error_outline You can access the new MDPI.com website here. Explore and share your feedback with us.
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,137)

Search Parameters:
Keywords = traffic cost

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 2967 KB  
Article
University Commuters’ Travel Behavior and Route Switching Under Travel Information: Evidence from GPS and Self-Reported Data
by Maria Karatsoli and Eftihia Nathanail
Future Transp. 2026, 6(1), 14; https://doi.org/10.3390/futuretransp6010014 - 8 Jan 2026
Abstract
In medium-sized cities, daily travel often follows routine patterns, which may lead to suboptimal route choices. This study examines such trips and evaluates them to assess the influence of travel information. The research is motivated by the growing importance of sustainable urban mobility [...] Read more.
In medium-sized cities, daily travel often follows routine patterns, which may lead to suboptimal route choices. This study examines such trips and evaluates them to assess the influence of travel information. The research is motivated by the growing importance of sustainable urban mobility and the need to address traffic congestion, environmental concerns, and inefficient transportation choices in the city of Volos, Greece. To achieve that, a survey of two phases was performed. First, self-reported and GPS data of an examined group of 96 participants from the University of Thessaly, Volos, Greece, were collected. The data were used to evaluate the daily trips in terms of travel time, cost, and environmental friendliness. Second, a stated preference survey was designed, targeting motorized vehicle users of the examined group. The survey investigated the extent to which shared information on social media can be used to recommend a different route than the usual one or convince them to shift to a sustainable way of transportation. The analysis shows that travelers are more inclined to accept the recommended route after receiving travel information; however, this effect does not translate into choosing a sustainable mode of transport. We also found that women are more likely to change routes than men. Full article
25 pages, 7905 KB  
Article
An Instrumented Drop-Test Analysis of the Impact Behavior of Commercial Laminated Flooring Brands
by Alexandru Viorel Vasiliu, Constantin Tudurache, George Cătălin Cristea, Mario Constandache, Valentin Azamfirei, Marian Claudiu Martin, George Ghiocel Ojoc and Lorena Deleanu
Buildings 2026, 16(2), 259; https://doi.org/10.3390/buildings16020259 - 7 Jan 2026
Abstract
Laminate flooring is widely used due to its affordable cost, easy installation, and pleasant esthetics. It is subjected to significant mechanical stress, necessitating a rigorous assessment of its impact resistance. Current standards typically rely on simple methods, such as free fall of a [...] Read more.
Laminate flooring is widely used due to its affordable cost, easy installation, and pleasant esthetics. It is subjected to significant mechanical stress, necessitating a rigorous assessment of its impact resistance. Current standards typically rely on simple methods, such as free fall of a metal ball, not providing information on how the stratified material behaves during impact. This study proposes a modern approach, using an instrumented impact test machine. Tests were carried out with impact energies of 2 J, 3 J, and 5 J. Three tests were performed for statistical relevance. The monitored parameters were maximum force, maximum displacement, impact duration, absorbed energy, indentation diameter. Discussion was focused on influence of flooring thickness and traffic class. The tested materials were commercial brands. Regarding traffic classes, differences became more evident at higher impact energies: class C33 parquet showed larger indentations, while C31 and C32 had smaller values, suggesting that the protective layer in C33 leads to different behavior under impact points. The relevance of this study stems from the fact that, unlike most previous work, the entire testing campaign was conducted using an instrumented impact system, enabling precise and repeatable data acquisition. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

28 pages, 4455 KB  
Article
Dynamic Visibility Recognition and Driving Risk Assessment Under Rain–Fog Conditions Using Monocular Surveillance Imagery
by Zilong Xie, Chi Zhang, Dibin Wei, Xiaomin Yan and Yijing Zhao
Sustainability 2026, 18(2), 625; https://doi.org/10.3390/su18020625 - 7 Jan 2026
Abstract
This study addresses the limitations of conventional highway visibility monitoring under rain–fog conditions, where fixed stations and visibility sensors provide limited spatial coverage and unstable accuracy. Considering that drivers’ visual fields are jointly affected by global fog and local spray-induced mist, a dynamic [...] Read more.
This study addresses the limitations of conventional highway visibility monitoring under rain–fog conditions, where fixed stations and visibility sensors provide limited spatial coverage and unstable accuracy. Considering that drivers’ visual fields are jointly affected by global fog and local spray-induced mist, a dynamic visibility recognition and risk assessment framework is proposed using roadside monocular CCTV (Closed-Circuit Television) imagery. The method integrates the Koschmieder scattering model with the dark channel prior to estimate atmospheric transmittance and derives visibility through lane-line calibration. A Monte Carlo-based coupling model simulates local visibility degradation caused by tire spray, while a safety potential field defines the low-visibility risk field force (LVRFF) combining dynamic visibility, relative speed, and collision distance. Results show that this approach achieves over 86% accuracy under heavy rain, effectively captures real-time visibility variations, and that LVRFF exhibits strong sensitivity to visibility degradation, outperforming traditional safety indicators in identifying high-risk zones. By enabling scalable, infrastructure-based visibility monitoring without additional sensing devices, the proposed framework reduces deployment cost and energy consumption while enhancing the long-term operational resilience of highway systems under adverse weather. From a sustainability perspective, the method supports safer, more reliable, and resource-efficient traffic management, contributing to the development of intelligent and sustainable transportation infrastructure. Full article
(This article belongs to the Special Issue Traffic Safety, Traffic Management, and Sustainable Mobility)
25 pages, 607 KB  
Article
Lightweight One-to-Many User-to-Sensors Authentication and Key Agreement
by Hussein El Ghor, Ahmad Hani El Fawal, Ali Mansour, Ahmad Ahmad-Kassem and Abbass Nasser
Information 2026, 17(1), 47; https://doi.org/10.3390/info17010047 - 4 Jan 2026
Viewed by 84
Abstract
The proliferation of Internet of Things (IoT) deployments demands Authentication and Key Agreement (AKA) protocols that scale from one initiator to many devices while preserving strong security guarantees on constrained hardware. Prior lightweight one-to-many designs often rely on a network-wide secret, reuse a [...] Read more.
The proliferation of Internet of Things (IoT) deployments demands Authentication and Key Agreement (AKA) protocols that scale from one initiator to many devices while preserving strong security guarantees on constrained hardware. Prior lightweight one-to-many designs often rely on a network-wide secret, reuse a single group session key across devices, or omit Perfect Forward Secrecy (PFS), leaving systems vulnerable to compromise and traffic exposure. To this end, we present in this paper a lightweight protocol, named Lightweight One-To-many User-to-Sensors Authentication and Key Agreement (LOTUS-AKA), that achieves mutual authentication, PFS, and per-sensor key isolation while keeping devices free of public-key costs. The user and gateway perform an ephemeral elliptic-curve Diffie–Hellman exchange to derive a short-lived group key, from which independent per-sensor session keys are expanded via Hashed Message Authentication Code HMAC-based Key Derivation Function (HKDF). Each sensor receives its key through a compact Authenticated Encryption with associated data (AEAD) wrap under its long-term secret; sensors perform only hashing and AEAD, with no elliptic-curve operations. The login path uses an augmented Password-Authenticated Key Exchange (PAKE) to eliminate offline password guessing in the smart-card theft setting, and a stateless cookie gates expensive work to mitigate denial-of-service. We provide a game-based security argument and a symbolic verification model, and we report microbenchmarks on Cortex-M–class platforms showing reduced device computation and linear low-constant communication overhead with the number of sensors. The design offers a practical path to secure, scalable multi-sensor sessions in resource-constrained IoT. Full article
(This article belongs to the Special Issue Extended Reality and Cybersecurity)
Show Figures

Figure 1

24 pages, 2917 KB  
Article
A Demand Prediction-Driven Algorithm for Dynamic Shared Autonomous Vehicle Relocation: Integrating Deep Learning and System Optimization
by Hui-Yong Zhang, Kun Zhao, Wei-Xin Yu, Meng Zeng, Si-Qi Wang and Fang Zong
Sustainability 2026, 18(1), 489; https://doi.org/10.3390/su18010489 - 3 Jan 2026
Viewed by 162
Abstract
This paper develops a dynamic repositioning mechanism for shared autonomous vehicles (SAVs) driven by travel demand. A prediction model for SAV travel demand is constructed by the proposed GRU-FC network. On this basis, an integer programming model for empty-vehicle dispatching which aims to [...] Read more.
This paper develops a dynamic repositioning mechanism for shared autonomous vehicles (SAVs) driven by travel demand. A prediction model for SAV travel demand is constructed by the proposed GRU-FC network. On this basis, an integer programming model for empty-vehicle dispatching which aims to maximize the SAV revenue while minimizing the costs of vehicle relocation and operation is formulated. The results indicate that, relative to relying solely on natural vehicle dispatching, the proposed dispatching scheme reduces empty vehicle dispatches by 21.00% and increases total system profit by 38.89%. The findings theoretically improve the dynamic optimization theory of SAV dispatching and provide theoretical support for algorithm design based on the “demand-pull” principle. The method proposed in this paper is beneficial to optimizing the dynamic vehicle dispatching theory of SAVs. It helps to boost system revenue, reduce empty driving costs, alleviate traffic pressure, and lower energy consumption and environmental pollution, thereby fostering sustainable urban mobility and supporting the Sustainable Development Goals of clean energy and sustainable cities. Full article
(This article belongs to the Special Issue Sustainable Transportation Systems and Travel Behaviors)
Show Figures

Figure 1

23 pages, 32193 KB  
Article
Object Detection on Road: Vehicle’s Detection Based on Re-Training Models on NVIDIA-Jetson Platform
by Sleiter Ramos-Sanchez, Jinmi Lezama, Ricardo Yauri and Joyce Zevallos
J. Imaging 2026, 12(1), 20; https://doi.org/10.3390/jimaging12010020 - 1 Jan 2026
Viewed by 256
Abstract
The increasing use of artificial intelligence (AI) and deep learning (DL) techniques has driven advances in vehicle classification and detection applications for embedded devices with deployment constraints due to computational cost and response time. In the case of urban environments with high traffic [...] Read more.
The increasing use of artificial intelligence (AI) and deep learning (DL) techniques has driven advances in vehicle classification and detection applications for embedded devices with deployment constraints due to computational cost and response time. In the case of urban environments with high traffic congestion, such as the city of Lima, it is important to determine the trade-off between model accuracy, type of embedded system, and the dataset used. This study was developed using a methodology adapted from the CRISP-DM approach, which included the acquisition of traffic videos in the city of Lima, their segmentation, and manual labeling. Subsequently, three SSD-based detection models (MobileNetV1-SSD, MobileNetV2-SSD-Lite, and VGG16-SSD) were trained on the NVIDIA Jetson Orin NX 16 GB platform. The results show that the VGG16-SSD model achieved the highest average precision (mAP 90.7%), with a longer training time, while the MobileNetV1-SSD (512×512) model achieved comparable performance (mAP 90.4%) with a shorter time. Additionally, data augmentation through contrast adjustment improved the detection of minority classes such as Tuk-tuk and Motorcycle. The results indicate that, among the evaluated models, MobileNetV1-SSD (512×512) achieved the best balance between accuracy and computational load for its implementation in ADAS embedded systems in congested urban environments. Full article
(This article belongs to the Special Issue Advances in Machine Learning for Computer Vision Applications)
Show Figures

Figure 1

19 pages, 1760 KB  
Article
Adaptive Rolling-Horizon Optimization for Low-Carbon Operation of Coupled Transportation–Power Systems
by Zhe Zhang, Shiyan Luan, Yingli Wei, Fan Tang, Haosen Li, Pengkun Sun and Chao Yang
Energies 2026, 19(1), 227; https://doi.org/10.3390/en19010227 - 31 Dec 2025
Viewed by 225
Abstract
The rapid growth of electric vehicles (EVs) has created new challenges for the coordinated low-carbon operation of transportation and power systems. To address this issue, this paper proposes an adaptive rolling-horizon dynamic user equilibrium (DUE) optimization framework for the low-carbon operation of coupled [...] Read more.
The rapid growth of electric vehicles (EVs) has created new challenges for the coordinated low-carbon operation of transportation and power systems. To address this issue, this paper proposes an adaptive rolling-horizon dynamic user equilibrium (DUE) optimization framework for the low-carbon operation of coupled transportation–power systems. The framework integrates transportation, power, and environmental dimensions into a unified objective. On the transportation side, a DUE-based traffic assignment formulation captures both road travel times and station-level queuing dynamics, providing a realistic representation of EV user behavior. This DUE-based traffic assignment model is coupled with an optimal AC power flow formulation to ensure grid feasibility and quantify network losses. To internalize environmental costs, a carbon emission flow module propagates generator-specific carbon intensities to charging stations, aligning charging decisions with their true emission sources. These components are coordinated within a rolling-horizon method in which the prediction window adapts its length to the variability of demand and renewable forecasts. The proposed method allows longer horizons to improve foresight in stable conditions and shorter ones to maintain robustness under volatility. Numerical case studies demonstrate the effectiveness and robustness of the proposed framework and its potential to support low-carbon, high-efficiency operation of coupled transportation–power systems. Full article
Show Figures

Figure 1

23 pages, 3599 KB  
Article
Efficient Path Planning for Port AGVs Using Event-Triggered PPO–EMPC
by Zhaowei Zeng and Yongsheng Yang
World Electr. Veh. J. 2026, 17(1), 19; https://doi.org/10.3390/wevj17010019 - 30 Dec 2025
Viewed by 166
Abstract
In the centralized scheduling mode of automated container terminals, Automated Guided Vehicles (AGVs) often experience decision-making delays caused by system information-processing bottlenecks, which significantly affect path-planning efficiency and are particularly evident in sudden-traffic scenarios. To address this issue, this paper incorporates the artificial [...] Read more.
In the centralized scheduling mode of automated container terminals, Automated Guided Vehicles (AGVs) often experience decision-making delays caused by system information-processing bottlenecks, which significantly affect path-planning efficiency and are particularly evident in sudden-traffic scenarios. To address this issue, this paper incorporates the artificial potential field (APF) into the cost function of Model Predictive Control (MPC) and develops a dual-trigger mechanism for lane-change and lane-return MPC obstacle-avoidance framework (Event-Triggered Model Predictive Control, EMPC). This framework integrates an obstacle-triggered local optimization mechanism and a lane-change trigger, enabling AGV to perform autonomous and dynamically responsive local obstacle avoidance, thereby improving local path-planning efficiency. Furthermore, a Proximal Policy Optimization (PPO)-based strategy is introduced to adaptively adjust the obstacle-weighting parameters within the EMPC cost function, enhancing both obstacle-avoidance and lane-keeping performance. Under multi-lane overtaking conditions, a lane-change trigger—implemented as a dual-phase “lane-change–return” mechanism—is employed, in which lateral optimization is activated only during critical phases, reducing online computational load by at least 28% compared with conventional MPC strategies. The experimental results demonstrate that the proposed PPO–EMPC architecture exhibits high robustness, real-time performance, and scalability under dynamic and partially observable environments, providing a practical and generalizable decision-making paradigm for cooperative AGV operations in automated container terminals. Full article
(This article belongs to the Special Issue Research on Intelligent Vehicle Path Planning Algorithm)
Show Figures

Figure 1

12 pages, 467 KB  
Article
Optimal Control for Networked Control Systems with Stochastic Transmission Delay and Packet Dropouts
by Jingmei Liu, Boqun Tan and Xiaojian Mu
Electronics 2026, 15(1), 180; https://doi.org/10.3390/electronics15010180 - 30 Dec 2025
Viewed by 150
Abstract
This paper investigates an optimal decision-making and optimization framework for networked systems operating under the coupled effects of stochastic transmission delays, packet dropouts, and input delays, which is a critical unresolved challenge in data-driven intelligent systems deployed over shared communication networks. Such uncertainty-aware [...] Read more.
This paper investigates an optimal decision-making and optimization framework for networked systems operating under the coupled effects of stochastic transmission delays, packet dropouts, and input delays, which is a critical unresolved challenge in data-driven intelligent systems deployed over shared communication networks. Such uncertainty-aware optimization problems exhibit strong similarities to modern recommender and decision support systems, where multiple performance criteria must be balanced under dynamic and resource-constrained environments while addressing the disruptive impact of coupled network-induced uncertainties. By explicitly modeling stochastic transmission delays and packet losses in the sensor to controller channel, together with input delays in the actuation loop, the problem is formulated as a stochastic optimal control task with multi-stage decision coupling that captures the interdependency of communication uncertainties and system performance. An optimal feedback policy is derived based on a discrete time Riccati recursion explicitly quantifying and mitigating the cumulative impact of network-induced uncertainties on the expected performance cost, which is a capability lacking in existing frameworks that treat uncertainties separately. Numerical simulations using realistic traffic models validate the effectiveness of the proposed framework. The results demonstrate that the proposed decision optimization approach offers a principled foundation for uncertainty-aware optimization with potential applicability to data-driven recommender and intelligent decision systems where coupled uncertainties and multi-criteria trade-offs are pervasive. Full article
Show Figures

Figure 1

29 pages, 5280 KB  
Article
Comparative Analysis of Map-Matching Algorithms for Autonomous Vehicles Under Varying GPS Errors and Network Densities
by Sari Kim and Kyeongpyo Kang
Appl. Sci. 2026, 16(1), 398; https://doi.org/10.3390/app16010398 - 30 Dec 2025
Viewed by 175
Abstract
Reliable traffic-signal information delivery is critical for safe navigation through signalized intersections, particularly for low-cost autonomous vehicles that rely on Vehicle-to-Network (V2N) communication rather than on-board HD maps or expensive perception sensors. Ensuring this selective delivery requires accurate infrastructure-side map-matching, which becomes challenging [...] Read more.
Reliable traffic-signal information delivery is critical for safe navigation through signalized intersections, particularly for low-cost autonomous vehicles that rely on Vehicle-to-Network (V2N) communication rather than on-board HD maps or expensive perception sensors. Ensuring this selective delivery requires accurate infrastructure-side map-matching, which becomes challenging when vehicles operate with only Standard Definition (SD) maps and noisy GNSS measurements. This study comparatively evaluates five infrastructure-side map-matching algorithms under varying GNSS errors and road-network densities using real trajectories from Jeju Island with controlled Gaussian perturbations. The framework includes geometric matching, Extended Kalman Filtering (EKF), route-constrained filtering, grid-based spatial indexing, and a hybrid route–EKF fallback mechanism, executed in real time on a cloud-hosted Kafka pipeline. The hybrid route–EKF algorithm exhibited consistently high and stable link-matching accuracy (0.99308–0.96546 across GPS error groups; 0.9887–0.9777 across density groups) together with strong signal-matching accuracy (0.99394–0.96950; 0.9865–0.9790). Route-constrained and Kalman-based approaches also performed well, while heading-based matching showed clear limitations. These results indicate that infrastructure-side map-matching provides a scalable foundation for cloud-assisted traffic-signal information services and supports the feasibility of delivering reliable traffic-signal information to low-cost autonomous platforms. Full article
Show Figures

Figure 1

25 pages, 5627 KB  
Article
Moving-Block-Based Lane-Sharing Strategy for Autonomous-Rail Rapid Transit with a Leading Eco-Driving Approach
by Junlin Zhang, Guosheng Xiao, Jianping Xu, Shiliang Zhang, Yangsheng Jiang and Zhihong Yao
Mathematics 2026, 14(1), 126; https://doi.org/10.3390/math14010126 - 29 Dec 2025
Viewed by 181
Abstract
Autonomous-rail Rapid Transit (ART) systems operate on standard roadways while maintaining dedicated right-of-way privileges. Owing to their sustainability, punctual operation, and cost efficiency, ART systems have emerged as a promising solution for medium-capacity urban transit. However, the exclusive lane usage for ART systems [...] Read more.
Autonomous-rail Rapid Transit (ART) systems operate on standard roadways while maintaining dedicated right-of-way privileges. Owing to their sustainability, punctual operation, and cost efficiency, ART systems have emerged as a promising solution for medium-capacity urban transit. However, the exclusive lane usage for ART systems frequently leads to inefficient lane utilization, thereby intensifying congestion for non-ART vehicles. This study proposes a moving-block-based lane-sharing strategy for ART with a leading eco-driving approach. First, dynamic lane-access rules are introduced, allowing non-ART vehicles to temporarily use the ART lane without forced clearance or signal coordination. Second, a modified eco-driving trajectory optimization algorithm is constructed on a discrete time–space–state network, allowing the ART trajectory to be obtained through an efficient graph-search procedure while simultaneously guiding following vehicles toward energy-efficient driving patterns. Finally, simulation experiments are conducted to evaluate the impacts of traffic demand, arrival interval, and non-ART vehicles’ compliance rate on system performance. The results demonstrate that the proposed strategy significantly reduces delay and energy consumption for non-ART vehicles by 72.6% and 24.6%, respectively, without compromising ART operations efficiency. This work provides both technical insights and theoretical support for the efficient management of ART systems and the sustainable development of urban transportation. Full article
(This article belongs to the Special Issue Modeling, Control, and Optimization for Transportation Systems)
Show Figures

Figure 1

19 pages, 1187 KB  
Article
Dual-Pipeline Machine Learning Framework for Automated Interpretation of Pilot Communications at Non-Towered Airports
by Abdullah All Tanvir, Chenyu Huang, Moe Alahmad, Chuyang Yang and Xin Zhong
Aerospace 2026, 13(1), 32; https://doi.org/10.3390/aerospace13010032 - 28 Dec 2025
Viewed by 200
Abstract
Accurate estimation of aircraft operations, such as takeoffs and landings, is critical for airport planning and resource allocation, yet it remains particularly challenging at non-towered airports, where no dedicated surveillance infrastructure exists. Existing solutions, including video analytics, acoustic sensors, and transponder-based systems, are [...] Read more.
Accurate estimation of aircraft operations, such as takeoffs and landings, is critical for airport planning and resource allocation, yet it remains particularly challenging at non-towered airports, where no dedicated surveillance infrastructure exists. Existing solutions, including video analytics, acoustic sensors, and transponder-based systems, are often costly, incomplete, or unreliable in environments with mixed traffic and inconsistent radio usage, highlighting the need for a scalable, infrastructure-free alternative. To address this gap, this study proposes a novel dual-pipeline machine learning framework that classifies pilot radio communications using both textual and spectral features to infer operational intent. A total of 2489 annotated pilot transmissions collected from a U.S. non-towered airport were processed through automatic speech recognition (ASR) and Mel-spectrogram extraction. We benchmarked multiple traditional classifiers and deep learning models, including ensemble methods, long short-term memory (LSTM) networks, and convolutional neural networks (CNNs), across both feature pipelines. Results show that spectral features paired with deep architectures consistently achieved the highest performance, with F1-scores exceeding 91% despite substantial background noise, overlapping transmissions, and speaker variability These findings indicate that operational intent can be inferred reliably from existing communication audio alone, offering a practical, low-cost path toward scalable aircraft operations monitoring and supporting emerging virtual tower and automated air traffic surveillance applications. Full article
(This article belongs to the Special Issue AI, Machine Learning and Automation for Air Traffic Control (ATC))
Show Figures

Figure 1

36 pages, 5490 KB  
Article
Urban Medical Emergency Logistics Drone Base Station Location Selection
by Hongbin Zhang, Liang Zou, Yongxia Yang, Jiancong Ma, Jingguang Xiao and Peiqun Lin
Drones 2026, 10(1), 17; https://doi.org/10.3390/drones10010017 - 28 Dec 2025
Viewed by 283
Abstract
In densely populated and traffic-congested major cities, medical emergency rescue incidents occur frequently, making the use of drones for emergency medical supplies delivery a new emergency distribution method. However, establishing drone transportation networks in urban areas requires balancing spatiotemporal fluctuations in emergency needs, [...] Read more.
In densely populated and traffic-congested major cities, medical emergency rescue incidents occur frequently, making the use of drones for emergency medical supplies delivery a new emergency distribution method. However, establishing drone transportation networks in urban areas requires balancing spatiotemporal fluctuations in emergency needs, meeting hospitals’ mandatory constraints on response time, and addressing factors like airspace restrictions and weather impacts. By analyzing the spatiotemporal distribution characteristics of medical emergency logistics in large cities, this study constructs a drone base station location optimization model integrating dynamic and static factors. The model combines multi-source data including emergency needs, geographic information, and airspace limitations. It employs kernel density estimation to identify hotspot areas, uses DBSCAN clustering to detect long-term stable demand hotspots, and applies LSTM methods to predict short-term and sudden demand fluctuations. The model optimizes coverage rate, response time, and cost budget control for drone transportation networks through a multi-objective genetic algorithm. Using Guangzhou as a case study, the results demonstrate that through “dynamic-static” collaborative deployment and multi-model drone coordination, the network achieves 96.18% demand coverage with an average response time of 673.38 s, significantly outperforming traditional vehicle transportation. Sensitivity analysis and robustness testing further validate the model’s effectiveness in handling demand fluctuations, weather changes, and airspace restrictions. This research provides theoretical support and decision-making basis for scientific planning of urban medical emergency drone transportation networks, offering practical significance for enhancing urban emergency rescue capabilities. Full article
Show Figures

Figure 1

21 pages, 4686 KB  
Article
Network-Wide Deployment of Connected and Autonomous Vehicle Dedicated Lanes Through Integrated Modeling of Endogenous Demand and Dynamic Capacity
by Yuxin Wang, Lili Lu and Xiaoying Wu
Sustainability 2026, 18(1), 292; https://doi.org/10.3390/su18010292 - 27 Dec 2025
Viewed by 268
Abstract
Integrating connected and autonomous vehicle dedicated lanes (CAVDLs) into existing road networks under mixed traffic conditions presents a complex challenge, often requiring a balance of multiple conflicting objectives. This study develops a dynamic multi-objective optimization framework, formulated as a mixed-integer nonlinear programming problem, [...] Read more.
Integrating connected and autonomous vehicle dedicated lanes (CAVDLs) into existing road networks under mixed traffic conditions presents a complex challenge, often requiring a balance of multiple conflicting objectives. This study develops a dynamic multi-objective optimization framework, formulated as a mixed-integer nonlinear programming problem, to determine the optimal network-wide deployment of CAVDLs. The framework integrates three core components: an endogenous demand model capturing connected and autonomous vehicle (CAV)/human-driven vehicle (HDV) mode choice, a multi-class dynamic traffic assignment model that adjusts lane capacity based on CAV-HDV interactions, and an NSGA-III algorithm that minimizes total system travel time, total emissions, and construction costs. Results of a case study indicate the following: (i) sensitivity analysis confirms that user value of time is the most critical factor affecting CAV adoption; the model’s endogenous consideration of this variable ensures alignment between CAVDL layouts and actual demand; (ii) the proposed Pareto-optimal solution reduces total travel time and emissions by approximately 31% compared to a no-CAVDL scenario, while cutting construction costs by 23.5% against a single-objective optimization; (iii) CAVDLs alleviate congestion by reducing bottleneck duration and peak density by 36.4% and 16.3%, respectively. The developed framework provides a novel and practical decision-support tool that explicitly quantifies the trade-offs among traffic efficiency, environmental impact, and infrastructure cost for sustainable transportation planning. Full article
(This article belongs to the Section Sustainable Transportation)
Show Figures

Figure 1

17 pages, 1644 KB  
Article
A Statistical Method and Deep Learning Models for Detecting Denial of Service Attacks in the Internet of Things (IoT) Environment
by Ruuhwan, Rendy Munadi, Hilal Hudan Nuha, Erwin Budi Setiawan and Niken Dwi Wahyu Cahyani
Appl. Syst. Innov. 2026, 9(1), 9; https://doi.org/10.3390/asi9010009 - 26 Dec 2025
Viewed by 252
Abstract
The flourishing of the Internet of Things (IoT) has not only improved our lives in smart homes and healthcare but also made us more susceptible to cyberattacks. Legacy intrusion detection systems are simply overwhelmed by the scale and diversity of IoT traffic, which [...] Read more.
The flourishing of the Internet of Things (IoT) has not only improved our lives in smart homes and healthcare but also made us more susceptible to cyberattacks. Legacy intrusion detection systems are simply overwhelmed by the scale and diversity of IoT traffic, which is why there is a need for more intelligent forensic solutions. In this paper, we present a statistical technique, the Averaging Detection Method (ADM), for detecting attack traffic. Furthermore, the five deep learning models SimpleRNN, LSTM, GRU, BLSTM, and BGRU are compared for malicious traffic detection in IoT network forensics. A smart home dataset with a simulated DoS attack was used for performance analysis of accuracy, precision, recall, F1-score, and training time. The results indicate that all models achieve high accuracy, above 97%. BiGRU achieves the best performance, 99% accuracy, precision, recall, and F1-score, at the cost of high training time. GRU achieves perfect precision and recall (100%) with faster training, which can be considered for resource-constrained scenarios. SimpleRNN trains faster with comparable accuracy, while LSTMs and their bidirectional counterparts are better at capturing long-term dependencies but are computationally more expensive. In summary, deep learning, especially BiGRU and GRU, holds great promise for boosting IoT forensic investigation by enabling real-time DoS detection and reliable evidence collection. Meanwhile, the proposed ADM is simpler and more efficient at classifying DoS traffic than deep learning models. Full article
(This article belongs to the Special Issue Recent Advances in Internet of Things and Its Applications)
Show Figures

Figure 1

Back to TopTop