Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (239)

Search Parameters:
Keywords = transgenerational effects

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 776 KB  
Article
Effects of Sublethal Concentrations of Pyridaben on Development, Reproduction, and Vg Gene Expression in Neoseiulus womersleyi
by Juan Wei, Chengcheng Li, Cancan Song, Xinyue Yang, Chunxian Jiang and Qing Li
Insects 2026, 17(1), 116; https://doi.org/10.3390/insects17010116 - 20 Jan 2026
Abstract
The predatory mite Neoseiulus womersleyi is a key natural enemy in Integrated Pest Management (IPM), but its efficacy is threatened by non-target effects of acaricides like pyridaben. This study evaluated the transgenerational sublethal effects of pyridaben (LC30 and LC50) on [...] Read more.
The predatory mite Neoseiulus womersleyi is a key natural enemy in Integrated Pest Management (IPM), but its efficacy is threatened by non-target effects of acaricides like pyridaben. This study evaluated the transgenerational sublethal effects of pyridaben (LC30 and LC50) on N. womersleyi and explored the role of vitellogenin (Vg) genes. Using two-sex life table analysis, we found that exposure reduced longevity, fecundity, and oviposition period in F0 females, while prolonging immature development and suppressing population growth parameters (r, λ) in F1. Two Vg genes (NwVg1 and NwVg2) were cloned and characterized; their expression was significantly downregulated by pyridaben. RNAi-mediated silencing of NwVg1 or NwVg2 recapitulated the pyridaben-induced reproductive impairments, confirming their functional role. Our results demonstrate that pyridaben imposes multigenerational costs and that its reproductive toxicity is mediated, at least in part, through the suppression of Vg synthesis. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

19 pages, 2280 KB  
Article
Maternal Protein Restriction and Branched-Chain Amino Acid Supplementation Differentially Affect Maternal Energy Balance and Impair Offspring Growth
by Daniela Redrovan, Souvik Patra, Md Tareq Aziz, Matthew W. Gorton, Emily A. Chavez, Scott Frederiksen, Joshua Rowe, Adel Pezeshki and Prasanth K. Chelikani
Nutrients 2026, 18(2), 322; https://doi.org/10.3390/nu18020322 - 20 Jan 2026
Abstract
Background: The increasing prevalence of low-birth-weight (LBW) offspring from obese mothers underscores the need for dietary strategies to mitigate the transgenerational propagation of metabolic diseases. Objectives: We determined whether dietary protein restriction under obesogenic conditions altered maternal energy balance and led to LBW [...] Read more.
Background: The increasing prevalence of low-birth-weight (LBW) offspring from obese mothers underscores the need for dietary strategies to mitigate the transgenerational propagation of metabolic diseases. Objectives: We determined whether dietary protein restriction under obesogenic conditions altered maternal energy balance and led to LBW offspring and whether branched-chain amino acid (BCAA) supplementation improved maternal energy balance and mitigated weight and craniofacial skeletal deficits in offspring. Methods: High-fat-fed obese pregnant Sprague Dawley rats (~8–10 weeks of age, n = 8–11/group) were randomized in study 1 to control high-fat diet (20% protein; HFD), low-protein diet (LP; 5% protein), and LP + BCAA diet (100% BCAA requirements) and in study 2 to control HFD (20% protein), LP (10% protein), and LP + 2BCAA diet (200% BCAA requirements). Post-weaning offspring were fed HFD until 8 weeks of age. Results: Protein restriction promoted hyperphagia and energy expenditure, whereas BCAA supplementation attenuated such hyperphagic effects in pregnancy but not in lactation. Protein restriction reduced maternal body weight in lactation, and although BCAA supplementation did not reverse the weight loss, it enhanced insulin sensitivity and paradoxically reduced offspring survival. Maternal protein restriction reduced offspring body weight and craniofacial bone growth that persisted into adulthood, but BCAA supplementation did not rescue such deficits. Conclusions: Maternal protein restriction in obese dams enhanced maternal energy expenditure but impaired offspring growth and development. Although BCAA supplementation improved maternal energy balance, it was insufficient to reverse the adverse effects of maternal protein restriction on offspring growth under obesogenic conditions. Full article
Show Figures

Figure 1

28 pages, 1005 KB  
Review
Application of Reproductive Toxicity Caused by Endocrine Disruptors in Rotifers: A Review
by Guangyan Liang, Shenyu Liu, Shan Wang and Yuxue Qin
Biology 2026, 15(2), 128; https://doi.org/10.3390/biology15020128 - 11 Jan 2026
Viewed by 195
Abstract
Endocrine-disrupting chemicals (EDCs), widespread in aquatic environments, interfere with endocrine function in organisms and threaten ecosystem stability. Rotifers, critical live feed for marine fish, shrimp, and crab larvae, link EDC-induced reproductive impairment to marine ecosystem stability and aquaculture sustainability. This PRISMA-compliant review synthesizes [...] Read more.
Endocrine-disrupting chemicals (EDCs), widespread in aquatic environments, interfere with endocrine function in organisms and threaten ecosystem stability. Rotifers, critical live feed for marine fish, shrimp, and crab larvae, link EDC-induced reproductive impairment to marine ecosystem stability and aquaculture sustainability. This PRISMA-compliant review synthesizes key findings, consequences, and gaps in EDC–rotifer reproductive toxicity research. Traditional EDCs (heavy metals, per- and polyfluoroalkyl substances (PFASs), phenols, phthalate esters, polybrominated diphenyl ethers (PBDEs), and steroid hormones) and emerging EDCs (disinfection byproducts, microplastics, pharmaceutical metabolites) induce distinct reproductive harm—e.g., Hg2+ shows extreme toxicity (24 h LC50 = 4.51 μg L−1 in Brachionus plicatilis), BDE-47 damages ovaries, and microplastics cause transgenerational delays. Rotifer species and exposure duration affect sensitivity (e.g., BDE-47: 96 h LC50 = 0.163 mg L−1 vs. 24 h LC50 > 22 mg L−1 in B. plicatilis). Oxidative stress is a universal mechanism, and combined EDC exposure produces context-dependent synergistic/antagonistic effects. EDC-induced impairment reduces rotifer population density, alters structure, and propagates through food webs, threatening aquaculture and biodiversity; transgenerational toxicity (e.g., 4-nonylphenol: F1 inhibition 28% vs. 12% in F0) weakens resilience. This review supports EDC risk assessment, with gaps including long-term low-concentration data, transgenerational mechanisms, EDC–microbiome interactions, and emerging PFAS toxicity—priorities for future research. Full article
(This article belongs to the Special Issue Global Fisheries Resources, Fisheries, and Carbon-Sink Fisheries)
Show Figures

Figure 1

16 pages, 1624 KB  
Review
The Impact of Nanoplastics on the Quality of Fish Sperm: A Review
by Hayam Djafar, Saira Naz, Maria Montserrat Rivera Del Alamo, Juan Carlos Balasch and Mariana Teles
Animals 2026, 16(1), 94; https://doi.org/10.3390/ani16010094 - 29 Dec 2025
Viewed by 279
Abstract
Pollution in aquatic ecosystems is intensifying under the combined pressures of climate change and anthropogenic contaminants, with nanoplastics (NPs) emerging as a critical threat to fish reproduction. Although extensive research has demonstrated the physiological impacts of NPs, their direct effects on sperm quality [...] Read more.
Pollution in aquatic ecosystems is intensifying under the combined pressures of climate change and anthropogenic contaminants, with nanoplastics (NPs) emerging as a critical threat to fish reproduction. Although extensive research has demonstrated the physiological impacts of NPs, their direct effects on sperm quality and functionality remain poorly characterized. This review synthesizes evidence from original research articles that specifically examined NPs’ impacts on fish sperm quality and related reproductive endpoints. The findings reveal that NPs consistently impair sperm motility, viability, and fertilization capacity, while inducing oxidative stress, DNA damage, mitochondrial dysfunction, and endocrine disruption. Particle size, surface chemistry, and exposure route were identified as key determinants of toxicity, with direct sperm exposure causing immediate impairments and chronic or maternal transfer exposures leading to systemic and transgenerational effects. Notably, several studies reported reduced offspring survival, altered development, and disrupted gene expression, highlighting the intergenerational risks of NPs contamination. Despite these advances, significant knowledge gaps remain, including limited research on marine wild and cultured fish species, the effects of diverse life histories on NPs toxicity, environmentally relevant exposure levels, and the combined effects of NPs with other stressors. Overall, this review underscores that fish sperm are highly sensitive to NPs pollution, with consequences that extend across generations and threaten population stability, calling for urgent mechanistic and ecologically realistic investigations. Full article
Show Figures

Figure 1

29 pages, 1904 KB  
Article
Transgenerational Entrepreneurial Orientation, Family Involvement, and Succession Planning as Drivers of Long-Term Family Business Sustainability
by Arifin Djakasaputra, Agustinus Purna Irawan and Sarwo Edy Handoyo
Adm. Sci. 2026, 16(1), 10; https://doi.org/10.3390/admsci16010010 - 25 Dec 2025
Viewed by 557
Abstract
This study investigates the role of family involvement and succession planning in shaping the long-term sustainability of family businesses in Indonesia, with a specific focus on the mediating effect of transgenerational entrepreneurial orientation (TEO). This research responds to calls for integrative models that [...] Read more.
This study investigates the role of family involvement and succession planning in shaping the long-term sustainability of family businesses in Indonesia, with a specific focus on the mediating effect of transgenerational entrepreneurial orientation (TEO). This research responds to calls for integrative models that move beyond examining these factors in isolation. Indonesia offers a unique context due to its dominance of family-controlled firms and informal succession traditions, which shape entrepreneurial value transmission across generations. A quantitative approach was employed using survey data from 210 respondents representing active family businesses in Indonesia. Partial least squares structural equation modeling (PLS-SEM) with SmartPLS 4.0 was used to test reliability, validity, and structural relationships. Additional analyses included HTMT for discriminant validity, CVPAT for predictive relevance, and importance–performance map analysis (IPMA) to identify managerial priorities. The results reveal that family involvement and succession planning both exert significant positive effects on long-term family business sustainability, with TEO playing a mediating role. Family involvement strongly enhances both sustainability and entrepreneurial orientation, while succession planning contributes more indirectly through the development of TEO. The IPMA indicates that family leadership in governance and openness to innovation are highly important but underperforming drivers, suggesting key areas for improvement. The model explains 51.9% of the variance in TEO and 48.6% in long-term sustainability, with significant mediation paths (β = 0.092–0.104, p < 0.05). The cross-sectional design limits causal inference, and the focus on Indonesian firms may constrain generalizability to other cultural contexts. Future research could adopt longitudinal and cross-country comparative designs while also examining the role of digital transformation and generational differences in sustaining family firms. The findings highlight the need for Indonesian family firms to professionalize succession planning while strengthening transgenerational entrepreneurial orientation. Practical steps include formal mentoring, clear successor criteria, and embedding innovation and proactiveness in family governance. This study extends the family business literature by conceptualizing TEO as a dynamic capability that bridges family involvement, succession planning, and sustainability. By integrating these perspectives, it offers a more comprehensive understanding of how family firms can achieve resilience and continuity across generations. Full article
(This article belongs to the Special Issue Moving from Entrepreneurial Intention to Behavior)
Show Figures

Figure 1

18 pages, 1787 KB  
Review
The Evolutionary Misfit: Evolution, Epigenetics, and the Rise of Non-Communicable Diseases
by Stefano Amatori
Epigenomes 2025, 9(4), 51; https://doi.org/10.3390/epigenomes9040051 - 13 Dec 2025
Viewed by 811
Abstract
Human life expectancy has risen dramatically in the last century, but this demographic triumph has come at the cost of an explosion of non-communicable diseases (NCDs), threatening the sustainability of healthcare systems in aging, low-fertility societies. Evolutionary medicine provides a framework to understand, [...] Read more.
Human life expectancy has risen dramatically in the last century, but this demographic triumph has come at the cost of an explosion of non-communicable diseases (NCDs), threatening the sustainability of healthcare systems in aging, low-fertility societies. Evolutionary medicine provides a framework to understand, at least in part, this paradox. Many vulnerabilities to disease are not failures of design but the predictable outcomes of evolutionary trade-offs, constraints, and mismatches. Evolutionary mismatch theory explains how traits once advantageous in ancestral environments become maladaptive in modern contexts of abundance, sedentarism, and urbanization. The developmental origins of health and disease (DOHaD) concept describes how epigenetic plasticity in early life can buffer or amplify these mismatches, depending on whether adult environments align with developmental forecasts. Transgenerational epigenetic inheritance, even if still debated in humans, may further influence phenotypic plasticity, increasing or mitigating the mismatch. In evolutionary terms, the theories of mutation accumulation, antagonistic pleiotropy, and the disposable soma explain why longer lifespans, and ecological and social conditions profoundly different from those in which we developed, increase the likelihood that these costs are expressed clinically. Because most NCDs can be prevented and effectively controlled but not cured, efforts should prioritize quality of life for people, families, and communities. At the individual level, aligning lifestyles with evolved biology can mitigate risk, but the greatest leverage lies in population-level interventions. Urban health strategies represent a forward-looking attempt to realign modern environments with human biology. In this way, the concept of the evolutionary misfit becomes not just a diagnosis of maladaptation, but a guide for building healthier, more sustainable societies. Full article
(This article belongs to the Collection Feature Papers in Epigenomes)
Show Figures

Figure 1

21 pages, 3005 KB  
Article
Transgenerational Consequences of Imidacloprid Larval Diet Contamination in the Sheep Blowfly Lucilia sericata (Diptera: Calliphoridae)
by Gabriela Olivares-Castro, Constanza Schapheer, Carlos Guerrero-Bosagna, Ian S. Acuña-Rodríguez and Cristian Villagra
Insects 2025, 16(12), 1265; https://doi.org/10.3390/insects16121265 - 12 Dec 2025
Viewed by 651
Abstract
Pesticides have been extensively used in agriculture, forestry, and veterinary medicine under intensive production systems. Unfortunately, pesticide pollution resulted in a significant decline in non-target organisms, for instance, in detritivores such as necrophagous insects. Even formulations proposed as less harmful alternatives, such as [...] Read more.
Pesticides have been extensively used in agriculture, forestry, and veterinary medicine under intensive production systems. Unfortunately, pesticide pollution resulted in a significant decline in non-target organisms, for instance, in detritivores such as necrophagous insects. Even formulations proposed as less harmful alternatives, such as neonicotinoids like imidacloprid (IMI), have been demonstrated to permeate the trophic chain and trigger severe consequences on non-target species. Here, the intra- and inter-generational effects of a sublethal dose of IMI were explored in the necrophagous greenbottle fly, Lucilia sericata (Meigen, 1826) (Diptera: Calliphoridae). This is because it has been demonstrated that the carcasses of domestic and wild animals can be contaminated with levels of these neonicotinoids. Transgenerational effects, extending up to three generations after a focal application of the pesticide on laboratory-cultivated F1 flies, were investigated in this study. Morphological, demographic, and phenological features were evaluated through various analyses, including general linear mixed models (GLMM) and Haldane units analyses. Although GLMM showed no significant differences between treatments for the multiple traits observed, a significant directional microevolutionary trend of increased average imago and pupal size was identified for the IMI treatment through Haldane unit analysis. This microevolutionary change falls within the threshold of transgenerational phenotypic plasticity, a crucial mechanism for adaptive responses to environmental stressors. Among the possible explanations for this pattern, it is proposed that this is a likely consequence of the triggering of an epigenetic hormetic transgenerational change. This may contribute to explaining the development of adaptation and resistance towards pesticide formulations in a few generations after focal exposure. In addition to this idea, other possible mechanisms and consequences that explain the observed pattern are discussed. Overall, this experiment highlights the concerns of pesticide spillover consequences, even from sublethal doses of these formulations. Full article
(This article belongs to the Section Medical and Livestock Entomology)
Show Figures

Figure 1

27 pages, 1865 KB  
Review
Silent Disruptors: The Multifaceted Impact of Phthalates Across Aquatic Invertebrate and Vertebrate Taxa
by Dario Savoca, Chiara Martino, Antonella Maccotta, Vincenzo Arizza, Diana Amorello, Giuseppe Arrabito and Silvia Orecchio
Appl. Sci. 2025, 15(24), 12937; https://doi.org/10.3390/app152412937 - 8 Dec 2025
Viewed by 511
Abstract
Phthalic acid esters (PAEs) are ubiquitous pollutants with reported endocrine-disruption and multiplex toxic activities in a wide range of invertebrate and vertebrate animals. In the present review, the molecular and physiological effects of phthalate exposure on invertebrates, as well as less characterized vertebrates [...] Read more.
Phthalic acid esters (PAEs) are ubiquitous pollutants with reported endocrine-disruption and multiplex toxic activities in a wide range of invertebrate and vertebrate animals. In the present review, the molecular and physiological effects of phthalate exposure on invertebrates, as well as less characterized vertebrates such as amphibians, reptiles, and mammals, are thoroughly examined. PAEs induce a series of adverse effects, such as reproductive toxicity, oxidative stress, immune system impairment, and neuroendocrine disruption. The effects can extensively vary depending on the species, developmental stage, and environmental conditions, ranging from impaired hormone signaling, developmental malformations, and thyroid impairment in amphibians and reptiles to lipid metabolism disturbances and epigenetic changes in mammals. This review will place particular emphasis on transgenerational effects, mixture toxicity, and chronic low-level exposure. By integrating evidence from in vivo, in vitro, and omics studies, this review defines areas of knowledge gaps and the necessity to integrate these taxa in integrated ecological risk assessments, as well as regulatory policy. Full article
Show Figures

Figure 1

18 pages, 5471 KB  
Article
Comparative Analysis of Symbiotic Bacterial Diversity and Sublethal Effects of Nitenpyram Against Two Different Cotton Aphids
by Wenjie Li, Wei Cao, Xuanling Wei, Dongsheng Hu, Kailong Yuan, Renfu Zhang and Yongsheng Yao
Biology 2025, 14(12), 1684; https://doi.org/10.3390/biology14121684 - 26 Nov 2025
Viewed by 380
Abstract
Symbiotic bacteria in insects are known to play crucial roles in detoxification metabolism and adaptation to host plant secondary metabolites. In the cotton-growing region of Xinjiang, China, the Ap. gossypii and the Ac. gossypii exhibit significant differences in sensitivity or resistance to pesticides. [...] Read more.
Symbiotic bacteria in insects are known to play crucial roles in detoxification metabolism and adaptation to host plant secondary metabolites. In the cotton-growing region of Xinjiang, China, the Ap. gossypii and the Ac. gossypii exhibit significant differences in sensitivity or resistance to pesticides. However, whether their detoxification-related symbiotic bacteria change under insecticide stress remains unclear. This study assessed the toxicity of nitenpyram to both aphid species and the effects of LC20 treatment on their growth, development, and reproduction. Bacterial community dynamics across generations (G0–G2) were analyzed by 16S rRNA gene amplicon sequencing. The LC20 of nitenpyram reduced the longevity and fecundity of the parent generation in both species. In Ap. gossypii, the intrinsic rate of increase (rm), net reproductive rate (R0), and finite rate of increase (λ) increased in the G1–G2 generations, whereas these parameters significantly decreased in Ac. gossypii. By the G3 generation, biological parameters in both species showed no significant differences compared to the control. Nitenpyram disrupted the stability of symbiotic bacterial communities in both aphids. In Ac. gossypii, Sphingomonas, a genus with detoxification potential, was consistently suppressed in G1–G2, while the abundance of the primary symbiont Buchnera initially decreased sharply and subsequently recovered. In contrast, the bacterial community in Ap. gossypii remained largely stable. These findings indicate that sublethal concentrations of nitenpyram exert distinct transgenerational effects on the two aphid species and disrupt the stability of their symbiotic bacterial communities. Full article
(This article belongs to the Special Issue Feature Papers on Toxicology)
Show Figures

Figure 1

36 pages, 1650 KB  
Review
Toxic Effects of Nanoplastics on Animals: Comparative Insights into Microplastic Toxicity
by Kuok Ho Daniel Tang
Environments 2025, 12(11), 429; https://doi.org/10.3390/environments12110429 - 9 Nov 2025
Cited by 1 | Viewed by 2279
Abstract
Nanoplastics have emerged as widespread environmental contaminants with toxicological properties that differ from those of microplastics. While existing reviews often examine their effects on specific organisms, they rarely provide direct comparisons with microplastics. This review aims to comprehensively assess the toxic effects of [...] Read more.
Nanoplastics have emerged as widespread environmental contaminants with toxicological properties that differ from those of microplastics. While existing reviews often examine their effects on specific organisms, they rarely provide direct comparisons with microplastics. This review aims to comprehensively assess the toxic effects of nanoplastics on animals, with a comparative perspective highlighting their distinctions from microplastics. In mammals, nanoplastics cross the blood–brain barrier and induce oxidative stress, neuroinflammation, mitochondrial dysfunction, and synaptic disruption, with consequences ranging from cognitive impairment to Parkinson’s disease-like neurodegeneration. They also impair liver, kidney, intestinal, pancreatic, and reproductive function, with evidence of transgenerational toxicity. In aquatic organisms such as fish, crustaceans, bivalves, and aquatic invertebrates, nanoplastics compromise growth, immunity, reproduction, and metabolism, while in terrestrial invertebrates they cause gut toxicity, mitochondrial damage, immune suppression, and heritable defects. Across taxa, the dominant mechanisms involve oxidative stress, apoptosis, inflammation, and interference with metabolic and signaling pathways. Comparisons with microplastics reveal that while both particle types are harmful, nanoplastics generally exert stronger and more systemic effects due to higher bioavailability, cellular uptake, and molecular reactivity. Microplastics primarily impose mechanical stress, whereas nanoplastics disrupt cellular homeostasis at lower exposure levels, often acting at the subcellular level. Evidence also indicates size-, surface chemistry-, and concentration-dependent effects, with smaller and functionalized nanoplastics exhibiting heightened toxicity. Despite growing knowledge, significant gaps remain in cross-size comparative studies, long-term and multigenerational assessments, trophic transfer analyses, and investigations involving environmentally derived nanoplastics. Addressing these gaps is critical for advancing ecological risk assessment and developing mitigation strategies against plastic pollution. Full article
(This article belongs to the Special Issue Ecotoxicity of Microplastics)
Show Figures

Figure 1

27 pages, 1141 KB  
Review
Epigenetic Mechanisms of Plant Adaptation to Cadmium and Heavy Metal Stress
by Eleonora Greco, Emanuela Talarico, Francesco Guarasci, Marina Camoli, Anna Maria Palermo, Alice Zambelli, Adriana Chiappetta, Fabrizio Araniti and Leonardo Bruno
Epigenomes 2025, 9(4), 43; https://doi.org/10.3390/epigenomes9040043 - 2 Nov 2025
Viewed by 1293
Abstract
Heavy metal and metalloid stress, particularly from toxic elements like cadmium (Cd), poses a growing threat to plant ecosystems, crop productivity, and global food security. Elevated concentrations of these contaminants can trigger cytotoxic and genotoxic effects in plants, severely impairing growth, development, and [...] Read more.
Heavy metal and metalloid stress, particularly from toxic elements like cadmium (Cd), poses a growing threat to plant ecosystems, crop productivity, and global food security. Elevated concentrations of these contaminants can trigger cytotoxic and genotoxic effects in plants, severely impairing growth, development, and reproduction. In recent years, epigenetic mechanisms have emerged as crucial regulators of plant responses to heavy metal stress, offering novel insights and strategies for enhancing plant resilience in contaminated environments. This review synthesises current advances in the field of plant epigenetics, focusing on key modifications such as DNA methylation, histone acetylation and remodelling, chromatin dynamics, and small RNA-mediated regulation. These processes not only influence gene expression under metal-induced stress but also hold promise for long-term adaptation through transgenerational epigenetic memory. Recent developments in high-throughput sequencing and functional genomics have accelerated the identification of epigenetic markers associated with stress tolerance, enabling the integration of these markers into breeding programs and targeted epigenome editing strategies. Special attention is given to cadmium stress responses, where specific epigenetic traits have been linked to enhanced tolerance. As plant epigenomic research progresses, its application in sustainable agriculture becomes increasingly evident offering environmentally friendly solutions to mitigate the impact of heavy metal pollution. This review provides a foundation for future research aimed at leveraging epigenetic tools to engineer crops capable of thriving under metal stress, thereby contributing to resilient agricultural systems and sustainable food production. Full article
Show Figures

Figure 1

17 pages, 2697 KB  
Article
Tetraniliprole Triggers Transgenerational Hormesis in an Invasive Insect Herbivore: Molecular and Biological Insights
by Farman Ullah, Zeeshan Ullah, Ali Güncan, Guru-Pirasanna-Pandi Govindharaj, Hina Gul, Prabhu Prasanna Pradhan, Ghulam Murtaza, Xiaowei Li, Nicolas Desneux and Yaobin Lu
Insects 2025, 16(10), 1073; https://doi.org/10.3390/insects16101073 - 21 Oct 2025
Cited by 1 | Viewed by 830
Abstract
The South American tomato pinworm, Tuta absoluta (Meyrick), is among the most destructive invasive pests of tomato globally. The diamide insecticide tetraniliprole is increasingly used for its management. This study examines the sublethal effects of tetraniliprole on T. absoluta larvae, with a focus [...] Read more.
The South American tomato pinworm, Tuta absoluta (Meyrick), is among the most destructive invasive pests of tomato globally. The diamide insecticide tetraniliprole is increasingly used for its management. This study examines the sublethal effects of tetraniliprole on T. absoluta larvae, with a focus on its transgenerational impacts. Bioassays demonstrated that tetraniliprole was highly toxic to third-instar T. absoluta larvae, with an LC50 of 0.029 mg/L. Sublethal (LC10) and low lethal concentrations (LC30) were used to investigate their impact on developmental, reproductive, and population parameters across two subsequent generations (F1 and F2). In the parental (F0) generation, exposure to tetraniliprole at both concentrations significantly prolonged larval and pupal durations and reduced adult longevity and fecundity. In both F1 and F2 generations, concentration-dependent effects were observed—LC10 accelerated development and enhanced fecundity and population growth, indicative of a hormetic response, whereas LC30 delayed development and suppressed reproduction and survival. Life table analyses revealed significant changes in the r, λ, and T, particularly under LC30. Additionally, the RT-qPCR analysis revealed the downregulation of development and reproduction-related genes (Vg, VgR, and JHBP) in the F0 generation following exposure to tetraniliprole (LC10 and LC30). In contrast, these genes were upregulated in the progeny generations (F1 and F2) at LC10. Furthermore, the overexpression of key detoxification genes, particularly CYP4M116 and CYP6AW1, persisted across all three generations. Taken together, these findings reveal a substantial risk of unintended population resurgence (hormesis effects) at sublethal concentrations, underscoring the importance of integrating transgenerational consequences into insecticide resistance management programs for sustainable control of this key insect pest. Full article
Show Figures

Figure 1

15 pages, 301 KB  
Review
Endocrine-Disrupting Chemicals and Male Infertility: Mechanisms, Risks, and Regulatory Challenges
by Sofoklis Stavros, Nikolaos Kathopoulis, Efthalia Moustakli, Anastasios Potiris, Ismini Anagnostaki, Spyridon Topis, Nefeli Arkouli, Konstantinos Louis, Charalampos Theofanakis, Themos Grigoriadis, Nikolaos Thomakos and Athanasios Zikopoulos
J. Xenobiot. 2025, 15(5), 165; https://doi.org/10.3390/jox15050165 - 13 Oct 2025
Cited by 1 | Viewed by 3818
Abstract
Male reproductive health is increasingly threatened by endocrine-disrupting chemicals (EDCs), which interfere with hormonal homeostasis and reproductive physiology. Rising rates of male infertility have been linked to greater exposure to pollutants such as heavy metals, phthalates, pesticides, and bisphenol A. These compounds act [...] Read more.
Male reproductive health is increasingly threatened by endocrine-disrupting chemicals (EDCs), which interfere with hormonal homeostasis and reproductive physiology. Rising rates of male infertility have been linked to greater exposure to pollutants such as heavy metals, phthalates, pesticides, and bisphenol A. These compounds act through multiple mechanisms, including oxidative stress, apoptosis, receptor-mediated disruption of estrogenic and androgenic signaling, alterations in the hypothalamic–pituitary–gonadal (HPG) axis, and heritable epigenetic changes. Such disruptions impair key outcomes like sperm concentration, motility, morphology, DNA integrity, and steroidogenesis. Evidence from animal studies and human epidemiology consistently demonstrates these harmful effects, with biomarkers of EDC exposure correlating with reduced semen quality, hormonal imbalances, and infertility. Beyond individual health, infertility linked to EDCs carries significant social and economic costs. This review evaluates regulatory frameworks, highlights methodological challenges in risk assessment, and synthesizes mechanistic and clinical evidence. Particular attention is given to unresolved issues such as non-monotonic dose responses, mixture effects, low-dose exposures, and transgenerational impacts. Future priorities include refining biomonitoring, addressing mixture risks, and strengthening international regulation. By integrating mechanistic, clinical, and policy insights, this review underscores the urgent need for strategies to mitigate EDC-related threats to male reproductive health. Full article
Show Figures

Graphical abstract

17 pages, 324 KB  
Review
Prenatal Dietary Exposure to Endocrine Disruptors and Its Lasting Impact on Offspring Health
by Anastasios Potiris, Nikoletta Daponte, Efthalia Moustakli, Athanasios Zikopoulos, Eriketi Kokkosi, Nefeli Arkouli, Ismini Anagnostaki, Aikaterini Lydia Vogiatzoglou, Maria Tzeli, Angeliki Sarella, Ekaterini Domali and Sofoklis Stavros
Toxics 2025, 13(10), 864; https://doi.org/10.3390/toxics13100864 - 11 Oct 2025
Cited by 1 | Viewed by 2095
Abstract
Environmental stressors during the crucial period of fetal development can have a substantial impact on long-term health outcomes. A major concern is dietary exposure to endocrine-disrupting chemicals (EDCs), which can readily cross the placenta and disrupt fetal hormonal signaling and developmental programming. Examples [...] Read more.
Environmental stressors during the crucial period of fetal development can have a substantial impact on long-term health outcomes. A major concern is dietary exposure to endocrine-disrupting chemicals (EDCs), which can readily cross the placenta and disrupt fetal hormonal signaling and developmental programming. Examples of these chemicals include bisphenols, phthalates, pesticides, and persistent organic pollutants (POPs). Prenatal exposure to EDC has been associated with long-term effects in children, including immune disruption, metabolic dysregulation, impaired neurodevelopment, and reproductive alterations, as evidenced by human cohort studies and experimental models. Epigenetic reprogramming, direct interference with endocrine signaling, and oxidative stress (OS) are hypothesized pathways for these adverse consequences, which often combine to produce long-lasting physiological changes. This narrative review summarizes current research on maternal dietary exposure to EDCs during pregnancy, highlighting associations with adverse child health outcomes. It also discusses the growing evidence of transgenerational effects, the potential mechanisms linking prenatal exposure to long-term outcomes, and the importance of understanding the roles of timing, dosage, and chemical type. By highlighting the necessity of focused interventions to lower maternal EDC exposure and lessen threats to the health of offspring, the review concludes by discussing implications for future research, preventive measures, and public health policy. Full article
(This article belongs to the Section Reproductive and Developmental Toxicity)
23 pages, 2932 KB  
Article
Multi- and Transgenerational Effects of Silver Ions (Ag+) in the ng/L Range on Life Cycle Parameters and Population Growth of the Midge Chironomus riparius (Diptera, Chironomidae)
by Jingyun Ding, Stefanie Krais, Zequn Li, Rita Triebskorn and Heinz-R. Köhler
Toxics 2025, 13(10), 855; https://doi.org/10.3390/toxics13100855 - 10 Oct 2025
Cited by 1 | Viewed by 845
Abstract
Silver (Ag) is widely released into aquatic environments through industrial and municipal discharges, with concentrations often reaching toxic levels for aquatic organisms. Its further extensive use in antimicrobials, especially during the COVID-19 pandemic, has increased environmental inputs. As Ag+ is the most [...] Read more.
Silver (Ag) is widely released into aquatic environments through industrial and municipal discharges, with concentrations often reaching toxic levels for aquatic organisms. Its further extensive use in antimicrobials, especially during the COVID-19 pandemic, has increased environmental inputs. As Ag+ is the most toxic form of Ag, understanding its ecological risks remains critical for environmental regulation and ecosystem protection. Thus, we investigated multigenerational and transgenerational toxicity of Ag+ as AgNO3 on the ecologically important species midge Chironomus riparius using two complementary long-term life-cycle experiments. Experiment 1 simulated exposures with pulsed high environmentally relevant concentrations and recovery phases (nominal 3 µg/L), while Experiment 2 assessed continuous low environmentally relevant concentrations (nominal 0.01, 0.1, 1 and 3 µg/L) across four exposed generations of C. riparius followed by three recovery generations. Endpoints included survival, development, reproduction, growth as well as the population growth rate (PGR). Continuous Ag+ exposure produced cumulative increases in mortality and declines in emergence, reduced fertility and eggs per rope, delayed development (especially in females), and progressive reductions in PGR. Notably, adverse effects emerged or intensified over generations and were detectable at very low concentrations: some reproductive and survival endpoints showed significant impairment at the European Union’s environmental quality standard (EU-EQS) level (0.01 µg/L) by the fourth generation, while transgenerational effects persisted at ≥0.1 µg/L. Partial recovery occurred after removal of contamination at the lowest concentrations but not after higher exposures. The present study not only indicates that chronic, low-level Ag+ contamination can produce persistent, population-level adverse impacts on C. riparius, but also underscores the necessity for long-term ecological assessments to establish more protective standards and maintain ecosystem stability. Full article
(This article belongs to the Section Ecotoxicology)
Show Figures

Graphical abstract

Back to TopTop