Disinfection, Inactivation, and Sterilization of Pathogens and Biotoxins: Emerging Technologies and Strategies

A special issue of Microorganisms (ISSN 2076-2607). This special issue belongs to the section "Public Health Microbiology".

Deadline for manuscript submissions: 31 December 2025 | Viewed by 3722

Special Issue Editor


E-Mail Website
Guest Editor
School of Veterinary Medicine, Okayama University of Science, Imabari 794-8555, Japan
Interests: antimicrobial resistance; bacteria; disinfectants; disinfection and sterilization technologies; food safety; infectious diseases; medical device; prion; public health; virus
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

In the ongoing battle against infectious diseases, the importance of effective disinfection, inactivation and sterilization of a wide range of pathogens (including bacteria, viruses and fungi) and biotoxins (such as endotoxins and exotoxins) cannot be exaggerated. The special issue "Disinfection, inactivation and sterilization of pathogens and biotoxins: Emerging Technologies and Strategies" aims to serve as a comprehensive platform for the latest research findings, technological advances and strategic approaches in the field of microbial and toxin control. This issue aims to highlight novel and interdisciplinary methods that address current challenges and herald future innovations in public health and safety.

The scope of this special issue covers a wide range of topics, including advances in chemical, physical and biological disinfection methods; innovative strategies for pathogen inactivation and biotoxin degradation; and state-of-the-art sterilization techniques that ensure the safety of medical instruments, surfaces, the environment and food control. We invite contributions that explore the efficacy, mechanisms and practical applications of new disinfectants, the emergence of microbial resistance, and the integration of cutting-edge technologies such as nanotechnology, bioinformatics and materials science into conventional practices.

This special issue invites original articles and reviews that not only present the current state of the art, but also stimulate discussion on how to reduce the risk of microbial and biotoxin contamination. In particular, the identification of knowledge gaps, the formulation of new research questions, and the establishment of collaborative networks to drive future innovations in the field to achieve more efficient and safer disinfection, inactivation and sterilization, depending on the microorganisms and biotoxins involved, are welcomed.

Dr. Akikazu Sakudo
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Microorganisms is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • disinfection technologies
  • pathogen inactivation
  • sterilization techniques
  • biotoxin degradation
  • advanced disinfection methods
  • public health

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

12 pages, 1673 KiB  
Article
Low Tenacity of Toxoplasma gondii Tachyzoites In Vitro
by Thomas Grochow, Mirjam Kalusa, Pauline Tonndorf-Martini, Nicole Röhrmann, Simone A. Fietz and Lea-Christina Murnik
Microorganisms 2025, 13(7), 1517; https://doi.org/10.3390/microorganisms13071517 - 29 Jun 2025
Viewed by 126
Abstract
Toxoplasma gondii, an obligate intracellular protozoan, poses significant risks to public health due to its widespread distribution and potential for severe congenital and neurological complications. The fast-replicating tachyzoite stage is crucial for acute infection and laboratory studies, yet effective inactivation methods remain [...] Read more.
Toxoplasma gondii, an obligate intracellular protozoan, poses significant risks to public health due to its widespread distribution and potential for severe congenital and neurological complications. The fast-replicating tachyzoite stage is crucial for acute infection and laboratory studies, yet effective inactivation methods remain inadequately explored. This study evaluates various chemical and physical approaches to inactivate T. gondii tachyzoites in vitro. Using a combination of GFP fluorescence and viability assays, we demonstrated the complete inactivation of tachyzoites with ethanol (≥30%), hydrogen peroxide (≥3%), o-hydroxydiphenyl fatty acid eutectic with peracetic acid (≥1%), and heat treatment at 60 °C for 30 min. Our findings highlight the importance of concentration, solvent choice, and exposure time in disinfection efficacy, providing a framework for improving laboratory safety protocols. These results contribute to the refinement of inactivation strategies, supporting safer handling and research on T. gondii in vitro while reducing reliance on animal models. Full article
Show Figures

Figure 1

Review

Jump to: Research

24 pages, 2455 KiB  
Review
A Review of CAC-717, a Disinfectant Containing Calcium Hydrogen Carbonate Mesoscopic Crystals
by Akikazu Sakudo, Koichi Furusaki, Rumiko Onishi, Takashi Onodera and Yasuhiro Yoshikawa
Microorganisms 2025, 13(3), 507; https://doi.org/10.3390/microorganisms13030507 - 25 Feb 2025
Viewed by 638
Abstract
Recent studies on utilizing biological functions of natural substances that mimic the mesoscopic structures (nanoparticles of about 50 to 500 nm) found in plant growth points and coral skeletons have been reported. After the calcium hydrogen carbonate contained in materials derived from plants [...] Read more.
Recent studies on utilizing biological functions of natural substances that mimic the mesoscopic structures (nanoparticles of about 50 to 500 nm) found in plant growth points and coral skeletons have been reported. After the calcium hydrogen carbonate contained in materials derived from plants and coral are separated, the crystals of the mesoscopic structure can be reformed by applying a high voltage under a specific set of conditions. A suspension of these mesoscopic crystals in water (CAC-717) can be used as an effective disinfectant. CAC-717 exhibits universal virucidal activity against both enveloped and non-enveloped viruses as well as bactericidal and anti-prion activity. Moreover, in comparison to sodium hypochlorite, the potency of CAC-717 as a disinfectant is less susceptible to organic substances such as albumin. The disinfection activity of CAC-717 is maintained for at least 6 years and 4 months after storage at room temperature. CAC-717 is non-irritating and harmless to humans and animals, making it a promising biosafe disinfectant. This review explores the disinfection activity of CAC-717 as well as the potential and future uses of this material. Full article
Show Figures

Figure 1

21 pages, 1265 KiB  
Review
Antimicrobial Photodynamic Therapy: Self-Disinfecting Surfaces for Controlling Microbial Infections
by Edith Dube
Microorganisms 2024, 12(8), 1573; https://doi.org/10.3390/microorganisms12081573 - 1 Aug 2024
Cited by 7 | Viewed by 2369
Abstract
Microbial infections caused by bacteria, viruses, and fungi pose significant global health threats in diverse environments. While conventional disinfection methods are effective, their reliance on frequent chemical applications raises concerns about resistance and environmental impact. Photodynamic self-disinfecting surfaces have emerged as a promising [...] Read more.
Microbial infections caused by bacteria, viruses, and fungi pose significant global health threats in diverse environments. While conventional disinfection methods are effective, their reliance on frequent chemical applications raises concerns about resistance and environmental impact. Photodynamic self-disinfecting surfaces have emerged as a promising alternative. These surfaces incorporate photosensitizers that, when exposed to light, produce reactive oxygen species to target and eliminate microbial pathogens. This review explores the concept and mechanism of photodynamic self-disinfecting surfaces, highlighting the variety and characteristics of photosensitizers integrated into surfaces and the range of light sources used across different applications. It also highlights the effectiveness of these surfaces against a broad spectrum of pathogens, including bacteria, viruses, and fungi, while also discussing their potential for providing continuous antimicrobial protection without frequent reapplication. Additionally, the review addresses both the advantages and limitations associated with photodynamic self-disinfecting surfaces and concludes with future perspectives on advancing this technology to meet ongoing challenges in infection control. Full article
Show Figures

Figure 1

Back to TopTop