Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,321)

Search Parameters:
Keywords = time of irradiation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3350 KB  
Article
Catalytic Degradation of Ciprofloxacin Using CuO Persulfate Oxidation System—Kinetics and Mechanisms
by Mohammadreza Khalaj, M. Elisabete V. Costa, Jonas Deuermeier and Isabel Capela
Water 2025, 17(24), 3550; https://doi.org/10.3390/w17243550 - 15 Dec 2025
Abstract
In this study, CuO nanoparticles were synthesised by chemical precipitation assisted by ultrasonic irradiation (UI), a rapid and environmentally friendly procedure without high temperature that enhances the sustainability of the synthesis process. They were also employed as a catalyst to activate peroxydisulfate (PDS) [...] Read more.
In this study, CuO nanoparticles were synthesised by chemical precipitation assisted by ultrasonic irradiation (UI), a rapid and environmentally friendly procedure without high temperature that enhances the sustainability of the synthesis process. They were also employed as a catalyst to activate peroxydisulfate (PDS) in the removal of ciprofloxacin (CIP) from a polluted solution. The effects of various factors, such as CIP concentration, catalyst dosage, PDS concentration, and initial pH, on the efficiency of this contaminant treatment were investigated. Under optimal conditions, CIP and TOC removal reached 100% and 49%, respectively, after only 30 min of reaction time and using high initial concentrations of CIP (20 mg/L), PDS (0.5 mM), and CuO (0.5 g/L) in pH (10). For the best set of processing conditions, pseudo-first-order reaction rate kinetics can be assumed and characterised. The possible degradation pathway of CIP is also suggested. Furthermore, by quenching experiment, the presence of O2*, *OH, and SO4* were identified, with O2* being a radical species with great impact on CIP removal. This study demonstrates that, in alkaline environments, ultrasonically synthesised CuO can effectively activate PDS for the degradation of CIP, achieving total removal within 30 min. The results indicate that UI-synthesised CuO is a very promising catalyst for the removal of emerging organic pollutants. Full article
Show Figures

Figure 1

21 pages, 2637 KB  
Article
Stability and Selectivity of Indocyanine Green Towards Photodynamic Therapy of CRL-2314 Breast Cancer Cells with Minimal Toxicity to HTB-125 Cells
by Wiktoria Mytych, Dorota Bartusik-Aebisher, David Aebisher and Gabriela Henrykowska
Molecules 2025, 30(24), 4773; https://doi.org/10.3390/molecules30244773 - 14 Dec 2025
Viewed by 49
Abstract
Background: Photodynamic therapy (PDT) with indocyanine green (ICG) offers a promising, minimally invasive approach for selective tumor ablation in breast cancer. This study investigates the stability, cellular uptake, and photodynamic efficacy of ICG in CRL-2314 breast cancer cells compared with HTB-125 normal mammary [...] Read more.
Background: Photodynamic therapy (PDT) with indocyanine green (ICG) offers a promising, minimally invasive approach for selective tumor ablation in breast cancer. This study investigates the stability, cellular uptake, and photodynamic efficacy of ICG in CRL-2314 breast cancer cells compared with HTB-125 normal mammary epithelial cells, with a focus on population density-dependent cytotoxicity. Cells were incubated with 50 µM ICG for 1–3 h and irradiated with a 780 nm laser. Viability was assessed using the Muse® Count & Viability Kit at 1–3 h. ICG uptake kinetics were quantified by flow cytometry. Singlet oxygen (1O2) generation was confirmed via 1270 nm phosphorescence and Stern–Volmer quenching. ICG uptake saturated at 2 h (89 ± 4% positive cells), with lysosomal colocalization. In CRL-2314 cells, viability decreased density- and time-dependently, reaching 40 ± 5% at 1 × 106 cells after 3 h (p < 0.0001), with IC50 = 23.8 µM (95% CI: 20–27 µM) at 72 h. HTB-125 cells maintained > 80% viability even at 300 µM, yielding no IC50. Two-way ANOVA confirmed cell line specificity (F = 428.7, p < 0.0001). ICG-PDT exhibits high selectivity and density-dependent efficacy against CRL-2314 cells with minimal toxicity to HTB-125, driven by enhanced uptake, sustained 1O2 production, and differential metabolic responses. These findings support ICG-PDT as a precision modality for breast cancer therapy. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

18 pages, 1962 KB  
Article
From Small Molecules to Polymers: Developing Non-Fullerene Acceptors for Efficient NIR Photothermal Cancer Therapy
by Yulia A. Isaeva, Elizaveta D. Blagodarnaia, Anastasia A. Vetyugova, Maxim E. Stepanov, Liya A. Poletavkina, Ivan V. Dyadishchev, Askold A. Trul, Tatyana V. Egorova, Roman A. Akasov and Yuriy N. Luponosov
Polymers 2025, 17(24), 3304; https://doi.org/10.3390/polym17243304 - 13 Dec 2025
Viewed by 147
Abstract
Developing organic photothermal agents that are highly stable and have tunable electronic properties is important for advancing low-invasive cancer therapy. In this study, we present the synthesis and evaluation of three conjugated photothermal agents inspired by non-fullerene Y-series acceptors: the small molecule BTPT-OD, [...] Read more.
Developing organic photothermal agents that are highly stable and have tunable electronic properties is important for advancing low-invasive cancer therapy. In this study, we present the synthesis and evaluation of three conjugated photothermal agents inspired by non-fullerene Y-series acceptors: the small molecule BTPT-OD, as well as two of its polymer derivatives with regular (r-BTPT) and irregular (ir-BTPT) structures. All of the compounds absorb light effectively in the red and near-infrared spectral ranges, with absorption maxima from 734 to 746 nm, and form stable nanoparticles (NPs) via nanoprecipitation, ranging in size from 13 to 39 nm. NPs exhibited negative surface charges, with ζ-potentials of −12.9, −15.5, and −17.9 mV for BTPT-OD, r-BTPT, and ir-BTPT NPs, respectively. Irradiation at a wavelength of 730 nm revealed that r-BTPT and ir-BTPT polymer NPs exhibited a 22- to 40-fold greater phototoxicity against A-549, Sk-Br-3, and MCF-7 human carcinoma cells than the non-polymeric analogue BTPT-OD. The measured photothermal conversion efficiencies ranged from 24 to 27 ± 5%. At the same time, the intracellular ROS generation quantified by the 2′,7′-dichlorodihydrofluorescein diacetate (DCFH-DA) assay was low, allowing us to propose heat-mediated photothermal therapy as a more significant cell death predictor than ROS-mediated photodynamic therapy. This work is one of the first to compare small and polymeric non-fullerene acceptor materials for phototherapy purposes, demonstrating the advantages of using polymers. Full article
Show Figures

Graphical abstract

11 pages, 1712 KB  
Article
Application of a CdTe Photovoltaic Dosimeter to Therapeutic Megavoltage Photon Beams
by Sang Hee Youn, Sangsu Kim, Jong Hoon Lee and Shinhaeng Cho
Appl. Sci. 2025, 15(24), 13091; https://doi.org/10.3390/app152413091 - 12 Dec 2025
Viewed by 74
Abstract
Accurate real-time dosimetry is key in megavoltage radiotherapy; however, many detectors require external biasing or complex instrumentation. This study evaluated thin-film CdTe solar cells operating in photovoltaic (zero-bias) mode as medical dosimeters. Superstrate ITO/CdS/CdTe/Cu/Au devices were fabricated and irradiated with 6-MV photons from [...] Read more.
Accurate real-time dosimetry is key in megavoltage radiotherapy; however, many detectors require external biasing or complex instrumentation. This study evaluated thin-film CdTe solar cells operating in photovoltaic (zero-bias) mode as medical dosimeters. Superstrate ITO/CdS/CdTe/Cu/Au devices were fabricated and irradiated with 6-MV photons from a clinical linear accelerator to 20 kGy cumulative dose. Electrical and dosimetric properties were assessed based on AM 1.5 current–voltage measurements, external quantum efficiency (EQE), dose linearity, dose-rate dependence, field-size dependence, percentage depth dose (PDD), and one-month reproducibility. With increasing dose (5–20 kGy), the open-circuit voltage and fill factor decreased by ~2–3%, the short-circuit current density by ~10%, retaining ~87% initial efficiency. Series and shunt resistances were stable, while EQE decreased uniformly (~5%), indicating degradation mainly from increased nonradiative recombination. Dose–signal linearity remained intact, and post-irradiation sensitivity loss was corrected with a single calibration factor. Dose-rate dependence was minor; low reverse bias (~3–7 V) enhanced response without nonlinearity. Field-size and PDD responses agreed with ionization chamber data within ~1%, and weekly stability was within ~1%. Parallel stacking of two cells increased signal nearly linearly. CdTe solar-cell detectors thus enable zero-bias, real-time, stable, and scalable dosimetry and strongly agree with reference standards. Full article
Show Figures

Figure 1

24 pages, 14098 KB  
Article
Enhanced Adsorption–Photocatalytic Degradation of the Congo Red Dye in the Presence of the MOF/Activated Carbon Composite Catalysts
by Marija Egerić, Djordje Petrović, Radojka Vujasin, Yi-Nan Wu, Feng-Ting Li, Pierre-Eymeric Janolin, Ljiljana Matović and Aleksandar Devečerski
Water 2025, 17(24), 3515; https://doi.org/10.3390/w17243515 - 12 Dec 2025
Viewed by 251
Abstract
The extensive application of synthetic dyes in various industries and potential accidental uncontrolled discharge into natural water bodies have led to significant environmental challenges and a need for effective treatment. In this study, UiO-66 metal–organic framework/activated carbon (MOF/AC) composites were used to evaluate [...] Read more.
The extensive application of synthetic dyes in various industries and potential accidental uncontrolled discharge into natural water bodies have led to significant environmental challenges and a need for effective treatment. In this study, UiO-66 metal–organic framework/activated carbon (MOF/AC) composites were used to evaluate the photocatalytic degradation of Congo Red dye (CR) in aqueous solution under natural solar irradiation. The degradation efficiency of CR was determined using UV-Vis spectroscopy, while material characterization and additional insight into the reaction mechanism were obtained by XRD, FTIR, and Raman analysis. For a 50 ppm CR solution, within a 2 h reaction time, pure MOF achieved 57.2% and 26.3% degradation under solar irradiation and dark conditions, respectively, while the 75/25 MOF/AC composite reached 74% and 38.3% under the same conditions. These results confirm the synergistic interaction between MOF and AC, where AC acts as an electron sink, preventing charge recombination and enhancing photocatalytic activity. Chemisorption occurred simultaneously with photocatalytic degradation on the MOF surface. Reusability tests showed that pure MOF retained the highest stability over repeated cycles. Overall, the combination of MOF and AC enhances catalytic performance, which represents a sustainable approach for treating dye-contaminated wastewater under natural solar conditions. Full article
Show Figures

Figure 1

15 pages, 2964 KB  
Article
Vacuum-Treated Brown Mesoporous TiO2 Nanospheres with Tailored Defect Structures for Enhanced Photoresponsive Properties
by Yue Gao, Ting Feng, Xuan Qi, Hao Yan, Jinfeng Du, Yu Zhang and Junfeng Zhang
Molecules 2025, 30(24), 4746; https://doi.org/10.3390/molecules30244746 - 12 Dec 2025
Viewed by 139
Abstract
TiO2 Nanospheres with a large surface area were synthesized via a hydrothermal reaction using titanium glycolate. The samples were subsequently subjected to different vacuum oven treatment times (2, 4, 6, and 8 h), resulting in Ti3+ self-doping. Comprehensive characterization was performed [...] Read more.
TiO2 Nanospheres with a large surface area were synthesized via a hydrothermal reaction using titanium glycolate. The samples were subsequently subjected to different vacuum oven treatment times (2, 4, 6, and 8 h), resulting in Ti3+ self-doping. Comprehensive characterization was performed using transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The synthesized TiO2 Nanospheres exhibited significantly enhanced photocurrent and efficient photocatalytic activity under visible light irradiation, demonstrating their potential for applications in solar-driven water splitting. The results highlight the influence of Ti3+ self-doping on improving the photoactivity and photosensitivity of the material. Full article
Show Figures

Figure 1

14 pages, 629 KB  
Review
Use of Laser in Periodontal Tissue Regeneration: A Scoping Review of Clinical and Experimental Evidence
by Martina Bosisio, Umberto Romeo, Alessandro Del Vecchio and Aldo Bruno Giannì
Medicina 2025, 61(12), 2199; https://doi.org/10.3390/medicina61122199 - 12 Dec 2025
Viewed by 179
Abstract
Background and Objectives: Periodontitis leads to progressive destruction of periodontal tissues and, despite advances in regenerative approaches, clinical outcomes remain inconsistent. Lasers have been proposed as adjuncts in regenerative periodontology because of their antimicrobial, hemostatic, and photobiomodulatory properties. However, available evidence remains [...] Read more.
Background and Objectives: Periodontitis leads to progressive destruction of periodontal tissues and, despite advances in regenerative approaches, clinical outcomes remain inconsistent. Lasers have been proposed as adjuncts in regenerative periodontology because of their antimicrobial, hemostatic, and photobiomodulatory properties. However, available evidence remains heterogeneous. This scoping review aims to systematically map clinical and experimental evidence on the role of lasers in periodontal tissue regeneration. Materials and Methods: The review was conducted in accordance with the PRISMA-ScR guidelines. PubMed, Scopus, and Web of Science were searched up to September 2025 without time restrictions. Eligible studies included in vitro, ex vivo, in vivo and clinical research assessing the application of lasers for periodontal healing. Reviews, conference abstracts and studies unrelated to regeneration were excluded. Results: The electronic search retrieved 314 records, of which 193 unique articles were screened after duplicates removal and 17 full texts were assessed. A total of 15 studies met the eligibility criteria and were included in the review. Included studies comprised 5 in vitro investigations, 2 ex vivo studies, 1 in vivo animal study, 4 case reports and 3 RCTs, published between 2015 and 2025. In vitro and ex vivo evidence demonstrated that laser irradiation enhanced cell proliferation, differentiation, growth factor release, and root surface conditioning. The in vivo study confirmed increased angiogenesis and bone formation after Er:YAG PBM. Clinical studies, including RCTs and case reports, reported improvements in PD reduction, clinical attachment gain, and radiographic bone fill, particularly when lasers were applied as adjuncts to regenerative techniques or biomaterials. Conclusions: Available evidence suggests that lasers can positively modulate biological processes and enhance the outcomes of regenerative periodontal procedures. However, the limited number of high-quality clinical trials, variability in laser types and parameters, and heterogeneity in protocols limit the strength of current conclusions. Further standardized RCTs with long-term follow-up are needed to clarify the clinical relevance of lasers in periodontal regenerative outcomes. Full article
(This article belongs to the Special Issue New Regenerative Medicine Strategies in Oral Surgery)
Show Figures

Figure 1

15 pages, 4626 KB  
Article
Metabolic and Proteomic Reveals of 7Li (Lithium-7) Ion Beam Radiation in Capsicum annuum L.
by Yue Huang, Maojingkai Li, Yan Li, Xingliang Wang, Chongyu Gu, Jianzhong Wu and Xue Wang
Genes 2025, 16(12), 1486; https://doi.org/10.3390/genes16121486 - 12 Dec 2025
Viewed by 149
Abstract
Background: Chili pepper (Capsicum annuum L.), a globally cultivated and ancient domesticated crop, carries considerable significance in agriculture. While radiation-induced mutagenesis has found application in this crop, the mutagenic efficacy and molecular-level impacts of 7Li ion beam radiation remain poorly elucidated. Methods: [...] Read more.
Background: Chili pepper (Capsicum annuum L.), a globally cultivated and ancient domesticated crop, carries considerable significance in agriculture. While radiation-induced mutagenesis has found application in this crop, the mutagenic efficacy and molecular-level impacts of 7Li ion beam radiation remain poorly elucidated. Methods: We irradiated pepper with a beam of 7Li ions to create a mutant, which showed good economic traits, and phenotypic and physio-biochemical characterization were combined with proteomic and metabolomic profiling to delineate the mutagenic mechanisms. Quantitative real-time PCR (qRT-PCR) was further utilized to assess the biological impact and underlying response pathways. We used this to evaluate the biological impact and the reaction mechanisms behind it. Results: 7Li beam radiation positively influenced morphology and physiological traits, notably chlorophyll and anthocyanin content. Leveraging proteomic profiling detected 6082 proteins, including 355 differential proteins (139 upregulated, 216 downregulated), enriched in 4 KEGG pathways. Based on GO and KEGG network analysis, 250 metabolites were quantified, with 120 being differentially abundant (112 upregulated, 8 downregulated), enriched in 9 metabolic pathways. Furthermore, qRT-PCR results revealed that differentially expressed genes were consistent with the corresponding metabolomic data. Joint analysis revealed the coordinated enrichment of differential metabolites and proteins in pathways related to amino acid and carbohydrate metabolism. These findings suggest that these active pathways in pepper are related to its response to ion beam radiation. Overall, this study is a valuable resource for subsequent genomic research on peppers and 7Li ion beam radiation research. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

17 pages, 1869 KB  
Review
Head and Neck Radiotherapy and Dentomaxillofacial Diagnostic Imaging: Biological Interactions and Protective Approaches
by Cyro Daniel Hikaro Fuziama, Ana Cristina Borges-Oliveira, Lana Ferreira Santos, Sérgio Lúcio Pereira de Castro Lopes and Andre Luiz Ferreira Costa
Biomedicines 2025, 13(12), 3046; https://doi.org/10.3390/biomedicines13123046 - 11 Dec 2025
Viewed by 205
Abstract
Radiotherapy is a fundamental component in the management of head and neck malignancies, but its non-selective effects on surrounding normal tissues can result in significant oral complications. The oral cavity and oropharynx contain several radiosensitive structures, including mucosa, salivary glands, and alveolar bone, [...] Read more.
Radiotherapy is a fundamental component in the management of head and neck malignancies, but its non-selective effects on surrounding normal tissues can result in significant oral complications. The oral cavity and oropharynx contain several radiosensitive structures, including mucosa, salivary glands, and alveolar bone, which are susceptible to both acute and late toxicities resulting in mucositis, xerostomia, and osteoradionecrosis. Although dentomaxillofacial diagnostic imaging, such as intraoral radiography, panoramic imaging and cone-beam computed tomography (CBCT), delivers radiation doses several orders of magnitude lower than therapeutic exposures, its biological impact on previously irradiated tissues remains underexplored. Even low-dose X-rays may act as secondary stressors, reactivating oxidative and inflammatory pathways in tissues with compromised repair capacity. In this review, we examine the radiobiological and dosimetric implications of using diagnostic ionizing imaging in patients undergoing or recently having completed head and neck radiotherapy. We summarize current evidence on potential additive effects of low-dose imaging, emphasizing the importance of justification, timing, and protocol optimization. Finally, we discuss radioprotective strategies (e.g., dose modulation, field limitation, and integration of modern low-dose imaging technologies) designed to reduce unnecessary exposure, thus enhancing tissue preservation and ensuring diagnostic safety in this vulnerable patient population Full article
(This article belongs to the Special Issue New Insights in Radiotherapy: Bridging Radiobiology and Oncology)
Show Figures

Figure 1

20 pages, 7531 KB  
Review
Synthesis, Applications, and Inhibition Mechanisms of Carbon Dots as Corrosion Inhibitors: A Review
by Yin Hu, Tianyao Hong, Sheng Zhou, Yangrui Wang, Shiyu Sheng, Jie Hong, Shifang Wang, Chang Liu, Chuang He, Haijie He and Minjie Xu
Processes 2025, 13(12), 4002; https://doi.org/10.3390/pr13124002 - 11 Dec 2025
Viewed by 204
Abstract
Carbon dots (CDs) have recently emerged as a novel class of eco-friendly and multifunctional corrosion inhibitors owing to their nanoscale dimensions, tunable surface functionalities, and sustainable synthesis pathways. This review summarizes the latest progress in CD-based inhibitors, focusing on synthesis methods, applications, and [...] Read more.
Carbon dots (CDs) have recently emerged as a novel class of eco-friendly and multifunctional corrosion inhibitors owing to their nanoscale dimensions, tunable surface functionalities, and sustainable synthesis pathways. This review summarizes the latest progress in CD-based inhibitors, focusing on synthesis methods, applications, and inhibition mechanisms. Various strategies—including hydrothermal/solvothermal treatment, microwave irradiation, pyrolysis, electrochemical synthesis, and chemical oxidation—have been employed to obtain CDs with tailored size, heteroatom doping, and surface groups, thereby enhancing their inhibition efficiency. CDs have demonstrated remarkable applicability across diverse corrosive environments, including acidic, neutral chloride, CO2-saturated, microbiologically influenced, and alkaline systems, often achieving inhibition efficiencies exceeding 90%. Mechanistically, their performance arises from strong adsorption and compact film formation, heteroatom-induced electronic modulation, suppression of anodic and cathodic reactions, and synergistic effects of particle size and structural configuration. Compared with conventional inhibitors, CDs offer higher efficiency, environmental compatibility, and multifunctionality. Despite significant progress, challenges remain regarding precise structural control, scalability of synthesis, and deeper mechanistic understanding. The effectiveness of CDs inhibitors is highly dependent on factors such as pH, temperature, inhibitor concentration, and exposure time, which should be tailored for specific applications to maximize performance. Future research should focus on integrating sustainable synthesis with rational heteroatom engineering and advanced characterization to achieve long-term, cost-effective, and environmentally benign corrosion protection solutions. Compared to earlier reviews, this review discusses the emerging trends in the field of CDs as corrosion inhibitors. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Figure 1

28 pages, 3992 KB  
Article
Stochastic Optimization of Real-Time Dynamic Pricing for Microgrids with Renewable Energy and Demand Response
by Edwin García, Milton Ruiz and Alexander Aguila
Energies 2025, 18(24), 6484; https://doi.org/10.3390/en18246484 - 11 Dec 2025
Viewed by 149
Abstract
This paper presents a comprehensive framework for real-time energy management in microgrids integrating distributed renewable energy sources and demand response (DR) programs. To address the inherent uncertainties in key operational variables—such as load demand, wind speed, solar irradiance, and electricity market prices—this study [...] Read more.
This paper presents a comprehensive framework for real-time energy management in microgrids integrating distributed renewable energy sources and demand response (DR) programs. To address the inherent uncertainties in key operational variables—such as load demand, wind speed, solar irradiance, and electricity market prices—this study employs a probabilistic modeling approach. A two-stage stochastic optimization method, combining mixed-integer linear programming and optimal power flow (OPF), is developed to minimize operational costs while ensuring efficient system operation. Real-time dynamic pricing mechanisms are incorporated to incentivize consumer load shifting and promote energy-efficient consumption patterns. Three microgrid scenarios are analyzed using one year of real historical data: (i) a grid-connected microgrid without DR, (ii) a grid-connected microgrid with 10% and 20% DR-based load shifting, and (iii) an islanded microgrid operating under incentive-based DR contracts. Results demonstrate that incorporating DR strategies significantly reduces both operating costs and reliance on grid imports, especially during peak demand periods. The islanded scenario, while autonomous, incurs higher costs and highlights the challenges of self-sufficiency under uncertainty. Overall, the proposed model illustrates how the integration of real-time pricing with stochastic optimization enhances the flexibility, resilience, and cost-effectiveness of smart microgrid operations, offering actionable insights for the development of future grid-interactive energy systems. Full article
Show Figures

Figure 1

39 pages, 5809 KB  
Review
Current Research on MoS2-Based Heterojunction Photocatalysts for Persistent Organic Pollutants Degradation
by Luminita Isac and Cristina Cazan
Molecules 2025, 30(24), 4727; https://doi.org/10.3390/molecules30244727 - 10 Dec 2025
Viewed by 276
Abstract
Currently, continuous population growth and unsustainable industrialization have caused ongoing water pollution, with harmful consequences for human health and the environment. Persistent organic pollutants (dyes, active pharmaceutical compounds, pesticides, etc.) are discharged into water from various industrial, agricultural, and domestic activities. Therefore, wastewater [...] Read more.
Currently, continuous population growth and unsustainable industrialization have caused ongoing water pollution, with harmful consequences for human health and the environment. Persistent organic pollutants (dyes, active pharmaceutical compounds, pesticides, etc.) are discharged into water from various industrial, agricultural, and domestic activities. Therefore, wastewater treatment through sustainable technologies is imperative, representing a great and real challenge for worldwide research. Photocatalysis, an innovative and green technology, uses advanced oxidation processes in the presence of a photocatalyst, usually a semiconductor with expanded light absorption ability and high conductivity for photogenerated charge carriers. Molybdenum disulfide (MoS2) is an n-type semiconductor with different morphologies, variable bandgap energies (Eg = 1.1–2.63 eV), and numerous applications. Although pristine MoS2 exhibits special structural and optoelectronic properties, its photocatalytic activity can be further improved through various strategies, and constructions with the heterojunctions construction with other semiconductors being frequently pursued. This review extensively studies the recent research (the last 4 years) on MoS2 and MoS2-based heterojunction (I-type, II-type, Z-scheme, S-scheme) photocatalysts for degrading organic contaminants under simulated and sunlight irradiation in wastewater treatment. Even if in a relatively short time (a few years) valuable studies have been reported on this topic, there are still numerous challenges facing future research. Full article
Show Figures

Figure 1

10 pages, 2427 KB  
Article
A Scheme for Speed Breeding of Tomato Through Modification of the Light Environment
by Youzhi Hu, Xinyang He, Jun Ju, Minggui Zhang, Xiaolong Yang, Jiali Song and Houcheng Liu
Horticulturae 2025, 11(12), 1488; https://doi.org/10.3390/horticulturae11121488 - 9 Dec 2025
Viewed by 128
Abstract
This study aimed to determine optimal light recipes for speed breeding of tomato (Solanum lycopersicum L.) in a plant factory. Two tomato cultivars, Zuanhongmeili and Xiaokeai, were investigated. In Experiment 1, conducted under a 12 h photoperiod, both cultivars showed accelerated [...] Read more.
This study aimed to determine optimal light recipes for speed breeding of tomato (Solanum lycopersicum L.) in a plant factory. Two tomato cultivars, Zuanhongmeili and Xiaokeai, were investigated. In Experiment 1, conducted under a 12 h photoperiod, both cultivars showed accelerated development with increasing light intensity. The optimal light intensity range of 300–400 μmol·m−2·s−1 promoted development and seed maturation. Under these conditions, Zuanhongmeili and Xiaokeai achieved flower bud emergence in the shortest times, at 24.91 ± 0.13 and 24.91 ± 0.12 days after sowing (DAS), respectively. Furthermore, for the two cultivars, anthesis initiation occurred at 39.08 ± 0.62 and 35.78 ± 0.19 DAS, fruit setting at 41.31 ± 0.61 and 38.54 ± 0.24 DAS, and the breaker stage at 83.05 ± 1.05 and 69.78 ± 0.29 DAS, respectively, under these conditions. Critically, germinable seeds were harvested from each cultivar as early as 63 and 60 DAS, projecting a theoretical annual generational turnover of up to six cycles. Based on these results, a baseline irradiance of 350 μmol·m−2·s−1 was selected for Experiment 2, which independently assessed the impact of photoperiod. Zuanhongmeili and Xiaokeai both showed accelerated development with increases in photoperiod. The optimal photoperiod of 20 h promoted development and seed maturation. Under a 20 h photoperiod, Zuanhongmeili and Xiaokeai achieved flower bud emergence in the shortest times, at 25.12 ± 0.09 and 23.76 ± 0.13 DAS, respectively. Furthermore, anthesis initiation occurred at 41.21 ± 0.66 and 37.27 ± 0.34 DAS, fruit setting at 44.51 ± 0.15 and 40.25 ± 0.08 DAS, and the breaker stage at 91.19 ± 0.59 and 77.47 ± 0.36 DAS, respectively, under these conditions. The shortest times to harvest of germinable seeds from the two cultivars in this experiment were 76 and 72 DAS. Overall, this study demonstrates that tailored light environments, particularly the light intensity regime identified in Experiment 1, can dramatically accelerate tomato growth and development, enabling production of six generations per year in a controlled environment. Full article
(This article belongs to the Special Issue Multi-Omics-Driven Breeding for Tropical Horticultural Crops)
Show Figures

Figure 1

22 pages, 3280 KB  
Article
A Novel Scenario-Based Comparative Framework for Short- and Medium-Term Solar PV Power Forecasting Using Deep Learning Models
by Elif Yönt Aydın, Kevser Önal, Cem Haydaroğlu, Heybet Kılıç, Özal Yıldırım, Oğuzhan Katar and Hüseyin Erdoğan
Appl. Sci. 2025, 15(24), 12965; https://doi.org/10.3390/app152412965 - 9 Dec 2025
Viewed by 234
Abstract
Accurate short- and medium-term forecasting of photovoltaic (PV) power generation is vital for grid stability and renewable energy integration. This study presents a comparative scenario-based approach using Long Short-Term Memory (LSTM), Convolutional Neural Network (CNN), and Gated Recurrent Unit (GRU) models trained with [...] Read more.
Accurate short- and medium-term forecasting of photovoltaic (PV) power generation is vital for grid stability and renewable energy integration. This study presents a comparative scenario-based approach using Long Short-Term Memory (LSTM), Convolutional Neural Network (CNN), and Gated Recurrent Unit (GRU) models trained with one year of real-time meteorological and production data from a 250 kWp grid-connected PV system located at Dicle University in Diyarbakır, Southeastern Anatolia, Turkey. The dataset includes hourly measurements of solar irradiance (average annual GHI 5.4 kWh/m2/day), ambient temperature, humidity, and wind speed, with missing data below 2% after preprocessing. Six forecasting scenarios were designed for different horizons (6 h to 1 month). Results indicate that the LSTM model achieved the best performance in short-term scenarios, reaching R2 values above 0.90 and lower MAE and RMSE compared to CNN and GRU. The GRU model showed similar accuracy with faster training time, while CNN produced higher errors due to the dominant temporal nature of PV output. These results align with recent studies that emphasize selecting suitable deep learning architectures for time-series energy forecasting. This work highlights the benefit of integrating real local meteorological data with deep learning models in a scenario-based design and provides practical insights for regional grid operators and energy planners to reduce production uncertainty. Future studies can improve forecast reliability by testing hybrid models and implementing real-time adaptive training strategies to better handle extreme weather fluctuations. Full article
Show Figures

Figure 1

16 pages, 2036 KB  
Article
Evaluation and Comparison of the UV-LED Action Spectra for Photochemical Disinfection of Coliphages and Human Pathogenic Viruses
by Kazuaki Mawatari, Yushi Onoda, Yasuko Kadomura-Ishikawa, Takahiro Emoto, Momoka Yamaguchi, Nozomi Hirano, Sae Toda, Mina Matsubara, Takashi Uebanso, Toshihiko Aizawa, Shigeharu Yamauchi, Yasuo Fujikawa, Tomotake Tanaka, Xing Li, Eduardo Suarez-Lopez, Richard J. Kuhn, Ernest R. Blatchley and Akira Takahashi
Microorganisms 2025, 13(12), 2798; https://doi.org/10.3390/microorganisms13122798 - 9 Dec 2025
Viewed by 196
Abstract
Ultraviolet (UV) disinfection is a powerful method for inactivating viruses. However, comparative wavelength-dependent sensitivities among human viruses and bacteriophages remain poorly characterized. Here, we evaluated the virucidal efficiencies of UV-light emitting diode (UV-LED) against multiple coliphages (MS2, Qβ, PhiX174, and T1) and mammalian [...] Read more.
Ultraviolet (UV) disinfection is a powerful method for inactivating viruses. However, comparative wavelength-dependent sensitivities among human viruses and bacteriophages remain poorly characterized. Here, we evaluated the virucidal efficiencies of UV-light emitting diode (UV-LED) against multiple coliphages (MS2, Qβ, PhiX174, and T1) and mammalian viruses, including respiratory syncytial virus (RSV) and human metapneumovirus (HMPV). We used a standardized irradiation system equipped with interchangeable UV-LED modules (250–365 nm), a low-pressure mercury lamp (254 nm), and a filtered krypton-chloride excimer lamp (222 nm). All coliphages exhibited wavelength-dependent inactivation with maximal efficiency at 263–270 nm, closely matching the action spectra of RSV and HMPV (r > 0.94, p < 0.001). However, their absolute UV sensitivities were markedly lower: under 254–281 nm irradiation. RSV and HMPV were approximately 21 and 12 times more sensitive than MS2, respectively. In contrast, far-UVC (222 nm) irradiation reduced these differences, indicating simultaneous damage to viral genomes and structural proteins. These results demonstrated that coliphages and human viruses exhibit similar wavelength-dependent sensitivity to UV-LED irradiation but differ in their absolute susceptibility. Therefore, while coliphages can be conservative surrogates for evaluating UV-LED virucidal performance, their applicability to far-UVC assessments should be interpreted with caution. Full article
Show Figures

Figure 1

Back to TopTop