Landscape Dynamics of Cat Tien National Park and the Ma Da Forest Within the Dong Nai Biosphere Reserve, Socialist Republic of Vietnam
Abstract
1. Introduction
- To examine the dynamics of the EVI vegetation index and land cover;
- To calculate landscape metrics and assess the fragmentation of natural landscapes; and
- To analyze the spatio-temporal dynamics of anthropogenic impact using a Human Disturbance Index (HDI).
2. Materials and Methods
2.1. Study Area
2.2. Data Processing
2.2.1. Research Framework
2.2.2. Remote Sensing Data
2.2.3. Index Calculation
2.2.4. Land Cover Type Data
CCI Land Cover Data
ESRI Land Cover Data
Using the Random Forest (RF) Algorithm
2.2.5. Classification of the Land Cover
2.2.6. Calculation of Landscape Metrics and Fragmentation Index
2.2.7. Calculation of the Human Disturbance Index
2.3. Field Surveys
3. Results
3.1. Analysis of EVI
3.2. Analysis of Land Cover
3.2.1. Land Cover CCI Data
3.2.2. ESRI Land Cover Database
3.2.3. Land Cover Using the Random Forest (RF) Algorithm
3.3. Analysis of Landscape Metrics
3.3.1. Analysis and Dynamics of Landscape Metrics
3.3.2. Landscape Metrics of Functional Zones of the Biosphere Reserve
3.3.3. Dynamics of the Human Disturbance Index
4. Discussion
4.1. The Structural Changes in the Landscapes
4.2. Dynamics of Landscapes of Different Functional Zones
4.3. Anthropogenic Factors of Landscape Dynamics
4.4. Management Recommendations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
RS | Remote sensing |
EVI | Enhanced Vegetation Index |
ESRI | Environmental Systems Research Institute |
NDVI | Normalized Difference Vegetation Index |
LULC | land use/land cover |
HDI | Human Disturbance Index |
GEE | Google Earth Engine |
API | Application Programming Interface |
NDBI | Normalized Difference Built-up Index |
MNDWI | Modified Normalized Difference Water Index |
BSI | Bare Soil Index |
CA | Class Area |
PLAND | Percentage of Landscape |
NP | Number of Patches |
LPI | Largest Patch Index |
ED | Edge Density |
HI | Hemeroby Index |
Appendix A
Land Cover | Dipterocarp Forest | Degraded Forest | Bamboo | Lager- Stroemia Forest | Grassland | Plantation and Fruit Trees | Agriculture Land | Bare Soil | Build Up Areas | Water |
---|---|---|---|---|---|---|---|---|---|---|
Dipterocarp forest | 26,536 | 5123 | 60 | 0 | 0 | 269 | 0 | 0 | 0 | 0 |
Degraded forest | 5123 | 5,319,024 | 178,260 | 59,810 | 6365 | 70,212 | 15,289 | 11 | 507 | 2185 |
Bamboo | 60 | 178,260 | 2,292,754 | 33,879 | 5170 | 87,634 | 32,248 | 33 | 891 | 2032 |
Lagerstroemia forest | 0 | 59,810 | 33,879 | 1,001,552 | 4813 | 19,931 | 8189 | 0 | 135 | 495 |
Grassland | 0 | 6365 | 5170 | 4813 | 380,562 | 27,900 | 29,845 | 9 | 4863 | 1286 |
Plantation and fruit trees | 269 | 70,212 | 87,634 | 19,931 | 27,900 | 7,698,084 | 137,303 | 130 | 85,271 | 28,729 |
Agriculture land | 0 | 15,289 | 32,248 | 8189 | 29,845 | 137,303 | 2,984,760 | 3 | 25,765 | 15,289 |
Bare soil | 0 | 11 | 33 | 0 | 9 | 130 | 3 | 496 | 6 | 0 |
Build up areas | 0 | 507 | 891 | 135 | 4863 | 85,271 | 25,765 | 6 | 541,580 | 1150 |
Water | 0 | 2185 | 2032 | 495 | 1286 | 28,729 | 15,289 | 0 | 1150 | 1,442,900 |
References
- Gardner, T.A.; Barlow, J.; Chazdon, R.; Ewers, R.M.; Harvey, C.A.; Peres, C.A.; Sodhi, N.S. Prospects for tropical forest biodiversity in a human-modified world. Ecol. Lett. 2009, 12, 561–582. [Google Scholar] [CrossRef]
- Laurance, W.F.; Sayer, J.; Cassman, K.G. Agricultural expansion and its impacts on tropical nature. Trends Ecol. Evol. 2013, 29, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Barlow, J.; Lennox, G.D.; Ferreira, J.; Berenguer, E.; Lees, A.C.; Nally, R.M.; Thomson, J.R.; de Barros Ferraz, S.F.; Louzada, J.; Oliveira, V.H.F.; et al. Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation. Nature 2016, 535, 144–147. [Google Scholar] [CrossRef] [PubMed]
- Whitmore, T.C. An Introduction to Tropical Rain Forests; Clarendon Press: Oxford, UK, 1990; 226p. [Google Scholar]
- Pan, Y.; Birdsey, R.A.; Fang, J.; Houghton, R.; Kauppi, P.E.; Kurz, W.A.; Phillips, O.L.; Shvidenko, A.; Lewis, S.L.; Canadell, J.G.; et al. A large and persistent carbon sink in the world’s forests. Science 2011, 333, 988–993. [Google Scholar] [CrossRef] [PubMed]
- Gibbs, H.K.; Ruesch, A.S.; Achard, F.; Clayton, M.K.; Holmgren, P.; Ramankutty, N.; Foley, J.A. Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s. Proc. Natl. Acad. Sci. USA 2010, 107, 16732–16737. [Google Scholar] [CrossRef]
- Obani, I.P.; Obani, Z.I.; Anaeto, P.F.C.; Akroh, T.O.; Nwachukwu, C.S. Impact of Deforestation on Carbon Emissions: A Data-Driven Study of the Amazon and Southeast Asia. Eur. J. Life Saf. Stab. 2025, 50, 17–36. [Google Scholar]
- Nguyen, T.T.H.; Singh, R. (De)Forestation in Vietnam: A political ecology perspective. In E3S Web of Conferences; EDP Sciences: Les Ulis, France, 2020; Volume 203, p. 03013. [Google Scholar]
- Dang, T.K.P.; Van Der Zouwen, M.; Arts, B. Challenges of forest governance: The case of forest rehabilitation in Vietnam. Public Organ. Rev. 2019, 19, 425–452. [Google Scholar] [CrossRef]
- Moraes, M.C.P.; Mello, K.; Toppa, R.H. Protected areas and agricultural expansion: Biodiversity conservation versus economic growth in the Southeast of Brazil. J. Environ. Manag. 2017, 188, 73–84. [Google Scholar] [CrossRef]
- Marsh, C.; Turner, E.; Blonder, B.; Bongalov, B.; Both, S.; Cruz, R.; Elias, D.; Hemprich-Bennett, D.; Jotan, P.; Kemp, V.; et al. Tropical forest clearance impacts biodiversity and function, whereas logging changes structure. Science 2025, 387, 171–175. [Google Scholar] [CrossRef]
- Numata, S.; Yamaguchi, K.; Shimizu, M.; Sakurai, G.; Morimoto, A.; Alias, N.; Azman, N.Z.N.; Hosaka, T.; Satake, A. Impacts of climate change on reproductive phenology in tropical rainforests of Southeast Asia. Commun. Biol. 2022, 5, 311. [Google Scholar] [CrossRef]
- Crowley, M.A.; Cardille, J.A. Remote sensing’s recent and future contributions to landscape ecology. Curr. Landsc. Ecol. Rep. 2020, 5, 45–57. [Google Scholar] [CrossRef]
- Huete, A.R.; Didan, K.; Shimabukuro, Y.E.; Ratana, P.; Saleska, S.R.; Hutyra, L.R.; Yang, W.; Nemani, R.R.; Myneni, R. Amazon rainforests green-up with sunlight in dry season. Geophys. Res. Lett. 2006, 33, 1–4. [Google Scholar] [CrossRef]
- Riitters, K.; Wickham, J.; O’Neill, R.; Jones, B.; Smith, E. Global-scale patterns of forest fragmentation. Conserv. Ecol. 2000, 4, 3. [Google Scholar] [CrossRef]
- McGarigal, K.; Cushman, S.A.; Ene, E. FRAGSTATS v4: Spatial Pattern Analysis Program for Categorical and Continuous Maps; University of Massachusetts: Amherst, MA, USA, 2012. [Google Scholar]
- Grizzetti, B.; Lanzanova, D.; Liquete, C.; Reynaud, A.; Cardoso, A.C. Assessing water ecosystem services for water resource management. Environ. Sci. Policy 2016, 61, 194–203. [Google Scholar] [CrossRef]
- Wellmann, T.; Haase, D.; Knapp, S.; Salbach, C.; Selsam, P.; Lausch, A. Urban land use intensity assessment: The potential of spatio-temporal spectral traits with remote sensing. Ecol. Indic. 2018, 85, 190–203. [Google Scholar] [CrossRef]
- Jalas, J. Hemerobe und hemerochore Pflanzenarten in der zentralen borealen Zone Finnlands. Ann. Bot. Soc. Zool.-Bot. Fenn. Vanamo 1955, 26, 1–100. [Google Scholar]
- Walz, U.; Stein, C. Indicators of hemeroby for the monitoring of landscapes in Germany. J. Nat. Conserv. 2014, 22, 279–289. [Google Scholar] [CrossRef]
- Vietnam National Authority of Tourism. Dong Nai Biosphere Reserve Gets World Recognition. Available online: https://vietnamtourism.gov.vn/en/post/4756 (accessed on 5 October 2025).
- Deshcherevskaya, O.A.; Avilov, V.K.; Ba Duy, D.; Cong Huan, T.; Kurbatova, J.A. Modern Climate of the Cát Tiên National Park (Southern Vietnam): Climatological Data for Ecological Studies. Izv. Atmos. Ocean. Phys. 2013, 49, 819–838. [Google Scholar] [CrossRef]
- Averyanov, L.V.; Phan, K.L.; Nguyen, T.H.; Harder, D.K. Phytogeographic review of Vietnam and adjacent areas of Eastern Indochin. Komarovia 2003, 3, 1–83. [Google Scholar]
- Liu, H.Q.; Huete, A.R. A feedback based modification of the NDV I to minimize canopy background and atmospheric noise. IEEE Trans. Geosci. Remote Sens. 1995, 33, 457–465. [Google Scholar] [CrossRef]
- Liu, Y.; Meng, Q.; Zhang, L.; Wu, C. NDBSI: A normalized difference bare soil index for remote sensing to improve bare soil mapping accuracy in urban and rural areas. Catena 2022, 214, 106265. [Google Scholar] [CrossRef]
- Gao, B.-C. NDWI—A Normalized Difference Water Index for Remote Sensing of Vegetation Liquid Water From Space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Rikimaru, A.; Roy, P.S.; Miyatake, S. Tropical forest cover density mapping. Trop. Ecol. 2024, 3, 39–47. [Google Scholar]
- Sovann, C.; Tagesson, T.; Vestin, P.; Sakhoeun, S.; Kim, S.; Kok, S.; Olin, S. Characteristics of ecosystems under various anthropogenic impacts in a tropical forest region of Southeast Asia. EGUsphere 2025, 2025, 1–44. [Google Scholar] [CrossRef]
- Gu, Z.; Zhang, Z.; Yang, J.; Wang, L. Quantifying the Influences of Driving Factors on Vegetation EVI Changes Using Structural Equation Model: A Case Study in Anhui Province, China. Remote Sens. 2022, 14, 4203. [Google Scholar] [CrossRef]
- Zhang, Q.; Cao, G.; Zhao, M.; Zhang, Y. kNDVI Spatiotemporal Variations and Climate Lag on Qilian Southern Slope: Sen–Mann–Kendall and Hurst Index Analyses for Ecological Insights. Forests 2025, 16, 307. [Google Scholar] [CrossRef]
- Deng, B.; Liu, C.; Zhang, E.; He, M.; Li, Y.; Duan, X. Satellite Observations Reveal Northward Vegetation Greenness Shifts in the Greater Mekong Subregion over the Past 23 Years. Remote Sens. 2024, 16, 3302. [Google Scholar] [CrossRef]
- He, B.; Wu, X.; Liu, K.; Yao, Y.; Chen, W.; Zhao, W. Trends in Forest Greening and Its Spatial Correlation with Bioclimatic and Environmental Factors in the Greater Mekong Subregion from 2001 to 2020. Remote Sens. 2022, 14, 5982. [Google Scholar] [CrossRef]
- ESA. Land Cover CCI Product User Guide Version 2; Technical Report; ESA: Paris, France, 2017; Available online: https://maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdf (accessed on 15 June 2025).
- ArcGIS Living Atlas of the World. Land Cover. Available online: https://livingatlas.arcgis.com/landcover/ (accessed on 25 September 2025).
- Gómez-Fernández, D.; Salas Lopez, R.; Zabaleta-Santisteban, J.; Medina-Medina, A.; Goñas, M.; Silva-López, J.; Oliva-Cruz, M.; Rojas Briceño, N.B. Landsat images and GIS techniques as key tools for historical analysis of landscape change and fragmentation. Ecol. Inform. 2024, 82, 102738. [Google Scholar] [CrossRef]
- Karra, K.; Kontgis, C.; Statman-Weil, Z.; Mazzariello, J.C.; Mathis, M.; Brumby, S.P. Global Land Use/Land Cover with Sentinel 2 and Deep Learning; IEEE: Manhattan, NY, USA, 2021; pp. 4704–4707. [Google Scholar]
- Kuznetsov, A.N. Tropical Dipterocarp Forest: On the Example of a Closed Tall Wet Lowland Dipterocarp Forest of the Ma Da Massif, Southern Vietnam; Pavlov, V.N., Ed.; GEOS: Moscow, Russia, 2003; 140p. (In Russian) [Google Scholar]
- Li, J.; Zhou, Y.; Li, Q.; Yi, S.; Peng, L. Exploring the effects of land use changes on the landscape pattern and soil erosion of Western Hubei Province from 2000 to 2020. Int. J. Environ. Res. Public Health 2022, 19, 1571. [Google Scholar] [CrossRef]
- McGarigal, K. FRAGSTATS Help; University of Massachusetts: Amherst, MA, USA, 2015; p. 182. [Google Scholar]
- Furtado, L.S.; Pereira, R.V.S.; de Souza, E.B. Hemeroby mapping of the Belém landscape in Eastern Amazon and impact study of urbanization on the local climate. Urban. Sci. 2024, 8, 15. [Google Scholar] [CrossRef]
- Kim, D.; Son, Y. An assessment of landscape perception using a normalized naturalness index in the Greater Seoul Area. Land. 2024, 13, 750. [Google Scholar] [CrossRef]
- Shen, S.; Pu, J.; Xu, C.; Wang, Y.; Luo, W.; Wen, B. Effects of human disturbance on riparian wetland landscape pattern in a coastal region. Remote Sens. 2022, 14, 5160. [Google Scholar] [CrossRef]
- Wang, X.-J.; Liu, G.; Xiang, A.; Qureshi, S.; Li, T.; Dezhuo, S.; Zhang, C. Quantifying the human disturbance intensity of ecosystems and its natural and socioeconomic driving factors in the urban agglomeration in southern China. Environ. Sci. Pollut. Res. 2022, 29, 11493–11509. [Google Scholar] [CrossRef] [PubMed]
- Vogelmann, J.E.; Khoa, P.V.; Lan, D.X.; Shermeyer, J.; Shi, H.; Wimberly, M.C.; Duong, H.T.; Huong, L.V. Assessment of forest degradation in Vietnam using Landsat time series data. Forests 2017, 8, 238. [Google Scholar] [CrossRef]
- Kovyazin, V.; Romanchikov, A.; Anh, D.; Viet, H. Monitoring of forest land use/cover change in Cat Tien National Park, Dong Nai Province, Vietnam using remote sensing and GIS techniques. IOP Conf. Ser. Mater. Sci. Eng. 2020, 817, 012018. [Google Scholar] [CrossRef]
- Stephenson, N.; Das, A.; Condit, R.; Russo, S.; Baker, P.; Beckman, N.; Coomes, D.; Lines, E.; Morris, W.; Rüger, N.; et al. Rate of tree carbon accumulation increases continuously with tree size. Nature 2014, 507, 90–93. [Google Scholar] [CrossRef]
- Hayward, R.; Banin, L.; Burslem, D.; Chapman, D.; Philipson, C.; Cutler, M.; Reynolds, G.; Nilus, R.; Dent, D. Three decades of post-logging tree community recovery in naturally regenerating and actively restored dipterocarp forest in Borneo. For. Ecol. Manag. 2021, 488, 119036. [Google Scholar] [CrossRef]
- Nguyen, D.H.; Ngo, C.Z.; Dang, H.K.; Kuznetsov, A.N. Change in natural and anthropogenic landscapes in the Ngoc Linh Nature Reserve, Central Vietnam. Biodivers. Sustain. Dev. 2024, 9, 49–65. (In Russian) [Google Scholar]
- Thien, B.B.; Phuong, V.T.; Ioshpa, A.R. Assessing the environmental destruction in forest cover using landscape metrics and spatial analysis in Quang Nam province, Vietnam. Environ. Earth Sci. 2025, 84, 360. [Google Scholar] [CrossRef]
- Cat Tuong, T.T.; Tani, H.; Wang, X.; Quang Thang, N. Semi-supervised classification and landscape metrics for mapping and spatial pattern change analysis of tropical forest types in Thua Thien Hue Province, Vietnam. Forests 2019, 10, 673. [Google Scholar] [CrossRef]
Data Used | Characteristics | Application in This Study | The Link |
---|---|---|---|
Landsat 5 Level 2, Collection 2, Tier 1 | Time range: 2000–2001. Spatial resolution: 30 m. Number of images: 46. | Calculation of the Enhanced Vegetation Index (EVI) for the year 2000. Dataset for land cover classification for the year 2000. | https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LT05_C02_T1_L2 (accessed on 15 August 2025) |
Landsat 8 Level 2, Collection 2, Tier 1 | Time range: 2024–2025. Spatial resolution: 30 m. Number of images: 52. | Calculation of the Enhanced Vegetation Index (EVI) for the year 2024. Dataset for land cover classification for the year 2024. | https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC08_C02_T1_L2 (accessed on 15 August 2025) |
MOD13Q1.061 Terra Vegetation Indices 16-Day Global 250 m | Time range: 2000–2024. Spatial resolution: 250 m. Annual analysis was limited to the dry season (November–April) to avoid cloud cover and atmospheric distortions. Image collection: 587. | Dataset for the calculation of the Mann–Kendall test and Sen’s slope to track the dynamics of the Enhanced Vegetation Index (EVI) for the period 2000–2024. | https://developers.google.com/earth-engine/datasets/catalog/MODIS_061_MOD13Q1 (accessed on 15 August 2025) |
CCI Land cover | Time range: 1992–2022. Spatial resolution: 300 m. | Dataset for land cover dynamics analysis for the period 2017–2024. | https://esa-landcover-cci.org/ (accessed on 15 August 2025) |
ESRI Land cover | Time range: 2017–2024. Spatial resolution: 10 m. | Dataset for land cover dynamics analysis for the period 1992–2022. | https://livingatlas.arcgis.com/landcover/ (accessed on 15 August 2025) |
Spectral Index (I) | Formula | Value Range |
---|---|---|
Enhanced Vegetation Index (EVI) [24] | −1 ≤ I ≤ 1 | |
Normalized Difference Built-up Index (NDBI) [25] | ||
Modified Normalized Difference Water Index (MNDWI) [26] | ||
Bare Soil Index (BSI) [27] |
Kappa Index | Accuracy | Decision |
---|---|---|
>0.90 | Very high | Acceptable |
0.80–0.90 | High | Acceptable |
0.60–0.79 | Moderate | Depends on application |
<0.50 | Low | Not acceptable |
Land Cover CCI | Land Cover ESRI | Classificated Land Cover |
---|---|---|
Rainfed cropland Irrigated cropland | Agricultural land | Agricultural land |
Tree cover, needle-leaved, evergreen, closed to open (>15%) Tree cover, broadleaved, evergreen, closed to open (>15%) Tree cover, broadleaved, deciduous, closed to open (>15%) | Tree vegetation | Dipterocarp forest Lagerstroemia forest Degraded forest Bamboo Plantation and fruit trees |
Grassland | Herbaceous vegetation | Grassland |
Build up | Built-up areas | Urban areas |
Water | Water bodies Aquatic vegetation | Water |
- | Bare soil | Bare soil |
Mosaic tree and shrub (>50%)/herbaceous cover (<50%) | - | - |
Shrubland | - | - |
Evergreen shrubland | - | - |
Tree cover, flooded, saline water | - | - |
Shrub or herbaceous cover, flooded, fresh-saline or brakish water | - | - |
Mosaic cropland (>50%)/natural vegetation (tree, shrub, herbaceous cover) | - | - |
Mosaic natural vegetation (tree, shrub, herbaceous cover) (>50%)/cropland (<50%) | - | - |
Metrics Name | Description | Formula | Value Range | Unit |
---|---|---|---|---|
Class area (CA) | CA equals the sum of the areas (m2) of all patches of the corresponding patch type, divided by 10,000 (to convert to hectares); that is, total class area. | aij = area (m2) of patch ij. | CA > 0, without limit | ha |
Percentage of Landscape (PLAND) | PLAND equals the sum of the areas (m2) of all patches of the corresponding patch type, divided by total landscape area (m2), multiplied by 100 (to convert to a percentage); in other words, PLAND equals the percentage the landscape comprising the corresponding patch type. Note, total landscape area (A) includes any internal background present. | , A—Total landscape area (m2). | 0 < PLAND ≦ 100 | % |
Number of patches (NP) | NP equals the number of patches of the corresponding patch type (class). An increase in NP indicates greater fragmentation, as the same land cover class is divided into a larger number of smaller patches. | , ni—number of patches in the landscape of patch type (class) | NP ≥ 1, without limit | - |
Largest patch index (LPI) | LPI equals the area (m2) of the largest patch of the corresponding patch type divided by total landscape area, multiplied by 100 (to convert to a percentage); in other words, LPI equals the percentage of the landscape comprised by the largest patch. A high LPI value signifies the presence of a large, continuous patch, whereas a low value indicates a highly fragmented landscape. | 0 < LPI ≤ 100 | % | |
Edge destiny (ED) | ED equals the sum of the lengths (m) of all edge segments involving the corresponding patch type, divided by the total landscape area (m2), multiplied by 10,000 (to convert to hectares). Higher ED values reflect a more dissected landscape and increased fragmentation. A large number of edge lines corresponds to numerous small patches and high isolation. | , E—total length (m) of edge in landscape | ED ≥ 0, without limit | m ha−1 |
Landscape Shape Index (LSI) | Landscape shape index provides a standardized measure of total edge or edge density that adjusts for the size of the landscape. LSI increases without limit as landscape shape becomes more irregular and/or as the length of edge within the landscape increases. | E* = total length (m) of edge in landscape; includes the entire landscape boundary and some or all background edge segments. A = total landscape area (m2). | LSI ≥ 1 | - |
Mean patch size (AREA_MN) | AREA_MN equals the sum of the areas (m2) of all patches of the corresponding patch type, divided by the number of patches of the same type, divided by 10,000 (to convert to hectares). Lower AREA_MN values indicate a more fragmented landscape, where large patches are subdivided into multiple smaller ones. | AREA_MN > 0 | ha | |
Shape index (SHAPE) | SHAPE equals patch perimeter (m) divided by the square root of patch area (m2), adjusted by a constant to adjust for a circular standard (vector) or square standard (raster). Higher SHAPE values indicate more complex patch shapes, often associated with fragmented and dissected areas. Lower SHAPE values correspond to more compact and regular patches. | pii—perimeter (m) of patch ij | SHAPE ≥ 1, without limit | - |
MESH (Effective Mesh Size) | MESH equals 1 divided by the total landscape area (m) multiplied by the sum of 2 patch area (m) squared, summed across all patches in the landscape. Note, total 2 landscape area (A) includes any internal background present. The effective mesh size is based on the probability of two points chosen randomly in a region will be connected. The more barriers in the landscape, the lower the probability that the two points will be connected, and the lower the effective mesh size. If a landscape is fragmented evenly into patches all of size mesh, then the probability of being connected is the same as for the fragmentation pattern under investigation. It can also be interpreted as the expected size of the patch a point will be located in that is chosen randomly anywhere in the region, or as the ability of two animals of the same species –placed randomly in a region—to find each other. | Aij = area (m) of patch ij. A = total landscape area (m2). | cell size ≦ MESH ≦ total landscape area (A) | ha |
Degree of Hemeroby | LULC Type | Hemeroby Index (HI) |
---|---|---|
Ahemerobic | Primary forests | 0.1 |
Oligohemerobic | Natural water bodies | 0.2 |
Oligohemerobic | Disturbed forests | 0.35 |
Mesohemerobi | Meadows and herbaceous vegetation | 0.40 |
β-Euhemerobic | Gardens and plantations | 0.55 |
β-Euhemerobic | Artificial water bodies | 0.55 |
β-Euhemerobic | Irrigated lands | 0.65 |
β-Euhemerobic | Logged/deforested areas lacking vegetation cover | 0.7 |
Polyhemerobic | Build up areas and roads | 0.90 |
Land Cover | 1992 | 2002 | 2012 | 2022 |
---|---|---|---|---|
Rainfed cropland | 552.0 | 576.3 | 581.7 | 557.8 |
Irrigated cropland | 355.2 | 386.9 | 390.7 | 372.2 |
Mosaic cropland (>50%)/natural vegetation (tree, shrub, herbaceous cover) (<50%) | 244.7 | 310.1 | 335.4 | 316.1 |
Mosaic natural vegetation (tree, shrub, herbaceous cover) (>50%)/cropland (<50%) | 276.6 | 346.0 | 380.2 | 335.0 |
Tree cover, broadleaved, evergreen, closed to open (>15%) | 1178.7 | 623.3 | 500.4 | 530.3 |
Mosaic tree and shrub (>50%)/herbaceous cover (<50%) | 367.9 | 604.6 | 652.2 | 769.9 |
Shrubland | 43.2 | 65.6 | 34.8 | 47.7 |
Evergreen shrubland | 223.2 | 322.3 | 350.8 | 300.3 |
Build up | 1.8 | 2.5 | 10.9 | 22.8 |
Water | 27.9 | 25.2 | 25.2 | 27.0 |
Land Cover | 1992 | 2002 | 2012 | 2022 |
---|---|---|---|---|
Rainfed cropland | 43.7 | 40.6 | 39.8 | 35.2 |
Rainfed cropland | 43.7 | 40.6 | 39.8 | 35.2 |
Irrigated cropland | 30.7 | 32.7 | 31.8 | 29.8 |
Mosaic cropland (>50%)/natural vegetation (tree, shrub, herbaceous cover) (<50%) | 65.7 | 38.6 | 32.0 | 27.2 |
Tree cover, broadleaved, evergreen, closed to open (>15%) | 1118.1 | 1048.3 | 1060.1 | 1051.4 |
Tree cover, needle-leaved, evergreen, closed to open (>15%) | 24.5 | 33.1 | 37.3 | 55.3 |
Shrubland | 159.1 | 220.5 | 205.7 | 200.0 |
Tree cover, needle-leaved, evergreen, closed to open (>15%) | 24.5 | 33.1 | 37.3 | 55.3 |
Land Cover Category | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | 2024 |
---|---|---|---|---|---|---|---|---|
Water bodies | 65.3 | 63.5 | 66.1 | 64.1 | 60.0 | 62.5 | 64.8 | 65.1 |
Tree vegetation | 2116.7 | 2025.2 | 1877.3 | 1986.5 | 1864.7 | 1873.8 | 1732.0 | 1628.4 |
Aquatic vegetation | 16.2 | 10.9 | 6.6 | 6.6 | 3.3 | 4.5 | 5.6 | 4.7 |
Agricultural land | 778.2 | 886.4 | 975.9 | 883.4 | 1008.3 | 1006.7 | 1084.8 | 1165.5 |
Built-up areas | 254.6 | 279.7 | 377.2 | 315.9 | 328.1 | 357.1 | 394.9 | 410.0 |
Herbaceous vegetation | 224.0 | 190.5 | 153.3 | 199.8 | 191.9 | 151.8 | 174.2 | 182.5 |
Land Cover Category | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | 2024 |
---|---|---|---|---|---|---|---|---|
Water bodies | 308.4 | 308.4 | 307.2 | 303.0 | 304.0 | 308.2 | 297.6 | 309.4 |
Tree vegetation | 1338.6 | 1340.4 | 1336.1 | 1333.4 | 1341.2 | 1341.3 | 1341.1 | 1336.6 |
Aquatic vegetation | 14.3 | 10.6 | 7.5 | 4.8 | 6.0 | 7.6 | 4.5 | 8.7 |
Agricultural land | 15.6 | 17.0 | 22.3 | 29.2 | 25.6 | 20.2 | 29.9 | 19.7 |
Built-up areas | 3.7 | 4.0 | 4.8 | 5.4 | 6.4 | 7.0 | 7.3 | 7.5 |
Herbaceous vegetation | 35.6 | 35.8 | 38.5 | 40.6 | 33.1 | 32.0 | 35.9 | 34.3 |
Land Cover | 2000 | 2024 | ||
---|---|---|---|---|
Core Zone | Buffer Zone | Core Zone | Buffer Zone | |
Dipterocarp forest | 6.2 | 0.4 | 6.1 | 1.1 |
Degraded forest | 745.1 | 482.0 | 852.7 | 420.3 |
Bamboo | 350.4 | 481.3 | 265.0 | 327.8 |
Lagerstroemia forest | 63.2 | 4.3 | 132.8 | 121.3 |
Grassland | 10.6 | 4.9 | 13.5 | 90.2 |
Plantation and fruit trees | 240.4 | 1908.5 | 164.2 | 1673.1 |
Agricultural land | 6.8 | 220.7 | 25.1 | 707.2 |
Bare soil | 10.4 | 316.6 | 0.0 | 0.1 |
Build up areas | 0.1 | 9.7 | 1.2 | 147.5 |
Water | 288.0 | 26.6 | 297.0 | 39.4 |
Land Cover | CA, ha | PLAND, % | NP | LPI, % | ED, m/ha | Mean Patch Area, ha | Shape Index |
---|---|---|---|---|---|---|---|
Dipterocarp forest | 704.79 | 0.14 | 121 | 0.01 | 0.31 | 5.82 | 1.42 |
Degraded forest | 124,659.96 | 24.08 | 2762 | 12.94 | 19.37 | 45.13 | 1.56 |
Bamboo | 58,051.62 | 11.22 | 4439 | 1.03 | 19.51 | 13.08 | 1.59 |
Lagerstroemia forest | 24,887.63 | 4.81 | 1699 | 1.05 | 7.30 | 14.65 | 1.60 |
Grassland | 10,159.22 | 1.96 | 1799 | 0.16 | 4.60 | 5.65 | 1.46 |
Plantation and fruit trees | 179,922.03 | 34.76 | 2800 | 10.13 | 26.23 | 64.26 | 1.61 |
Agricultural land | 71,710.90 | 13.85 | 3520 | 4.48 | 15.14 | 20.37 | 1.50 |
Bare soil | 15.16 | 0.0029 | 7 | 0.0009 | 0.01 | 2.17 | 1.36 |
Build up areas | 14,564.93 | 2.81 | 2758 | 0.26 | 6.80 | 5.28 | 1.41 |
Water | 32,940.76 | 6.36 | 352 | 5.51 | 2.93 | 93.58 | 1.90 |
Land Cover | CA, ha | PLAND, % | NP | LPI, % | ED, m/ha | Mean Patch Area, ha | Shape Index |
---|---|---|---|---|---|---|---|
Dipterocarp forest | 664.0 | 0.1 | 184 | 0.0054 | 0.4 | 3.6 | 1.4 |
Degraded forest | 122,777.5 | 23.7 | 2205 | 11.1 | 17.9 | 55.7 | 1.5 |
Bamboo | 83,252.4 | 16.1 | 3340 | 3.2 | 20.2 | 24.9 | 1.6 |
Lagerstroemia forest | 6753.4 | 1.3 | 238 | 1.2 | 1.0 | 28.4 | 1.3 |
Grassland | 1540.7 | 0.3 | 98 | 0.1 | 0.4 | 15.7 | 1.6 |
Plantation and fruit trees | 215,469.7 | 41.6 | 2409 | 30.6 | 15.8 | 89.4 | 1.5 |
Agricultural land | 22,789.4 | 4.4 | 1129 | 1.7 | 4.9 | 20.2 | 1.5 |
Bare soil | 32,797.7 | 6.3 | 493 | 4.7 | 2.5 | 66.5 | 1.5 |
Urban areas | 982.3 | 0.2 | 149 | 0.0 | 0.4 | 6.6 | 1.5 |
Water | 31,474.4 | 6.1 | 174 | 5.5 | 2.2 | 180.9 | 2.1 |
LID | LPI, % | ED | LSI | AREA_MN | MESH | SHDI |
---|---|---|---|---|---|---|
Core area (2000) | 24.4 | 37.7 | 45.3 | 35.3 | 16,949.7 | 1.47 |
Buffer area (2000) | 33.2 | 30.2 | 51.6 | 46.6 | 44,905.2 | 1.34 |
Core area (2024) | 34.0 | 42.0 | 49.8 | 30.7 | 25,640.0 | 1.48 |
Buffer area (2024) | 14.3 | 55.2 | 88.4 | 20.5 | 14,509.3 | 1.54 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lineva, N.; Gorbunov, R.; Kashirina, E.; Gorbunova, T.; Drygval, P.; Pham, C.N.; Kuznetsov, A.; Kuznetsova, S.; Nguyen, D.H.; Dinh, V.A.T.; et al. Landscape Dynamics of Cat Tien National Park and the Ma Da Forest Within the Dong Nai Biosphere Reserve, Socialist Republic of Vietnam. Land 2025, 14, 2003. https://doi.org/10.3390/land14102003
Lineva N, Gorbunov R, Kashirina E, Gorbunova T, Drygval P, Pham CN, Kuznetsov A, Kuznetsova S, Nguyen DH, Dinh VAT, et al. Landscape Dynamics of Cat Tien National Park and the Ma Da Forest Within the Dong Nai Biosphere Reserve, Socialist Republic of Vietnam. Land. 2025; 14(10):2003. https://doi.org/10.3390/land14102003
Chicago/Turabian StyleLineva, Nastasia, Roman Gorbunov, Ekaterina Kashirina, Tatiana Gorbunova, Polina Drygval, Cam Nhung Pham, Andrey Kuznetsov, Svetlana Kuznetsova, Dang Hoi Nguyen, Vu Anh Tu Dinh, and et al. 2025. "Landscape Dynamics of Cat Tien National Park and the Ma Da Forest Within the Dong Nai Biosphere Reserve, Socialist Republic of Vietnam" Land 14, no. 10: 2003. https://doi.org/10.3390/land14102003
APA StyleLineva, N., Gorbunov, R., Kashirina, E., Gorbunova, T., Drygval, P., Pham, C. N., Kuznetsov, A., Kuznetsova, S., Nguyen, D. H., Dinh, V. A. T., Ngo, T. D., Ngo, T. D., & Chuprina, E. (2025). Landscape Dynamics of Cat Tien National Park and the Ma Da Forest Within the Dong Nai Biosphere Reserve, Socialist Republic of Vietnam. Land, 14(10), 2003. https://doi.org/10.3390/land14102003