Endocrine-Disrupting Chemicals and Male Infertility: Mechanisms, Risks, and Regulatory Challenges
Abstract
1. Introduction
2. Mechanisms of Endocrine Disruption
2.1. Hormone Receptor Interaction
2.2. HPG Axis Interference
2.3. Epigenetic Modifications
2.4. OS and Apoptosis
2.5. Methodological Challenges
3. Impact on Male Fertility
3.1. Sperm Quality Parameters
3.2. Hormonal Imbalance
3.3. Testicular Morphology and Function
3.4. Clinical and Epidemiological Evidence
4. Risk Assessment and Regulatory Perspectives
4.1. Exposure Routes
4.2. Biomonitoring and Risk Assessment
4.3. Regulatory Frameworks
4.4. Challenges and Future Directions
5. Future Directions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Diamanti-Kandarakis, E.; Bourguignon, J.P.; Giudice, L.C.; Hauser, R.; Prins, G.S.; Soto, A.M.; Zoeller, R.T.; Gore, A.C. Endocrine-disrupting chemicals: An Endocrine Society scientific statement. Endocr. Rev. 2009, 30, 293–342. [Google Scholar] [CrossRef]
- Solerte, M.L.; Cosmi, E. Endocrine-Disrupting Chemicals and the Offsprings: Prenatal Exposure. In Environment Impact on Reproductive Health; Marci, R., Ed.; Springer International Publishing: Cham, Switzerland, 2023; pp. 169–209. Available online: https://link.springer.com/10.1007/978-3-031-36494-5_9 (accessed on 5 September 2025).
- Yilmaz, B.; Terekeci, H.; Sandal, S.; Kelestimur, F. Endocrine disrupting chemicals: Exposure, effects on human health, mechanism of action, models for testing and strategies for prevention. Rev. Endocr. Metab. Disord. 2020, 21, 127–147. [Google Scholar] [CrossRef]
- Peivasteh-Roudsari, L.; Barzegar-Bafrouei, R.; Sharifi, K.A.; Azimisalim, S.; Karami, M.; Abedinzadeh, S.; Tajdar-Oranj, B.; Mahdavi, V.; Alizadeh, A.M.; Sadighara, P.; et al. Origin, dietary exposure, and toxicity of endocrine-disrupting food chemical contaminants: A comprehensive review. Heliyon 2023, 9, e18140. [Google Scholar] [CrossRef]
- Sciorio, R.; Tramontano, L.; Adel, M.; Fleming, S. Decrease in Sperm Parameters in the 21st Century: Obesity, Lifestyle, or Environmental Factors? An Updated Narrative Review. J. Pers. Med. 2024, 14, 198. [Google Scholar] [CrossRef]
- Levine, H.; Jørgensen, N.; Martino-Andrade, A.; Mendiola, J.; Weksler-Derri, D.; Mindlis, I.; Pinotti, R.; Swan, S.H. Temporal trends in sperm count: A systematic review and meta-regression analysis. Hum. Reprod. Update 2017, 23, 646–659. [Google Scholar] [CrossRef] [PubMed]
- Lahimer, M.; Abou Diwan, M.; Montjean, D.; Cabry, R.; Bach, V.; Ajina, M.; Ben Ali, H.; Benkhalifa, M.; Khorsi-Cauet, H. Endocrine disrupting chemicals and male fertility: From physiological to molecular effects. Front. Public. Health 2023, 11, 1232646. [Google Scholar] [CrossRef] [PubMed]
- Thacharodi, A.; Hassan, S.; Acharya, G.; Vithlani, A.; Hoang Le, Q.; Pugazhendhi, A. Endocrine disrupting chemicals and their effects on the reproductive health in men. Environ. Res. 2023, 236, 116825. [Google Scholar] [CrossRef]
- Rehman, S.; Usman, Z.; Rehman, S.; AlDraihem, M.; Rehman, N.; Rehman, I.; Ahmad, G. Endocrine disrupting chemicals and impact on male reproductive health. Transl. Androl. Urol. 2018, 7, 490–503. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Mollier, J.; Brocklesby, R.W.; Caves, C.; Jayasena, C.N.; Minhas, S. Effect of endocrine disrupting chemicals on male reproductive health. Reprod. Med. Biol. 2020, 19, 243–253. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shulhai, A.M.; Palanza, P.; Street, M.E. Current Evidence on the Effects of Endocrine-Disrupting Chemicals (EDCs) on Bone Growth and Health. Expo. Health 2024, 16, 1001–1025. [Google Scholar] [CrossRef]
- Van Cauwenbergh, O.; Di Serafino, A.; Tytgat, J.; Soubry, A. Transgenerational epigenetic effects from male exposure to endocrine-disrupting compounds: A systematic review on research in mammals. Clin. Epigenetics 2020, 12, 65. [Google Scholar] [CrossRef]
- Montjean, D.; Neyroud, A.S.; Yefimova, M.G.; Benkhalifa, M.; Cabry, R.; Ravel, C. Impact of Endocrine Disruptors upon Non-Genetic Inheritance. Int. J. Mol. Sci. 2022, 23, 3350. [Google Scholar] [CrossRef]
- Akhigbe, R.E.; Oyedokun, P.A.; Akhigbe, T.M.; Hamed, M.A.; Fidelis, F.B.; Omole, A.I.; Adeogun, A.E.; Akangbe, M.D.; Oladipo, A.A. The consequences of climate change and male reproductive health: A review of the possible impact and mechanisms. Biochem. Biophys. Rep. 2025, 41, 101889. [Google Scholar] [CrossRef]
- Sharpe, R.M. Endocrine disruption and male reproductive disorders: Unanswered questions. Hum. Reprod 2024, 39, 1879–1888. [Google Scholar] [CrossRef] [PubMed]
- Mohajer, N.; Culty, M. Impact of real-life environmental exposures on reproduction: Impact of human-relevant doses of endocrine-disrupting chemical and drug mixtures on testis development and function. Reproduction 2024, 169, e240155. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Mollier, J.; Brocklesby, R.W.K.; Caves, C.; Jayasena, C.N.; Minhas, S. Endocrine-disrupting chemicals and male reproductive health. Reprod. Med. Biol. 2020, 19, 243–253. [Google Scholar] [CrossRef]
- Rizzo, R.; Bortolotti, D.; Rizzo, S.; Schiuma, G. Cellular Mechanisms of Endocrine Disruption. In Environment Impact on Reproductive Health [Internet]; Marci, R., Ed.; Springer International Publishing: Cham, Switzerland, 2023; pp. 15–48. Available online: https://link.springer.com/10.1007/978-3-031-36494-5_2 (accessed on 5 September 2025).
- La Merrill, M.A.; Vandenberg, L.N.; Smith, M.T.; Goodson, W.; Browne, P.; Patisaul, H.B.; Guyton, K.Z.; Kortenkamp, A.; Cogliano, V.J.; Woodruff, T.J.; et al. Consensus on the key characteristics of endocrine-disrupting chemicals as a basis for hazard identification. Nat. Rev. Endocrinol. 2020, 16, 45–57. [Google Scholar] [CrossRef]
- Hlisníková, H.; Petrovičová, I.; Kolena, B.; Šidlovská, M.; Sirotkin, A. Effects and Mechanisms of Phthalates’ Action on Reproductive Processes and Reproductive Health: A Literature Review. Int. J. Environ. Res. Public. Health 2020, 17, 6811. [Google Scholar] [CrossRef]
- Wilkenfeld, S.R.; Lin, C.; Frigo, D.E. Communication between genomic and non-genomic signaling events coordinate steroid hormone actions. Steroids 2018, 133, 2–7. [Google Scholar] [CrossRef] [PubMed]
- Knox, A.M.I.; Li, X.F.; Kinsey-Jones, J.S.; Wilkinson, E.S.; Wu, X.Q.; Cheng, Y.S.; Milligan, S.R.; Lightman, S.L.; O’Byrne, K.T. Neonatal lipopolysaccharide exposure delays puberty and alters hypothalamic Kiss1 and Kiss1r mRNA expression in the female rat. J. Neuroendocrinol. 2009, 21, 683–689. [Google Scholar] [CrossRef]
- van Bodegom, M.; Homberg, J.R.; Henckens, M.J.A.G. Modulation of the Hypothalamic-Pituitary-Adrenal Axis by Early Life Stress Exposure. Front. Cell Neurosci. 2017, 11, 87. [Google Scholar] [CrossRef]
- Marlatt, V.L.; Bayen, S.; Castaneda-Cortès, D.; Delbès, G.; Grigorova, P.; Langlois, V.S.; Martyniuk, C.J.; Metcalfe, C.D.; Parent, L.; Rwigemera, A.; et al. Impacts of endocrine disrupting chemicals on reproduction in wildlife and humans. Environ. Res. 2022, 208, 112584. [Google Scholar] [CrossRef]
- Rajan, A.K.; Mohanty, A.; Swain, P.; Tiwari, R.; Gurjar, V.; Srivasatava, R.K.; Mishra, P.K. Cell-free circulating epigenomic signatures: Non-invasive biomarkers of pregnancy-related outcomes associated with plasticizer exposure. Reprod. Toxicol. 2025, 137, 109000. [Google Scholar] [CrossRef]
- Cescon, M.; Chianese, R.; Tavares, R.S. Environmental Impact on Male (In)Fertility via Epigenetic Route. J. Clin. Med. 2020, 9, 2520. [Google Scholar] [CrossRef] [PubMed]
- Maxwell, D.L.; Petriello, M.C.; Pilsner, J.R. PFAS Exposure and Male Reproductive Health: Implications for Sperm Epigenetics. Semin. Reprod. Med. 2024, 42, 288–301. [Google Scholar] [CrossRef] [PubMed]
- Ojo, O.A.; Nwafor-Ezeh, P.I.; Rotimi, D.E.; Iyobhebhe, M.; Ogunlakin, A.D.; Ojo, A.B. Apoptosis, inflammation, and oxidative stress in infertility: A mini review. Toxicol. Rep. 2023, 10, 448–462. [Google Scholar] [CrossRef]
- Ayad, B.; Omolaoye, T.S.; Louw, N.; Ramsunder, Y.; Skosana, B.T.; Oyeipo, P.I.; Du Plessis, S.S. Oxidative Stress and Male Infertility: Evidence from a Research Perspective. Front. Reprod. Health 2022, 4, 822257. [Google Scholar] [CrossRef]
- Signorini, C.; Corsaro, R.; Collodel, G.; Maettner, R.; Sterzik, K.; Strehler, E.; Liguori, L.; Moretti, E. Addition of Chlorogenic Acid to Human Semen: Effects on Sperm Motility, DNA Integrity, Oxidative Stress, and Nrf2 Expression. Antioxidants 2025, 14, 382. [Google Scholar] [CrossRef] [PubMed]
- Gualtieri, R.; Kalthur, G.; Barbato, V.; Di Nardo, M.; Adiga, S.K.; Talevi, R. Mitochondrial Dysfunction and Oxidative Stress Caused by Cryopreservation in Reproductive Cells. Antioxidants 2021, 10, 337. [Google Scholar] [CrossRef]
- Moustakli, E.; Zikopoulos, A.; Skentou, C.; Bouba, I.; Tsirka, G.; Stavros, S.; Vrachnis, D.; Vrachnis, N.; Potiris, A.; Georgiou, I.; et al. Sperm Mitochondrial Content and Mitochondrial DNA to Nuclear DNA Ratio Are Associated with Body Mass Index and Progressive Motility. Biomedicines 2023, 11, 3014. [Google Scholar] [CrossRef]
- Mai, Z.; Yang, D.; Wang, D.; Zhang, J.; Zhou, Q.; Han, B.; Sun, Z. A narrative review of mitochondrial dysfunction and male infertility. Transl. Androl. Urol. 2024, 13, 2134–2145. [Google Scholar] [CrossRef]
- Asadi, A.; Ghahremani, R.; Abdolmaleki, A.; Rajaei, F. Role of sperm apoptosis and oxidative stress in male infertility: A narrative review. Int. J. Reprod. BioMed. 2021, 19, 493–504. [Google Scholar] [PubMed]
- Tzouma, Z.; Dourou, P.; Diamanti, A.; Harizopoulou, V.; Papalexis, P.; Karampas, G.; Liepinaitiene, A.; Dėdelė, A.; Sarantaki, A. Associations Between Endocrine-Disrupting Chemical Exposure and Fertility Outcomes: A Decade of Human Epidemiological Evidence. Life 2025, 15, 993. [Google Scholar] [CrossRef]
- Tesarik, J. Lifestyle and Environmental Factors Affecting Male Fertility, Individual Predisposition, Prevention, and Intervention. Int. J. Mol. Sci. 2025, 26, 2797. [Google Scholar] [CrossRef] [PubMed]
- Bocu, K.; Boeri, L.; Mahmutoglu, A.M.; Vogiatzi, P. Can lifestyle changes significantly improve male fertility: A narrative review? Arab. J. Urol. 2025, 23, 190–200. [Google Scholar]
- Caporossi, L.; Alteri, A.; Campo, G.; Paci, E.; Tranfo, G.; Capanna, S.; Papaleo, E.; Pigini, D.; Viganò, P.; Papaleo, B. Cross Sectional Study on Exposure to BPA and Phthalates and Semen Parameters in Men Attending a Fertility Center. Int. J. Environ. Res. Public. Health 2020, 17, 489. [Google Scholar]
- Presunto, M.; Mariana, M.; Lorigo, M.; Cairrao, E. The Effects of Bisphenol A on Human Male Infertility: A Review of Current Epidemiological Studies. Int. J. Mol. Sci. 2023, 24, 12417. [Google Scholar] [CrossRef]
- Esteves, S.C.; Zini, A.; Coward, R.M.; Evenson, D.P.; Gosálvez, J.; Lewis, S.E.M.; Sharma, R.; Humaidan, P. Sperm DNA fragmentation testing: Summary evidence and clinical practice recommendations. Andrologia 2021, 53, e13874. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ramya, S.; Poornima, P.; Jananisri, A.; Geofferina, I.P.; Bavyataa, V.; Divya, M.; Priyanga, P.; Vadivukarasi, J.; Sujitha, S.; Elamathi, S.; et al. Role of Hormones and the Potential Impact of Multiple Stresses on Infertility. Stresses 2023, 3, 454–474. [Google Scholar] [CrossRef]
- Oduwole, O.O.; Huhtaniemi, I.T.; Misrahi, M. The Roles of Luteinizing Hormone, Follicle-Stimulating Hormone and Testosterone in Spermatogenesis and Folliculogenesis Revisited. Int. J. Mol. Sci. 2021, 22, 12735. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Ibarra, A.; Martínez-Razo, L.D.; MacDonald-Ramos, K.; Morales-Pacheco, M.; Vázquez-Martínez, E.R.; López-López, M.; Dorantes, M.R.; Cerbón, M. Multisystemic alterations in humans induced by bisphenol A and phthalates: Experimental, epidemiological and clinical studies reveal the need to change health policies. Environ. Pollut. 2021, 271, 116380. [Google Scholar] [CrossRef]
- Ghosh, A.; Tripathy, A.; Ghosh, D. Impact of Endocrine Disrupting Chemicals (EDCs) on Reproductive Health of Human. Proc. Zool. Soc. 2022, 75, 16–30. [Google Scholar] [CrossRef]
- Anne, B.; Raphael, R. Endocrine Disruptor Chemicals. Available online: https://www.ncbi.nlm.nih.gov/books/NBK569327/ (accessed on 5 September 2025).
- Corpuz-Hilsabeck, M.; Culty, M. Impact of endocrine disrupting chemicals and pharmaceuticals on Sertoli cell development and functions. Front. Endocrinol. 2023, 14, 1095894. [Google Scholar] [CrossRef]
- Washburn, R.L.; Hibler, T.; Kaur, G.; Dufour, J.M. Sertoli Cell Immune Regulation: A Double-Edged Sword. Front. Immunol. 2022, 13, 913502. [Google Scholar] [CrossRef]
- Zhang, Z.; Meng, J.; Tian, J.; Li, N.; Chen, Z.; Yun, X.; Song, D.; Li, F.; Duan, S.; Zhang, L. Reproductive and developmental implications of micro- and nanoplastic internalization: Recent advances and perspectives. Ecotoxicol. Environ. Saf. 2024, 286, 117245. [Google Scholar] [CrossRef]
- Rato, L.; Sousa, A.C.A. The Impact of Endocrine-Disrupting Chemicals in Male Fertility: Focus on the Action of Obesogens. J. Xenobiotics 2021, 11, 163–196. [Google Scholar] [CrossRef]
- Rodprasert, W.; Toppari, J.; Virtanen, H.E. Environmental toxicants and male fertility. Best Pr. Res. Clin. Obstet. Gynaecol. 2023, 86, 102298. [Google Scholar]
- Pan, J.; Liu, P.; Yu, X.; Zhang, Z.; Liu, J. The adverse role of endocrine disrupting chemicals in the reproductive system. Front. Endocrinol. 2024, 14, 1324993. [Google Scholar] [CrossRef] [PubMed]
- Dutta, S.; Sengupta, P.; Bagchi, S.; Chhikara, B.S.; Pavlík, A.; Sláma, P.; Roychoudhury, S. Reproductive toxicity of combined effects of endocrine disruptors on human reproduction. Front. Cell Dev. Biol. 2023, 11, 1162015. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, E.; Ladeira, C.; Viegas, S. EDCs Mixtures: A Stealthy Hazard for Human Health? Toxics 2017, 5, 5. [Google Scholar] [CrossRef]
- Kalofiri, P.; Biskanaki, F.; Kefala, V.; Tertipi, N.; Sfyri, E.; Rallis, E. Endocrine Disruptors in Cosmetic Products and the Regulatory Framework: Public Health Implications. Cosmetics. 2023, 10, 160. [Google Scholar] [CrossRef]
- Alblooshi, S. The impact of perfumes and cosmetic products on human health: A narrative review. Front. Toxicol. 2025, 7, 1646075. [Google Scholar] [CrossRef] [PubMed]
- Gaylarde, C.C.; Baptista Neto, J.A.; Da Fonseca, E.M. Indoor Airborne Microplastics: Human Health Importance and Effects of Air Filtration and Turbulence. Microplastics 2024, 3, 653–670. [Google Scholar] [CrossRef]
- Costa, H.E.; Medeiros, I.; Mariana, M.; Cairrao, E. Maternal–Foetal Effects of Exposure to Bisphenol A: Outcomes and Long-Term Consequences. Appl. Sci. 2025, 15, 697. [Google Scholar] [CrossRef]
- Kumar, S.; Sharma, A.; Kshetrimayum, C. Environmental & occupational exposure & female reproductive dysfunction. Indian J. Med. Res. 2019, 150, 532–545. [Google Scholar]
- Rodprasert, W.; Toppari, J.; Virtanen, H.E. Endocrine Disrupting Chemicals and Reproductive Health in Boys and Men. Front. Endocrinol. 2021, 12, 706532. [Google Scholar] [CrossRef] [PubMed]
- Schneider, S.; Fussell, K.C.; Melching-Kollmuss, S.; Buesen, R.; Gröters, S.; Strauss, V.; Jiang, X.; van Ravenzwaay, B. Investigations on the dose-response relationship of combined exposure to low doses of three anti-androgens in Wistar rats. Arch. Toxicol. 2017, 91, 3961–3989. [Google Scholar] [CrossRef]
- World Health Organization; Food and Agriculture Organization of the United Nations. Principles and Methods for the Risk Assessment of Chemicals in Food; Environmental Health Criteria 240; WHO Press: Geneva, Switzerland, 2009; Volume 18. [Google Scholar]
- Lai, Y.; Koelmel, J.P.; Walker, D.I.; Price, E.J.; Papazian, S.; Manz, K.E.; Castilla-Fernández, D.; Bowden, J.A.; Nikiforov, V.; David, A.; et al. High-Resolution Mass Spectrometry for Human Exposomics: Expanding Chemical Space Coverage. Environ. Sci. Technol. 2024, 58, 12784–12822. [Google Scholar] [CrossRef]
- Santonen, T.; Mahiout, S.; Alvito, P.; Apel, P.; Bessems, J.; Bil, W.; Borges, T.; Bose-O’Reilly, S.; Buekers, J.; Cañas Portilla, A.I.; et al. How to use human biomonitoring in chemical risk assessment: Methodological aspects, recommendations, and lessons learned from HBM4EU. Int. J. Hyg. Environ. Health 2023, 249, 114139. [Google Scholar] [CrossRef]
- Kassotis, C.D.; Vandenberg, L.N.; Demeneix, B.A.; Porta, M.; Slama, R.; Trasande, L. Endocrine-disrupting chemicals: Economic, regulatory, and policy implications. Lancet Diabetes Endocrinol. 2020, 8, 719–730. [Google Scholar] [CrossRef]
- Liszewska, M.; Czaja, K.; Korcz, W.; Lewiński, R.; Struciński, P. Endocrine-disrupting chemicals—pesticide regulatory issues from the EU perspective. Regul. Toxicol. Pharmacol. 2024, 154, 105735. [Google Scholar] [CrossRef]
- Bennekou, S.H.; Allende, A.; Bearth, A.; Casacuberta, J.; Castle, L.; Coja, T.; Crépet, A.; Halldorsson, T.; Hoogenboom, L.R.; EFSA Scientific Committee; et al. Guidance on the use of read-across for chemical safety assessment in food and feed. EFSA J. 2025, 23, e9586. [Google Scholar]
- Lamb, J.C.; Boffetta, P.; Foster, W.G.; Goodman, J.E.; Hentz, K.L.; Rhomberg, L.R.; Staveley, J.; Swaen, G.; Van Der Kraak, G.; Williams, A.L. Critical comments on the WHO-UNEP State of the Science of Endocrine Disrupting Chemicals—2012. Regul. Toxicol. Pharmacol. 2014, 69, 22–40. [Google Scholar] [CrossRef] [PubMed]
- Williams, E.S.; Panko, J.; Paustenbach, D.J. The European Union’s REACH regulation: A review of its history and requirements. Crit. Rev. Toxicol. 2009, 39, 553–575. [Google Scholar] [CrossRef] [PubMed]
- Schmeisser, S.; Miccoli, A.; Von Bergen, M.; Berggren, E.; Braeuning, A.; Busch, W.; Desaintes, C.; Gourmelon, A.; Grafström, R.; Harrill, J.; et al. New approach methodologies in human regulatory toxicology—Not if, but how and when! Environ. Int. 2023, 178, 108082. [Google Scholar] [CrossRef]
- Wang, X.; Li, F.; Chen, J.; Ji, C.; Wu, H. Integration of Computational Toxicology, Toxicogenomics Data Mining, and Omics Techniques to Unveil Toxicity Pathways. ACS Sustain. Chem. Eng. 2021, 9, 4130–4138. [Google Scholar] [CrossRef]
- Jacobs, M.N.; Marczylo, E.L.; Guerrero-Bosagna, C.; Rüegg, J. Marked for Life: Epigenetic Effects of Endocrine Disrupting Chemicals. Annu. Rev. Environ. Resour. 2017, 42, 105–160. [Google Scholar] [CrossRef]
- Barton-Maclaren, T.S.; Wade, M.; Basu, N.; Bayen, S.; Grundy, J.; Marlatt, V.; Moore, R.; Parent, L.; Parrott, J.; Grigorova, P.; et al. Innovation in regulatory approaches for endocrine disrupting chemicals: The journey to risk assessment modernization in Canada. Environ. Res. 2022, 204, 112225. [Google Scholar] [CrossRef]
- Barr, J.; Paulson, S.S.; Kamdar, B.; Ervin, J.N.; Lane-Fall, M.; Liu, V.; Kleinpell, R. The Coming of Age of Implementation Science and Research in Critical Care Medicine. Crit. Care Med. 2021, 49, 1254–1275. [Google Scholar] [CrossRef]
- Kassotis, C.D.; Trasande, L. Endocrine disruptor global policy. Adv. Pharmacol. 2021, 92, 1–34. [Google Scholar]
- Hamid, N.; Junaid, M.; Pei, D.S. Combined toxicity of endocrine-disrupting chemicals: A review. Ecotoxicol. Environ. Saf. 2021, 215, 112136. [Google Scholar] [CrossRef]
- Acevedo-Rodriguez, A.; Kauffman, A.S.; Cherrington, B.D.; Borges, C.S.; Roepke, T.A.; Laconi, M. Emerging insights into hypothalamic-pituitary-gonadal axis regulation and interaction with stress signalling. J. Neuroendocrinol. 2018, 30, e12590. [Google Scholar] [CrossRef]
- Ahn, B.; Ha, J.; Kang, D. Reproductive health and development in spaceflight environments. J. Anim. Reprod. Biotechnol. 2025, 40, 59–67. [Google Scholar] [CrossRef]
- Smith, K.; Pochon, X.; Melvin, S.; Wheeler, T.; Tremblay, L. Integration of “Omics”-Based Approaches in Environmental Risk Assessment to Establish Cause and Effect Relationships: A Review. Toxics 2025, 13, 714. [Google Scholar] [CrossRef]
- Dai, X.; Shen, L. Advances and Trends in Omics Technology Development. Front. Med. 2022, 9, 911861. [Google Scholar] [CrossRef]
- Son, A.; Park, J.; Kim, W.; Yoon, Y.; Lee, S.; Ji, J.; Kim, H. Recent Advances in Omics, Computational Models, and Advanced Screening Methods for Drug Safety and Efficacy. Toxics 2024, 12, 822. [Google Scholar] [CrossRef]
- Jose, A.; Kulkarni, P.; Thilakan, J.; Munisamy, M.; Malhotra, A.G.; Singh, J.; Kumar, A.; Rangnekar, V.M.; Arya, N.; Rao, M. Integration of pan-omics technologies and three-dimensional in vitro tumor models: An approach toward drug discovery and precision medicine. Mol. Cancer 2024, 23, 50. [Google Scholar]
- Yetgin, A. Revolutionizing multi-omics analysis with artificial intelligence and data processing. Quant. Biol. 2025, 13, e70002. [Google Scholar] [CrossRef]
- Sciorio, R.; Greco, P.F.; Greco, E.; Tramontano, L.; Elshaer, F.M.; Fleming, S. Potential effects of environmental toxicants on sperm quality and potential risk for fertility in humans. Front. Endocrinol. 2025, 16, 1545593. [Google Scholar] [CrossRef] [PubMed]
- Gelbaya, T.A.; Potdar, N.; Jeve, Y.B.; Nardo, L.G. Definition and Epidemiology of Unexplained Infertility. Obstet. Gynecol. Surv. 2014, 69, 109–115. [Google Scholar] [CrossRef]
- Akanbi, C.A.; Rotimi, D.E.; Ojo, A.B.; Ojo, O.A. Endocrine-disrupting chemicals (EDCs) and epigenetic regulation in embryonic development: Mechanisms, impacts, and emerging trends. Toxicol. Rep. 2025, 14, 101885. [Google Scholar] [CrossRef] [PubMed]
- Lorber, M.; Schecter, A.; Paepke, O.; Shropshire, W.; Christensen, K.; Birnbaum, L. Exposure assessment of adult intake of bisphenol A (BPA) with emphasis on canned food dietary exposures. Environ. Int. 2015, 77, 55–62. [Google Scholar] [CrossRef] [PubMed]
Pathway/Mechanism | Example EDCs | Mode of Action | Consequences for Male Reproduction |
---|---|---|---|
Hormone receptor interaction | BPA, phthalates |
|
|
HPG axis interference | Phthalates, pesticides |
|
|
Epigenetic modifications | BPA, phthalates |
|
|
Oxidative stress and apoptosis | Multiple EDCs |
|
|
Metabolic/Thyroid disruptions | PCB Organochlorines |
|
|
Aspect | Mechanistic Evidence | Epidemiological/Clinical Evidence |
---|---|---|
Sperm quality | BPA → mitochondrial dysfunction; oxidative DNA damage (animal) | BPA and phthalates associated with reduced sperm motility, concentration, and increased DNA fragmentation in men [31,32,33,34] |
Hormonal imbalance | AR antagonism, steroidogenesis inhibition (cell/animal) | Phthalate metabolites and BPA biomarkers correlated with lower serum testosterone and altered LH/FSH ratios in population studies [30,35,36,37] |
Testicular morphology | Seminiferous tubule degeneration, vacuolization of Sertoli cells, reduced Leydig cell counts (rats, mice) | Limited biopsy evidence; indirect clinical associations with infertility and reduced sperm counts [15,38] |
Epigenetics | BPA and phthalates alter sperm DNA methylation, histone retention, and ncRNA expression (transgenerational animal models) | Human studies show altered sperm DNA methylation and microRNA profiles linked to urinary EDC biomarkers |
Aspect | Description | Examples/Key Points |
---|---|---|
Exposure Routes | EDCs enter the body via ingestion, inhalation, and dermal absorption. | - Food and water (BPA, pesticide residues) - Inhalation of volatile compounds (flame retardants, solvents, occupational exposure) - Dermal absorption (phthalates, parabens, cosmetics, plastics) - Cumulative low-dose and mixture effects amplify risks [4,42,43,44] |
Biomonitoring and Risk Assessment | Biological samples are used to measure exposure and link it to outcomes. Risk assessment establishes safe thresholds. | - Matrices: urine, blood, semen, and tissue - Reference values: ADI (acceptable daily intake) and NOAEL (no-observed-adverse-effect level) - Challenges: low-dose non-monotonic responses, mixture effects not fully captured [45,46,47] |
Regulatory Frameworks | Multiple agencies provide guidelines, but critical gaps persist. | - EU: EFSA guidelines, REACH regulation - US: FDA & EPA regulation of consumer products, pesticides, and food-contact materials - Global: UNEP and WHO environmental monitoring and public health guidance - Gaps: insufficient testing of endocrine activity, lack of consideration for mixtures, sensitive developmental windows, and chronic low-dose effects [48,49,50,51] |
Challenges and Future Directions | Improved tools and frameworks are needed for effective regulation. | - Integration of toxicological, epidemiological, and mechanistic evidence - Advanced tools: computational modeling, omics, high-throughput in vitro screening - Priorities: address low-dose and transgenerational impacts, reduce exposure during critical developmental periods, strengthen public health strategies [52,53,54,55] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stavros, S.; Kathopoulis, N.; Moustakli, E.; Potiris, A.; Anagnostaki, I.; Topis, S.; Arkouli, N.; Louis, K.; Theofanakis, C.; Grigoriadis, T.; et al. Endocrine-Disrupting Chemicals and Male Infertility: Mechanisms, Risks, and Regulatory Challenges. J. Xenobiot. 2025, 15, 165. https://doi.org/10.3390/jox15050165
Stavros S, Kathopoulis N, Moustakli E, Potiris A, Anagnostaki I, Topis S, Arkouli N, Louis K, Theofanakis C, Grigoriadis T, et al. Endocrine-Disrupting Chemicals and Male Infertility: Mechanisms, Risks, and Regulatory Challenges. Journal of Xenobiotics. 2025; 15(5):165. https://doi.org/10.3390/jox15050165
Chicago/Turabian StyleStavros, Sofoklis, Nikolaos Kathopoulis, Efthalia Moustakli, Anastasios Potiris, Ismini Anagnostaki, Spyridon Topis, Nefeli Arkouli, Konstantinos Louis, Charalampos Theofanakis, Themos Grigoriadis, and et al. 2025. "Endocrine-Disrupting Chemicals and Male Infertility: Mechanisms, Risks, and Regulatory Challenges" Journal of Xenobiotics 15, no. 5: 165. https://doi.org/10.3390/jox15050165
APA StyleStavros, S., Kathopoulis, N., Moustakli, E., Potiris, A., Anagnostaki, I., Topis, S., Arkouli, N., Louis, K., Theofanakis, C., Grigoriadis, T., Thomakos, N., & Zikopoulos, A. (2025). Endocrine-Disrupting Chemicals and Male Infertility: Mechanisms, Risks, and Regulatory Challenges. Journal of Xenobiotics, 15(5), 165. https://doi.org/10.3390/jox15050165