Synthesis, Characterisation, DFT Study and Biological Evaluation of Complexes Derived from Transition Metal and Mixed Ligands
by Enas H. Mohammed, Eman R. Mohammed, Eman M. Yahya and Mohammed Alsultan
Inorganics 2025, 13(10), 334; https://doi.org/10.3390/inorganics13100334 - 6 Oct 2025
Abstract
This research prepared and characterised novel mixed coordination complexes derived from escitalopram with eugenol and curcumin to form (L1) and (L2), respectively. The complexes were prepared via Williamson ether synthesis and analysed by FTIR, UV–Vis, 1H-NMR spectroscopy, elemental [...] Read more.
This research prepared and characterised novel mixed coordination complexes derived from escitalopram with eugenol and curcumin to form (L1) and (L2), respectively. The complexes were prepared via Williamson ether synthesis and analysed by FTIR, UV–Vis, 1H-NMR spectroscopy, elemental analysis, molar conductivity, and magnetic susceptibility. The results confirmed their octahedral geometries. Magnetic investigation reported high-spin configurations for Mn(II), Co(II), and Ni(II) complexes, whereas Cu(II) exhibited a distorted octahedral arrangement with characteristic d–d transitions. In addition, the calculation of Density functional theory (DFT) provided more insight into the detailed structural and electronic properties of the new ligand and its complexes. Antimicrobial compounds were evaluated against Escherichia coli, Staphylococcus aureus, and Candida albicans through the agar well diffusion method. The reported results revealed that Cobalt complexes showed antimicrobial activity followed by Copper (Cu), Nickel (Ni) and Manganese(Mn) complexes, respectively, due to an increase in Co-lipophilicity, which leads to improved diffusion through microbial cell membranes. The research findings confirmed that escitalopram-based mixed ligands coordinate with transition metals and could have significant biological applications. Full article
Show Figures

Figure 1

30 pages, 88126 KB  
Article
Landscape Dynamics of Cat Tien National Park and the Ma Da Forest Within the Dong Nai Biosphere Reserve, Socialist Republic of Vietnam
by Nastasia Lineva, Roman Gorbunov, Ekaterina Kashirina, Tatiana Gorbunova, Polina Drygval, Cam Nhung Pham, Andrey Kuznetsov, Svetlana Kuznetsova, Dang Hoi Nguyen, Vu Anh Tu Dinh, Trung Dung Ngo, Thanh Dat Ngo and Ekaterina Chuprina
Land 2025, 14(10), 2003; https://doi.org/10.3390/land14102003 - 6 Oct 2025
Abstract
The study of tropical landscape dynamics is of critical importance, particularly within protected areas, for evaluating ecosystem functioning and the effectiveness of natural conservation efforts. This study aims to identify landscape dynamics within the Dong Nai Biosphere Reserve (including Cat Tien National Park [...] Read more.
The study of tropical landscape dynamics is of critical importance, particularly within protected areas, for evaluating ecosystem functioning and the effectiveness of natural conservation efforts. This study aims to identify landscape dynamics within the Dong Nai Biosphere Reserve (including Cat Tien National Park and the Ma Da Forest) using remote sensing (Landsat and others) and geographic information system methods. The analysis is based on changes in the Enhanced Vegetation Index (EVI), land cover transformations, landscape metrics (Class area, Percentage of Landscape and others), and natural landscape fragmentation, as well as a spatio-temporal assessment of anthropogenic impacts on the area. The results revealed structural changes in the landscapes of the Dong Nai Biosphere Reserve between 2000 and 2024. According to Sen’s slope estimates, a generally EVI growth was observed in both the core and buffer zones of the reserve. This trend was evident in forested areas as well as in regions of the buffer zone that were previously occupied by highly productive agricultural land. An analysis of Environmental Systems Research Institute (ESRI) Land Cover and Land Cover Climate Change Initiative (CCI) data confirms the relative stability of land cover in the core zone, while anthropogenic pressure has increased due to the expansion of agricultural lands, mosaic landscapes, and urban development. The calculation of landscape metrics revealed the growing isolation of natural forests and the dominance of artificial plantations, forming transitional zones between natural and anthropogenically modified landscapes. The human disturbance index, calculated for the years 2000 and 2024, shows only a slight change in the average value across the territory. However, the coefficient of variation increased significantly by 2024, indicating a localized rise in anthropogenic pressure within the buffer zone, while a reduction was observed in the core zone. The practical significance of the results obtained lies in the possibility of their use for the management of the Dongnai biosphere Reserve based on a differentiated approach: for the core and the buffer zone. There should be a ban on agriculture and development in the core zone, and restrictions on urbanized areas in the buffer zone. Full article
Show Figures

Figure 1

30 pages, 9953 KB  
Article
Study on Carbon Storage Evolution and Scenario Response Under Multi-Pathway Drivers in High-Groundwater-Level Coal Resource-Based Cities: A Case Study of Three Cities in Shandong, China
by Yulong Geng, Zhenqi Hu, Weihua Guo, Anya Zhong and Quanzhi Li
Land 2025, 14(10), 2001; https://doi.org/10.3390/land14102001 - 6 Oct 2025
Abstract
Land use/land cover (LULC) change is a key driving factor influencing the dynamics of terrestrial ecosystem carbon storage. In high-groundwater-level coal resource-based cities (HGCRBCs), the interplay of urban expansion, mining disturbances, and land reclamation makes the carbon storage evolution process more complex. This [...] Read more.
Land use/land cover (LULC) change is a key driving factor influencing the dynamics of terrestrial ecosystem carbon storage. In high-groundwater-level coal resource-based cities (HGCRBCs), the interplay of urban expansion, mining disturbances, and land reclamation makes the carbon storage evolution process more complex. This study takes Jining, Zaozhuang, and Heze cities in Shandong Province as the research area and constructs a coupled analytical framework of “mining–reclamation–carbon storage” by integrating the Patch-generating Land Use Simulation (PLUS), Probability Integral Method (PIM), InVEST, and Grey Multi-Objective Programming (GMOP) models. It systematically evaluates the spatiotemporal characteristics of carbon storage changes from 2000 to 2020 and simulates the carbon storage responses under different development scenarios in 2030. The results show that: (1) From 2000 to 2020, the total carbon storage in the region decreased by 31.53 Tg, with cropland conversion to construction land and water bodies being the primary carbon loss pathways, contributing up to 89.86% of the total carbon loss. (2) Among the 16 major LULC transition paths identified, single-process drivers dominated carbon storage changes. Specifically, urban expansion and mining activities individually accounted for nearly 70% and 8.65% of the carbon loss, respectively. Although the reclamation path contributed to a recovery of 1.72 Tg of carbon storage, it could not fully offset the loss caused by mining. (3) Future scenario simulations indicate that the ecological conservation scenario yields the highest carbon storage, while the economic development scenario results in the lowest. Mining activities generally lead to approximately 3.5 Tg of carbon loss, while post-mining reclamation can restore about 72% of the loss. Full article
(This article belongs to the Section Land Use, Impact Assessment and Sustainability)
Show Figures

Figure 1

20 pages, 864 KB  
Article
Analyzing the Smart Industry Readiness Index in Adopting Industry 4.0 Technologies
by Fawaz M. Abdullah and Abdulrahman M. Al-Ahmari
Processes 2025, 13(10), 3172; https://doi.org/10.3390/pr13103172 - 6 Oct 2025
Abstract
Industry 4.0 (I4.0) promises that technological advances are happening at an accelerating rate, which is pushing all industries to undergo digital transformation to boost competitiveness, productivity, and business efficiency. As industrial companies transition to Industry 4.0, one of the maturity models that helps [...] Read more.
Industry 4.0 (I4.0) promises that technological advances are happening at an accelerating rate, which is pushing all industries to undergo digital transformation to boost competitiveness, productivity, and business efficiency. As industrial companies transition to Industry 4.0, one of the maturity models that helps them identify opportunities is the Smart Industry Readiness Index (SIRI). SIRI is in line with other international manufacturing initiatives and has the potential to become a global standard for the manufacturing sector’s future. To achieve market competitiveness, smart manufacturing requires the end-to-end integration of Industry 4.0 technologies and SIRI. The successful implementation of such a comprehensive integration depends on carefully selecting the I4.0 technologies to conform to industry requirements. The Influences of I4.0 technologies on SIRI are not clearly outlined in any of the earlier research. Thus, employing a dependable Multi-Criteria Decision Making (MCDM) methodology using fuzzy TOPSIS, this article aims to analyze the influence of Industry 4.0 technologies on SIRI from the perspectives of both academic and industry experts. Expert opinions were gathered on the relationship between SIRI and I4.0 technologies. TOPSIS utilizes fuzzy theory to address the ambiguity and uncertainty inherent in human judgment. The findings showed that the best I4.0 technology for SIRI is the cyber-physical system (CPS). Full article
(This article belongs to the Special Issue Innovation and Optimization of Production Processes in Industry 4.0)
Show Figures

Figure 1

22 pages, 2773 KB  
Article
Synthesis, Crystallographic Study and Antibacterial Activity of Ternary Copper(II) Complex with Chromone-Based Ligand and Pyridine
by Nikolina Filipović, Anamarija Stanković, Martina Medvidović-Kosanović, Dominik Goman, Stjepan Šarić, Goran Palijan and Tomislav Balić
Crystals 2025, 15(10), 870; https://doi.org/10.3390/cryst15100870 (registering DOI) - 6 Oct 2025
Abstract
A new copper(II) complex was synthesized using chromone-2-carboxylic acid as the main ligand, and coordinated pyridine molecules. The complex was successfully crystallized and structurally characterized by single crystal X-ray diffraction. This revealed a mononuclear structure with a distorted square pyramidal geometry around the [...] Read more.
A new copper(II) complex was synthesized using chromone-2-carboxylic acid as the main ligand, and coordinated pyridine molecules. The complex was successfully crystallized and structurally characterized by single crystal X-ray diffraction. This revealed a mononuclear structure with a distorted square pyramidal geometry around the central Cu(II) ion. The coordination sphere comprises oxygen atoms from the chromone moiety and nitrogen atoms from pyridine, resulting in a five-coordinate complex. A comprehensive physicochemical characterization was performed using Fourier transform infrared spectroscopy (FT-IR), UV–Vis spectroscopy, elemental (C, H, N), electrochemical (CV) and thermal analysis (TGA/DSC) to confirm the coordination environment and thermal stability of the compound. The complex exhibits distinct spectroscopic features indicative of ligand–metal charge transfer and dd transitions typical of Cu(II) species. In addition, the synthesized complex was subjected to antimicrobial screening against Gram-positive and Gram-negative bacteria. The compound showed promising antibacterial activity, particularly against Escherichia coli, indicating its potential as a bioactive coordination compound. These results contribute to the growing body of research on metal-based chromone derivatives and emphasize the importance of copper complexes for the development of new antibacterial agents with defined crystal structures. Full article
(This article belongs to the Special Issue Celebrating the 10th Anniversary of International Crystallography)
Show Figures

Figure 1

22 pages, 2097 KB  
Article
At Risk While on the Move—Mobility Vulnerability of Individuals and Groups in Disaster Risk Situations
by Alexander Fekete
Geographies 2025, 5(4), 56; https://doi.org/10.3390/geographies5040056 - 6 Oct 2025
Abstract
Vulnerability is often analysed as a static condition of residents at a location, exposed to disaster and other risks. Studies on individual aspects of mobility and vulnerability exist, but comprehensive studies or guiding frameworks are lacking. The paper’s unique contribution compared to existing [...] Read more.
Vulnerability is often analysed as a static condition of residents at a location, exposed to disaster and other risks. Studies on individual aspects of mobility and vulnerability exist, but comprehensive studies or guiding frameworks are lacking. The paper’s unique contribution compared to existing vulnerability models lies in emphasising vulnerability not only at fixed places, but also during transit, movement, and temporary phases. This paper highlights the current state of research on mobility vulnerability within disaster risk contexts. Through a systematic literature review, the study discovers a lack of research analysing specific vulnerabilities during mobility. Additionally, existing vulnerability frameworks are improved by incorporating (i) disaster risk and impact scenarios, (ii) different types of movements and mobilities linked to disaster risk situations, (iii) multiple localities, modalities, and temporalities, as well as multiple risks during sequences of movement and stationary phases, (iv) daily and occasional hazards, and (v) emic and etic perspectives on vulnerability. The findings of this study aim to inform future research on risk and vulnerability, supporting more effective responses amidst the changing dynamics of disaster situations. Full article
Show Figures

Figure 1

26 pages, 1895 KB  
Article
A Pattern-Based Framework for Automated Migration of Monolithic Applications to Microservices
by Hossam Hassan, Manal A. Abdel-Fattah and Wael Mohamed
Big Data Cogn. Comput. 2025, 9(10), 253; https://doi.org/10.3390/bdcc9100253 - 6 Oct 2025
Abstract
Over the past decade, many software enterprises have migrated from monolithic to microservice architectures to enhance scalability, maintainability, and performance. However, this transition presents significant challenges, requiring considerable development efforts, research, customization, and resource allocation over extended periods. Furthermore, the success of migration [...] Read more.
Over the past decade, many software enterprises have migrated from monolithic to microservice architectures to enhance scalability, maintainability, and performance. However, this transition presents significant challenges, requiring considerable development efforts, research, customization, and resource allocation over extended periods. Furthermore, the success of migration is not guaranteed, highlighting the complexities organizations face in modernizing their software systems. To address these challenges, this study introduces Mono2Micro, a comprehensive framework designed to automate the migration process while preserving structural integrity and optimizing service boundaries. The framework focuses on three core patterns: database patterns, service decomposition, and communication patterns. It leverages machine learning algorithms, including Random Forest and Louvain clustering, to analyze database query patterns along with static and dynamic database model analysis, which enables the identification of relationships between models, facilitating the systematic decomposition of microservices while ensuring efficient inter-service communication. To validate its effectiveness, Mono2Micro was applied to a student information system for faculty management, demonstrating its ability to streamline the migration process while maintaining functional integrity. The proposed framework offers a systematic and scalable solution for organizations and researchers seeking efficient migration from monolithic systems to microservices. Full article
Show Figures

Figure 1

24 pages, 13326 KB  
Review
Applications of Heat Pipes in Thermal Management
by Milan Malcho, Jozef Jandačka, Richard Lenhard, Katarína Kaduchová and Patrik Nemec
Energies 2025, 18(19), 5282; https://doi.org/10.3390/en18195282 - 5 Oct 2025
Abstract
The paper explores the application of heat pipes in thermal management for efficient heat dissipation, particularly in electrical equipment with high heat loads. Heat pipes are devices that transfer heat with high efficiency through the phase transition of the working medium (e.g., water, [...] Read more.
The paper explores the application of heat pipes in thermal management for efficient heat dissipation, particularly in electrical equipment with high heat loads. Heat pipes are devices that transfer heat with high efficiency through the phase transition of the working medium (e.g., water, alcohol, ammonia) between the evaporator and the condenser, while they have no moving parts and are distinguished by their simplicity of construction. Different types of heat pipes—gravity, capillary, and closed loop (thermosiphon loop)—are suitable according to specific applications and requirements for the working position, temperature range, and condensate return transport. An example of an effective application is the removal of heat from the internal winding of a static energy converter transformer, where the use of a gravity heat pipe has enabled effective cooling even through epoxy insulation and kept the winding temperature below 80 °C. Other applications include the cooling of mounting plates, power transistors, and airtight cooling of electrical enclosures with the ability to dissipate lost thermal power in the order of 102 to 103 W. A significant advantage of heat pipes is also the ability to dust-tightly seal equipment and prevent the build-up of dirt, thereby increasing the reliability of the electronics. In the field of environmental technology, systems have been designed to reduce the radiant power of fireplace inserts by up to 40%, or to divert their heat output of up to about 3 kW into hot water storage tanks, thus optimising the use of the heat produced and preventing overheating of the living space. The use of nanoparticles in the working substances (e.g., Al2O3 in water) makes it possible to intensify the boiling process and thus increase the heat transfer intensity by up to 30% compared to pure water. The results of the presented research confirm the versatility and high efficiency of the use of heat pipes for modern cooling requirements in electronics and environmental engineering. Full article
(This article belongs to the Special Issue Advances in Numerical and Experimental Heat Transfer)
Show Figures

Figure 1

12 pages, 665 KB  
Article
Application of Synchronized Inertial Measurement Units and Contact Grids in Running Technique Analysis: Reliability and Sensitivity Study
by Đorđe Brašanac, Marko Kapeleti, Igor Zlatović, Miloš Ubović and Vladimir Mrdaković
Biomechanics 2025, 5(4), 79; https://doi.org/10.3390/biomechanics5040079 (registering DOI) - 5 Oct 2025
Abstract
Background: Previous research has identified center of mass vertical oscillation and leg stiffness as the most common variables differentiating Natural and Groucho running techniques. The aim was to assess the inter-session reliability and inter-technique sensitivity of synchronized inertial measurement units and contact grids [...] Read more.
Background: Previous research has identified center of mass vertical oscillation and leg stiffness as the most common variables differentiating Natural and Groucho running techniques. The aim was to assess the inter-session reliability and inter-technique sensitivity of synchronized inertial measurement units and contact grids in quantifying kinematic and kinetic differences between Natural and Groucho running techniques. Methods: Eleven physically active and healthy males ran at a speed 50% higher than transition speed. Two sessions for Natural and two for Groucho running were performed, each lasting 1 min. Results: Most variables exhibited a similar inter-session reliability across running techniques, except contact time and center of mass vertical displacement, ranging from moderate to good (ICC = 0.538–0.897). A statistically significant difference between running techniques was found for all variables (p < 0.05), except for contact time and center of mass vertical oscillation (p > 0.05), likely due to inconsistency in reliability depending on the running technique, which may have covered the underlying differences. Conclusions: We can conclude that the combination of synchronized inertial measurement units and contact grids showed potentially acceptable reliability and sufficient sensitivity to recognize and differentiate between Natural and Groucho running techniques. The results may contribute to a broader understanding of the differences between these two running techniques and encourage the increased use of these devices within therapeutic, recreational, and sports running contexts. Full article
(This article belongs to the Special Issue Inertial Sensor Assessment of Human Movement)
32 pages, 6546 KB  
Review
Sputter-Deposited Superconducting Thin Films for Use in SRF Cavities
by Bharath Reddy Lakki Reddy Venkata, Aleksandr Zubtsovskii and Xin Jiang
Nanomaterials 2025, 15(19), 1522; https://doi.org/10.3390/nano15191522 - 5 Oct 2025
Abstract
Particle accelerators are powerful tools in fundamental research, medicine, and industry that provide high-energy beams that can be used to study matter and to enable advanced applications. The state-of-the-art particle accelerators are fundamentally constructed from superconducting radio-frequency (SRF) cavities, which act as resonant [...] Read more.
Particle accelerators are powerful tools in fundamental research, medicine, and industry that provide high-energy beams that can be used to study matter and to enable advanced applications. The state-of-the-art particle accelerators are fundamentally constructed from superconducting radio-frequency (SRF) cavities, which act as resonant structures for the acceleration of charged particles. The performance of such cavities is governed by inherent superconducting material properties such as the transition temperature, critical fields, penetration depth, and other related parameters and material quality. For the last few decades, bulk niobium has been the preferred material for SRF cavities, enabling accelerating gradients on the order of ~50 MV/m; however, its intrinsic limitations, high cost, and complicated manufacturing have motivated the search for alternative strategies. Among these, sputter-deposited superconducting thin films offer a promising route to address these challenges by reducing costs, improving thermal stability, and providing access to numerous high-Tc superconductors. This review focuses on progress in sputtered superconducting materials for SRF applications, in particular Nb, NbN, NbTiN, Nb3Sn, Nb3Al, V3Si, Mo–Re, and MgB2. We review how deposition process parameters such as deposition pressure, substrate temperature, substrate bias, duty cycle, and reactive gas flow influence film microstructure, stoichiometry, and superconducting properties, and link these to RF performance. High-energy deposition techniques, such as HiPIMS, have enabled the deposition of dense Nb and nitride films with high transition temperatures and low surface resistance. In contrast, sputtering of Nb3Sn offers tunable stoichiometry when compared to vapour diffusion. Relatively new material systems, such as Nb3Al, V3Si, Mo-Re, and MgB2, are just a few of the possibilities offered, but challenges with impurity control, interface engineering, and cavity-scale uniformity will remain. We believe that future progress will depend upon energetic sputtering, multilayer architectures, and systematic demonstrations at the cavity scale. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Graphical abstract

10 pages, 545 KB  
Article
Leaf Stoichiometric Characteristics of Three Dominant Plant Species in the Water–Land Ecotone
by Xiaolong Bai, Wangjun Li, Shun Zou, Bin He and Xiaohui Xue
Diversity 2025, 17(10), 697; https://doi.org/10.3390/d17100697 - 4 Oct 2025
Abstract
Ecological stoichiometry, as a discipline investigating plant elemental coupling mechanisms, has become a research focus across various ecosystems. However, few studies have examined plant stoichiometric characteristics in the water–land ecotone of plateau karst lake wetlands. It remains unclear whether foliar nutrient contents and [...] Read more.
Ecological stoichiometry, as a discipline investigating plant elemental coupling mechanisms, has become a research focus across various ecosystems. However, few studies have examined plant stoichiometric characteristics in the water–land ecotone of plateau karst lake wetlands. It remains unclear whether foliar nutrient contents and stoichiometric ratios in this transitional zone vary with flooding intensity. This study established three sampling gradients (near-water area, middle area, and far-water area) within the water–land ecotone of Caohai Lake wetland in Guizhou Plateau, measuring nutrient concentrations along with their stoichiometric ratios in leaves of three dominant plant species. The results revealed significant interspecific differences in leaf nitrogen (N), phosphorus (P), potassium (K), calcium (Ca) concentrations and N:P ratios among the three dominant species, while significant spatial variations were observed in N concentration and the C:N ratio across sampling locations. Correlation analysis demonstrated significant positive relationships among leaf N, P, and K concentrations, all showing negative correlations with C concentration. Phragmites australis exhibited significantly lower C:N and N:P ratios compared to Scirpus validus and Juncus effusus, suggesting its growth advantage through rapid nutrient acquisition. This species may serve as an efficient phytoremediator for N and P absorption from both soil and water. These findings provide valuable references for vegetation selection in constructed wetlands. Full article
(This article belongs to the Section Plant Diversity)
40 pages, 4433 KB  
Article
Economic Convergence Analyses in Perspective: A Bibliometric Mapping and Its Strategic Implications (1982–2025)
by Geisel García-Vidal, Néstor Alberto Loredo-Carballo, Reyner Pérez-Campdesuñer and Gelmar García-Vidal
Economies 2025, 13(10), 289; https://doi.org/10.3390/economies13100289 - 4 Oct 2025
Abstract
This study presents a bibliometric and thematic analysis of economic convergence analysis from 1982 to 2025, based on a corpus of 2924 Scopus-indexed articles. Using VOSviewer and the bibliometrix R package, this research maps the field’s intellectual structure, identifying five main thematic clusters: [...] Read more.
This study presents a bibliometric and thematic analysis of economic convergence analysis from 1982 to 2025, based on a corpus of 2924 Scopus-indexed articles. Using VOSviewer and the bibliometrix R package, this research maps the field’s intellectual structure, identifying five main thematic clusters: (1) formal statistical models, (2) institutional-contextual approaches, (3) theoretical–statistical foundations, (4) nonlinear historical dynamics, and (5) normative and policy assessments. These reflect a shift from descriptive to explanatory and prescriptive frameworks, with growing integration of sustainability, spatial analysis, and institutional factors. The most productive journals include Journal of Econometrics (121 articles), Applied Economics (117), and Journal of Cleaner Production (81), while seminal contributions by Quah, Im et al., and Levin et al. anchor the co-citation network. International collaboration is significant, with 25.99% of publications involving cross-country co-authorship, particularly in European and North American networks. The field has grown at a compound annual rate of 14.4%, accelerating after 2000 and peaking in 2022–2024, indicating sustained academic interest. These findings highlight the maturation of convergence analysis as a multidisciplinary domain. Practically, this study underscores the value of composite indicators and spatial econometric models for monitoring regional, environmental, and technological convergence—offering policymakers tools for inclusive growth, climate resilience, and innovation strategies. Moreover, the emergence of clusters around sustainability and digital transformation reveals fertile ground for future research at the intersection of transitions in energy, digital, and institutional domains and sustainable development (a broader sense of structural change). Full article
(This article belongs to the Special Issue Regional Economic Development: Policies, Strategies and Prospects)
Show Figures

Figure 1

15 pages, 1023 KB  
Article
Clay-Based Cosmetic Formulations: Mineralogical Properties and Short-Term Effects on Sebum Regulation and Skin Biomechanics
by Fernanda Daud Sarruf, Michele Georges Issa, Maria Valéria Robles Velasco, Catarina Rosado and André Rolim Baby
Cosmetics 2025, 12(5), 219; https://doi.org/10.3390/cosmetics12050219 - 4 Oct 2025
Abstract
The growing demand for dermocosmetics with ingredients of natural origin reflects the pivotal role of cutaneous health and appearance in consumer self-esteem. Under this context, clays have attracted attention for their potential applications in dermatological care. Our research work aimed to increase knowledge [...] Read more.
The growing demand for dermocosmetics with ingredients of natural origin reflects the pivotal role of cutaneous health and appearance in consumer self-esteem. Under this context, clays have attracted attention for their potential applications in dermatological care. Our research work aimed to increase knowledge on the short-term impact of cosmetic formulations containing a blend of red, green, and black clays, assessing their effects on sebum regulation and in cutaneous biomechanical behavior (firmness/elasticity). Unlike daily skincare products, clay masks are used infrequently and for short durations; thus, an in vivo assessment was conducted after a 2-h application to reflect typical consumer use. The mineralogical and physicochemical properties of the different clays were characterized. Mineralogical analysis revealed distinct compositions among the clays: black clay exhibited a simpler mineral profile, lower density, and smaller particle size; green clay contained expandable smectite and was the densest; and red clay displayed the largest average particle size and highest iron content. Thermal analysis identified two major transitions: dehydration and kaolinite dehydroxylation. In vivo studies conducted in participants showed a significant reduction in skin oiliness across all clay-based formulations compared to baseline, control, and placebo following a 2-h application, and the rebound sebum production was dependent on clay concentration. Cutometry measurements did not reveal statistically significant improvements in skin firmness or elasticity compared to the control and placebo. The findings suggested that while clay-based formulations effectively reduced skin oiliness in the short term, their impact on sebum regulation and on skin biomechanical properties was limited after such a short product application period. Additional studies are warranted to elucidate the distinct effects of each clay, assess their behavior in different formulation bases, and evaluate their efficacy after repeated use. Full article
(This article belongs to the Special Issue Feature Papers in Cosmetics in 2025)
Show Figures

Figure 1

18 pages, 7009 KB  
Article
Engineered Porosity in Microcrystalline Diamond-Reinforced PLLA Composites: Effects of Particle Concentration on Thermal and Structural Properties
by Mateusz Ficek, Franciszek Skiba, Marcin Gnyba, Gabriel Strugała, Dominika Ferneza, Tomasz Seramak, Konrad Szustakiewicz and Robert Bogdanowicz
Materials 2025, 18(19), 4606; https://doi.org/10.3390/ma18194606 - 4 Oct 2025
Abstract
This research explores microcrystalline diamond particles in poly(L-lactic acid) matrices to create structured porous composites for advanced biodegradable materials. While nanodiamond–polymer composites are well-documented, microcrystalline diamond particles remain unexplored for controlling hierarchical porosity in systems required by tissue engineering, thermal management, and filtration [...] Read more.
This research explores microcrystalline diamond particles in poly(L-lactic acid) matrices to create structured porous composites for advanced biodegradable materials. While nanodiamond–polymer composites are well-documented, microcrystalline diamond particles remain unexplored for controlling hierarchical porosity in systems required by tissue engineering, thermal management, and filtration industries. We investigate diamond–polymer composites with concentrations from 5 to 75 wt% using freeze-drying methodology, employing two particle sizes: 0.125 μm and 1.00 μm diameter particles. Systematic porosity control ranges from 11.4% to 32.8%, with smaller particles demonstrating reduction from 27.3% at 5 wt% to 11.4% at 75 wt% loading. Characterization through infrared spectroscopy, X-ray computed microtomography, and Raman analysis confirms purely physical diamond–polymer interactions without chemical bonding, validated by characteristic diamond lattice vibrations at 1332 cm−1. Thermal analysis reveals modified crystallization behavior with decreased melting temperatures from 180 to 181 °C to 172 °C. The investigation demonstrates a controllable transition from large-volume interconnected pores to numerous small-volume closed pores with increasing diamond content. These composites provide a quantitative framework for designing hierarchical structures applicable to tissue engineering scaffolds, thermal management systems, and specialized filtration technologies requiring biodegradable materials with engineered porosity and enhanced thermal conductivity. Full article
12 pages, 694 KB  
Article
Polysomnographic Evidence of Enhanced Sleep Quality with Adaptive Thermal Regulation
by Jeong-Whun Kim, Sungjin Heo, Dongheon Lee, Joonki Hong, Donghyuk Yang and Sungeun Moon
Healthcare 2025, 13(19), 2521; https://doi.org/10.3390/healthcare13192521 - 4 Oct 2025
Abstract
Background/Objective: Sleep is a vital determinant of human health, where both its quantity and quality directly impact physical and mental well-being. Thermoregulation plays a pivotal role in sleep quality, as the body’s ability to regulate temperature varies across different sleep stages. This study [...] Read more.
Background/Objective: Sleep is a vital determinant of human health, where both its quantity and quality directly impact physical and mental well-being. Thermoregulation plays a pivotal role in sleep quality, as the body’s ability to regulate temperature varies across different sleep stages. This study examines the effects of a novel real-time temperature adjustment (RTA) mattress, which dynamically modulates temperature to align with sleep stage transitions, compared to constant temperature control (CTC). Through polysomnographic (PSG) assessments, this study evaluates how adaptive thermal regulation influences sleep architecture, aiming to identify its potential for optimizing restorative sleep. Methods: A prospective longitudinal cohort study involving 25 participants (13 males and 12 females; mean age: 39.7 years) evaluated sleep quality across three conditions: natural sleep (Control), CTC (33 °C constant mattress temperature), and RTA (temperature dynamically adjusted: 30 °C during REM sleep; 33 °C during non-REM sleep). Each participant completed three polysomnography (PSG) sessions. Sleep metrics, including total sleep time (TST), sleep efficiency, wake after sleep onset (WASO), and sleep stage percentages, were assessed. Repeated-measures ANOVA and post hoc analyses were performed. Results: RTA significantly improved sleep quality metrics compared to Control and CTC. TST increased from 356.2 min (Control) to 383.2 min (RTA, p = 0.030), with sleep efficiency rising from 82.8% to 87.3% (p = 0.030). WASO decreased from 58.2 min (Control) and 64.6 min (CTC) to 49.0 min (RTA, p = 0.067). REM latency was notably reduced under RTA (110.4 min) compared to Control (141.8 min, p = 0.002). The REM sleep percentage increased under RTA (20.8%, p = 0.006), with significant subgroup-specific enhancements in males (p = 0.010). Females showed significant increases in deep sleep percentage under RTA (12.3%, p = 0.011). Conclusions: Adaptive thermal regulation enhances sleep quality by aligning mattress temperature with physiological needs during different sleep stages. These findings highlight the potential of RTA as a non-invasive intervention to optimize restorative sleep and promote overall well-being. Further research could explore long-term health benefits and broader applications. Full article
(This article belongs to the Section Clinical Care)
Show Figures

Figure 1

Back to TopTop