Modeling, Control, and Optimization for Transportation Systems

A special issue of Mathematics (ISSN 2227-7390). This special issue belongs to the section "E2: Control Theory and Mechanics".

Deadline for manuscript submissions: 10 November 2025 | Viewed by 577

Special Issue Editor


E-Mail Website
Guest Editor
Department of Systems and Control Engineering, School of Engineering, Institute of Science Tokyo, Tokyo, 152-8552, Japan
Interests: intelligent transportation systems; autonomous vehicles; ecological driving; advanced control systems; artificial intelligence

Special Issue Information

Dear Colleagues,

I am pleased to announce this Special Issue of the journal Mathematics entitled “Modeling, Control, and Optimization for Transportation Systems”. This Special Issue invites high-quality original research or review papers on the development and application of mathematical models, algorithms, and control strategies to improve the efficiency, safety, and sustainability of transportation networks. The main topics of this Special Issue include but are not limited to: (1) Modeling traffic flow, vehicle behavior, and infrastructure for guiding decisions on how to handle congestion, road closures, or accidents, (2) Control strategies that focus on regulating and managing transportation systems in real-time including optimizing traffic signal timings, controlling traffic flow, vehicle coordination, and managing vehicle routing to prevent congestion, and (3) optimization techniques, such as linear programming, network optimization, and evolutionary algorithms are applied to minimize costs, reduce travel time, and improve environmental impacts, etc.

Dr. A. S. M. Bakibillah
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Mathematics is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • traffic flow modeling
  • vehicle dynamics modeling
  • car-following models
  • multi-modal transportation modeling
  • route choice behavior
  • microsimulation
  • simulation-based optimization
  • demand forecasting
  • adaptive traffic control systems
  • autonomous vehicle control
  • cooperative control systems
  • vehicle-to-infrastructure (V2I) communication
  • control theory in transportation
  • optimal routing
  • energy-efficient routing
  • parking management optimization
  • traffic assignment problem

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

17 pages, 3560 KiB  
Article
Modeling the Effects of Speed and Red-Light Cameras and Traffic Signal Countdown Timers at Pre-Timed Controlled Intersections on Traffic Flow
by Omar Almutairi and Muhammad Imran Khan
Mathematics 2025, 13(16), 2615; https://doi.org/10.3390/math13162615 - 15 Aug 2025
Abstract
In this study, the effects of speed and red-light cameras (SRLCs) and traffic signal countdown timers (TSCTs) on the operation of pre-timed signalized intersections were studied through startup lost times (SLTs) and saturation time headways (STHs). The study used the beanplots package version [...] Read more.
In this study, the effects of speed and red-light cameras (SRLCs) and traffic signal countdown timers (TSCTs) on the operation of pre-timed signalized intersections were studied through startup lost times (SLTs) and saturation time headways (STHs). The study used the beanplots package version 1.3.1 in R statistical software to graph and find the first STH that occurred in a queue. Then, one-way analysis of variance was used twice to explore the effects of the separate and joint use of SRLCs and TSCTs on the operation of pre-timed signalized intersections. The results show that SRLC use does not have a significant direct impact on the operation of pre-timed signalized intersections, but SRLC interacts negatively with TSCT use. In addition, TSCT use was shown to improve the operation of pre-timed signalized intersections by decreasing the SLT and STH. For SLT, the effect size of TSCT use depends on the presence or absence of SRLC use, and its reduction ranges from 0.5 to 1.25 s per queue. As for STH, the effect size of TSCT use does not depend on the presence or absence of SRLC use, and its reduction ranges from 0.08 to 0.12 s per vehicle, corresponding to 0.8–1.2 s per queue, given that there are 10 vehicles in the queue. Full article
(This article belongs to the Special Issue Modeling, Control, and Optimization for Transportation Systems)
Show Figures

Figure 1

20 pages, 484 KiB  
Article
Design of Extended Dissipative Approach via Memory Sampled-Data Control for Stabilization and Its Application to Mixed Traffic System
by Wimonnat Sukpol, Vadivel Rajarathinam, Porpattama Hammachukiattikul and Putsadee Pornphol
Mathematics 2025, 13(15), 2449; https://doi.org/10.3390/math13152449 - 29 Jul 2025
Viewed by 219
Abstract
This study examines the extended dissipativity analysis for newly designed mixed traffic systems (MTSs) utilizing the coupling memory sampled-data control (CMSDC) approach. The traffic flow creates a platoon, and the behavior of human-driven vehicles (HDVs) is presumed to adhere to the optimal velocity [...] Read more.
This study examines the extended dissipativity analysis for newly designed mixed traffic systems (MTSs) utilizing the coupling memory sampled-data control (CMSDC) approach. The traffic flow creates a platoon, and the behavior of human-driven vehicles (HDVs) is presumed to adhere to the optimal velocity model, with the acceleration of a single-linked automated vehicle regulated directly by a suggested CMSDC. The ultimate objective of this work is to present a CMSDC approach for optimizing traffic flow amidst disruptions. The primary emphasis is on the proper design of the CMSDC to ensure that the closed-loop MTS is extended dissipative and quadratically stable. A more generalized CMSDC methodology incorporating a time delay effect is created using a Bernoulli-distributed sequence. The existing Lyapunov–Krasovskii functional (LKF) and enhanced integral inequality methods offer sufficient conditions for the suggested system to achieve an extended dissipative performance index. The suggested criteria provide a comprehensive dissipative study, evaluating L2L, H, passivity, and dissipativity performance. A simulation example illustrates the accuracy and superiority of the proposed controller architecture for the MTS. Full article
(This article belongs to the Special Issue Modeling, Control, and Optimization for Transportation Systems)
Show Figures

Figure 1

Back to TopTop