Polysomnographic Evidence of Enhanced Sleep Quality with Adaptive Thermal Regulation
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Sleep Environment and Measurement Tools
2.3. Study Procedure for Thermal Mattress Temperature Control
2.4. Statistical Analysis
3. Results
3.1. General and Baseline Polysomnographic Characteristics
3.2. Comparative Analysis of Sleep Architecture Across Control, CTC, and RTA Conditions
3.2.1. Total Sleep Time and Sleep Efficiency
3.2.2. Wake After Sleep Onset, Sleep Onset Latency, and Rem Latency
3.2.3. Sleep Stages
3.3. Effects of Adaptive Thermal Regulation: Male and Female Subgroup Analysis
3.3.1. Males (n = 13)
3.3.2. Females (n = 12)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chattu, V.K.; Manzar, M.D.; Kumary, S.; Burman, D.; Spence, D.W.; Pandi-Perumal, S.R. The Global Problem of Insufficient Sleep and Its Serious Public Health Implications. Healthcare 2018, 7, 1. [Google Scholar] [CrossRef]
- Ramar, K.; Malhotra, R.K.; Carden, K.A.; Martin, J.L.; Abbasi-Feinberg, F.; Aurora, R.N.; Kapur, V.K.; Olson, E.J.; Rosen, C.L.; Rowley, J.A.; et al. Sleep is essential to health: An American Academy of Sleep Medicine position statement. J. Clin. Sleep Med. 2021, 17, 2115–2119. [Google Scholar] [CrossRef]
- Desai, D.; Momin, A.; Hirpara, P.; Jha, H.; Thaker, R.; Patel, J. Exploring the Role of Circadian Rhythms in Sleep and Recovery: A Review Article. Cureus 2024, 16, e61568. [Google Scholar] [CrossRef]
- Zapalac, K.; Miller, M.; Champagne, F.A.; Schnyer, D.M.; Baird, B. The effects of physical activity on sleep architecture and mood in naturalistic environments. Sci. Rep. 2024, 14, 5637. [Google Scholar] [CrossRef]
- Henane, R.; Buguet, A.; Roussel, B.; Bittel, J. Variations in evaporation and body temperatures during sleep in man. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 1977, 42, 50–55. [Google Scholar] [CrossRef]
- Buguet, A. Sleep under extreme environments: Effects of heat and cold exposure, altitude, hyperbaric pressure and microgravity in space. J. Neurol. Sci. 2007, 262, 145–152. [Google Scholar] [CrossRef]
- Haskell, E.H.; Palca, J.W.; Walker, J.M.; Berger, R.J.; Heller, H.C. Metabolism and thermoregulation during stages of sleep in humans exposed to heat and cold. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 1981, 51, 948–954. [Google Scholar] [CrossRef] [PubMed]
- Okamoto-Mizuno, K.; Tsuzuki, K.; Mizuno, K. Effects of head cooling on human sleep stages and body temperature. Int. J. Biometeorol. 2003, 48, 98–102. [Google Scholar] [CrossRef] [PubMed]
- Troynikov, O.; Watson, C.G.; Nawaz, N. Sleep environments and sleep physiology: A review. J. Therm. Biol. 2018, 78, 192–203. [Google Scholar] [CrossRef] [PubMed]
- Caddick, Z.; Gregory, K.; Arsintescu, L.; Flynn-Evans, E. A review of the environmental parameters necessary for an optimal sleep environment. Build. Environ. 2018, 132, 11–20. [Google Scholar] [CrossRef]
- Lan, L.; Pan, L.; Lian, Z.; Huang, H.; Lin, Y. Experimental study on thermal comfort of sleeping people at different air temperatures. Build. Environ. 2014, 73, 24–31. [Google Scholar] [CrossRef]
- Bischof, W.; Madsen, T.L.; Clausen, J.; Madsen, P.L.; Wildschidtz, G. Sleep and the temperature field of the bed. J. Therm. Biol. 1993, 18, 393–398. [Google Scholar] [CrossRef]
- Obradovich, N.; Migliorini, R.; Mednick, S.C.; Fowler, J.H. Nighttime temperature and human sleep loss in a changing climate. Sci. Adv. 2017, 3, e1601555. [Google Scholar] [CrossRef] [PubMed]
- Okamoto-Mizuno, K.; Mizuno, K. Effects of thermal environment on sleep and circadian rhythm. J. Physiol. Anthropol. 2012, 31, 14. [Google Scholar] [CrossRef]
- Muzet, A.; Libert, J.P.; Candas, V. Ambient temperature and human sleep. Experientia 1984, 40, 425–429. [Google Scholar] [CrossRef]
- Tsuzuki, K.; Okamoto-Mizuno, K.; Mizuno, K. Effects of humid heat exposure on sleep, thermoregulation, melatonin, and microclimate. J. Therm. Biol. 2004, 29, 31–36. [Google Scholar] [CrossRef]
- Raymann, R.J.; Swaab, D.F.; Van Someren, E.J. Cutaneous warming promotes sleep onset. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2005, 288, R1589–R1597. [Google Scholar] [CrossRef]
- Macpherson, R.K. Thermal stress and thermal comfort. Ergonomics 1973, 16, 611–622. [Google Scholar] [CrossRef]
- Tsang, T.W.; Mui, K.W.; Wong, L.T. Investigation of thermal comfort in sleeping environment and its association with sleep quality. Build. Environ. 2021, 187, 107406. [Google Scholar] [CrossRef]
- Zheng, G.; Li, K.; Wang, Y. The Effects of High-Temperature Weather on Human Sleep Quality and Appetite. Int. J. Environ. Res. Public Health 2019, 16, 270. [Google Scholar] [CrossRef]
- Aijazi, A.; Parkinson, T.; Zhang, H.; Schiavon, S. Passive and low-energy strategies to improve sleep thermal comfort and energy resilience during heat waves and cold snaps. Sci. Rep. 2024, 14, 12568. [Google Scholar] [CrossRef] [PubMed]
- Okamoto-Mizuno, K.; Tsuzuki, K.; Ohshiro, Y.; Mizuno, K. Effects of an electric blanket on sleep stages and body temperature in young men. Ergonomics 2005, 48, 749–757. [Google Scholar] [CrossRef] [PubMed]
- Lan, L.; Tsuzuki, K.; Liu, Y.F.; Lian, Z.W. Thermal environment and sleep quality: A review. Energy Build. 2017, 149, 101–113. [Google Scholar] [CrossRef]
- Hong, J.; Tran, H.H.; Jung, J.; Jang, H.; Lee, D.; Yoon, I.-Y.; Hong, J.K.; Kim, J.-W. End-to-End Sleep Staging Using Nocturnal Sounds from Microphone Chips for Mobile Devices. Nat. Sci. Sleep 2022, 14, 1187–1201. [Google Scholar] [CrossRef]
- Kim, J.W.; Kim, S.; Cho, E.S.; Kyung, H.; Park, S.K.; Hong, J.; Lee, D.; Oh, J.; Yoon, I.-Y. Evaluation of sound-based sleep stage prediction in shared sleeping settings. Sleep Med. 2025, 132, 106533. [Google Scholar] [CrossRef]
- Harding, E.C.; Franks, N.P.; Wisden, W. The Temperature Dependence of Sleep. Front. Neurosci. 2019, 13, 336. [Google Scholar] [CrossRef]
- McCabe, S.M.; Abbiss, C.R.; Libert, J.-P.; Bach, V. Functional links between thermoregulation and sleep in children with neurodevelopmental and chronic health conditions. Front. Psychiatry 2022, 13, 866951. [Google Scholar] [CrossRef]
- Fan, X.; Shao, H.; Sakamoto, M.; Kuga, K.; Lan, L.; Wyon, D.P.; Ito, K.; Bivolarova, M.P.; Liao, C.; Wargocki, P. The effects of ventilation and temperature on sleep quality and next-day work performance: Pilot measurements in a climate chamber. Build. Environ. 2022, 209, 108666. [Google Scholar] [CrossRef]
- Johnson, D.A.; Jackson, C.L.; Guo, N.; Sofer, T.; Laden, F.; Redline, S. Perceived home sleep environment: Associations of household-level factors and in-bed behaviors with actigraphy-based sleep duration and continuity in the Jackson Heart Sleep Study. Sleep 2021, 44, zsab163. [Google Scholar] [CrossRef]
- Goldstein, A.N.; Walker, M.P. The role of sleep in emotional brain function. Annu. Rev. Clin. Psychol. 2014, 10, 679–708. [Google Scholar] [CrossRef]
- Ngarambe, J.; Yun, G.Y.; Lee, K.; Hwang, Y. Effects of Changing Air Temperature at Different Sleep Stages on the Subjective Evaluation of Sleep Quality. Sustainability 2019, 11, 1417. [Google Scholar] [CrossRef]
- Joshi, S.S.; Lesser, T.J.; Olsen, J.W.; O’Hara, B.F. The importance of temperature and thermoregulation for optimal human sleep. Energy Build. 2016, 131, 153–157. [Google Scholar] [CrossRef]
- Rohles, F.H.; Munson, D.M. Sleep and the sleep environment temperature. J. Environ. Psychol. 1981, 1, 207–214. [Google Scholar] [CrossRef]
- Alosta, M.R.; Oweidat, I.; Alsadi, M.; Alsaraireh, M.M.; Oleimat, B.; Othman, E.H. Predictors and disturbances of sleep quality between men and women: Results from a cross-sectional study in Jordan. BMC Psychiatry 2024, 24, 200. [Google Scholar] [CrossRef] [PubMed]
- Dorsey, A.; de Lecea, L.; Jennings, K.J. Neurobiological and Hormonal Mechanisms Regulating Women’s Sleep. Front. Neurosci. 2020, 14, 625397. [Google Scholar] [CrossRef] [PubMed]
- Rasch, B.; Born, J. About sleep’s role in memory. Physiol. Rev. 2013, 93, 681–766. [Google Scholar] [CrossRef]
- Riemann, D.; Krone, L.B.; Wulff, K.; Nissen, C. Sleep, insomnia, and depression. Neuropsychopharmacology 2020, 45, 74–89. [Google Scholar] [CrossRef]
- Bigalke, J.A.; Cleveland, E.L.; Barkstrom, E.; Gonzalez, J.E.; Carter, J.R. Core body temperature changes before sleep are associated with nocturnal heart rate variability. J. Appl. Physiol. 2023, 135, 136–145. [Google Scholar] [CrossRef]
- Gonnissen, H.K.; Mazuy, C.; Rutters, F.; Martens, E.A.; Adam, T.C.; Westerterp-Plantenga, M.S. Sleep architecture when sleeping at an unusual circadian time and associations with insulin sensitivity. PLoS ONE 2013, 8, e72877. [Google Scholar] [CrossRef]
- Trotti, L.M. Waking up is the hardest thing I do all day: Sleep inertia and sleep drunkenness. Sleep Med. Rev. 2017, 35, 76–84. [Google Scholar] [CrossRef]
Repeated-Measures ANOVA Analysis | Post Hoc Analysis | ||||||
---|---|---|---|---|---|---|---|
Parameters | Control | CTC | RTA | p-Value | Control vs. CTC | Control vs. RTA | CTC vs. RTA |
Total sleep time (m) | 356.2 ± 54.3 | 365.2 ± 67.7 | 383.2 ± 60.1 | 0.030 | 0.856 | 0.025 | 0.054 |
Sleep efficiency (%) | 82.8 ± 12.3 | 83.1 ± 14.7 | 87.3 ± 13.0 | 0.030 | 0.900 | 0.004 | 0.010 |
Wake after sleep onset (m) | 58.2 ± 41.5 | 64.6 ± 57.1 | 49.0 ± 54.9 | 0.067 | 0.326 | 0.237 | 0.041 |
Sleep onset latency (m) | 16.3 ± 33.6 | 8.4 ± 7.4 | 8.3 ± 6.5 | 0.383 | 0.603 | 0.161 | 0.903 |
REM latency (m) | 141.8 ± 73.7 | 113.5 ± 59.3 | 110.4 ± 60.2 | 0.002 | 0.052 | 0.020 | 0.710 |
Light sleep (%) | 75.8 ± 8.5 | 72.0 ± 10.2 | 67.9 ± 10.1 | 0.002 | 0.341 | 0.011 | 0.264 |
Deep sleep (%) | 8.1 ± 14.7 | 9.1 ± 6.2 | 11.4 ± 8.0 | 0.482 | 0.945 | 0.486 | 0.685 |
REM sleep (%) | 17.7 ± 6.1 | 18.0 ± 5.7 | 20.8 ± 5.0 | 0.006 | 0.963 | 0.115 | 0.191 |
Repeated-Measures ANOVA Analysis | Post Hoc Analysis | ||||||
---|---|---|---|---|---|---|---|
Parameters | Control | CTC | RTA | p-Value | Control vs. CTC | Control vs. RTA | CTC vs. RTA |
Males (n = 13) | |||||||
Total sleep time (m) | 341.1 ± 54.7 | 339.3 ± 79.4 | 370.9 ± 76.0 | 0.089 | 0.998 | 0.564 | 0.526 |
Sleep efficiency (%) | 79.3 ± 13.1 | 77.2 ± 17.1 | 85.1 ± 16.7 | 0.001 | 0.497 | 0.017 | 0.001 |
Wake after sleep onset (m) | 68.5 ± 42.5 | 90.2 ± 63.6 | 62.1 ± 69.6 | 0.062 | 0.650 | 0.963 | 0.489 |
Sleep onset latency (m) | 21.0 ± 44.2 | 8.1 ± 8.9 | 6.8 ± 6.4 | 0.066 | 0.799 | 0.068 | 0.273 |
REM latency (m) | 143.3 ± 80.8 | 112.3 ± 71.9 | 103.6 ± 76.4 | 0.001 | 0.066 | 0.018 | 0.297 |
Light sleep (%) | 76.5 ± 8.6 | 74.1 ± 12.3 | 68.9 ± 11.9 | 0.170 | 0.861 | 0.226 | 0.485 |
Deep sleep (%) | 9.1 ± 18.9 | 7.6 ± 6.6 | 10.7 ± 8.1 | 0.859 | 0.954 | 0.950 | 0.823 |
REM sleep (%) | 17.5 ± 7.5 | 16.7 ± 6.7 | 21.3 ± 5.2 | 0.010 | 0.945 | 0.348 | 0.209 |
Females (n = 12) | |||||||
Total sleep time (m) | 372.6 ± 48.8 | 393.3 ± 34.7 | 396.6 ± 30.4 | 0.208 | 0.432 | 0.326 | 0.978 |
Sleep efficiency (%) | 86.6 ± 10.1 | 89.4 ± 7.7 | 89.7 ± 6.2 | 0.490 | 0.701 | 0.653 | 0.997 |
Wake after sleep onset (m) | 45.3 ± 36.8 | 37.6 ± 31.3 | 34.8 ± 25.8 | 0.627 | 0.838 | 0.722 | 0.977 |
Sleep onset latency (m) | 11.8 ± 13.9 | 9.2 ± 5.4 | 10.3 ± 6.2 | 0.646 | 0.795 | 0.920 | 0.964 |
REM latency (m) | 140.2 ± 65.1 | 114.7 ± 41.6 | 117.7 ± 33.7 | 0.297 | 0.380 | 0.339 | 0.505 |
Light sleep (%) | 75.1 ± 8.2 | 69.8 ± 6.7 | 66.7 ± 7.5 | 0.001 | 0.238 | 0.035 | 0.065 |
Deep sleep (%) | 7.1 ± 7.9 | 10.6 ± 5.4 | 12.3 ± 7.8 | 0.011 | 0.489 | 0.220 | 0.848 |
REM sleep (%) | 17.8 ± 4.1 | 19.6 ± 3.9 | 20.3 ± 4.7 | 0.249 | 0.598 | 0.364 | 0.915 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.-W.; Heo, S.; Lee, D.; Hong, J.; Yang, D.; Moon, S. Polysomnographic Evidence of Enhanced Sleep Quality with Adaptive Thermal Regulation. Healthcare 2025, 13, 2521. https://doi.org/10.3390/healthcare13192521
Kim J-W, Heo S, Lee D, Hong J, Yang D, Moon S. Polysomnographic Evidence of Enhanced Sleep Quality with Adaptive Thermal Regulation. Healthcare. 2025; 13(19):2521. https://doi.org/10.3390/healthcare13192521
Chicago/Turabian StyleKim, Jeong-Whun, Sungjin Heo, Dongheon Lee, Joonki Hong, Donghyuk Yang, and Sungeun Moon. 2025. "Polysomnographic Evidence of Enhanced Sleep Quality with Adaptive Thermal Regulation" Healthcare 13, no. 19: 2521. https://doi.org/10.3390/healthcare13192521
APA StyleKim, J.-W., Heo, S., Lee, D., Hong, J., Yang, D., & Moon, S. (2025). Polysomnographic Evidence of Enhanced Sleep Quality with Adaptive Thermal Regulation. Healthcare, 13(19), 2521. https://doi.org/10.3390/healthcare13192521