Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (171)

Search Parameters:
Keywords = thin film gradients

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 7171 KiB  
Article
Distribution Characteristics, Mobility, and Influencing Factors of Heavy Metals at the Sediment–Water Interface in South Dongting Lake
by Xiaohong Fang, Xiangyu Han, Chuanyong Tang, Bo Peng, Qing Peng, Linjie Hu, Yuru Zhong and Shana Shi
Water 2025, 17(15), 2331; https://doi.org/10.3390/w17152331 - 5 Aug 2025
Abstract
South Dongting Lake is an essential aquatic ecosystem that receives substantial water inflows from the Xiangjiang and Zishui Rivers. However, it is significantly impacted by human activities, including mining, smelting, and farming. These activities have led to serious contamination of the lake’s sediments [...] Read more.
South Dongting Lake is an essential aquatic ecosystem that receives substantial water inflows from the Xiangjiang and Zishui Rivers. However, it is significantly impacted by human activities, including mining, smelting, and farming. These activities have led to serious contamination of the lake’s sediments with heavy metals (HMs). This study investigated the distribution, mobility, and influencing factors of HMs at the sediment–water interface. To this end, sediment samples were analyzed from three key regions (Xiangjiang River estuary, Zishui River estuary, and northeastern South Dongting Lake) using traditional sampling methods and Diffusive Gradients in Thin Films (DGT) technology. Analysis of fifteen HMs (Pb, Bi, Ni, As, Se, Cd, Sb, Mn, Zn, V, Cr, Cu, Tl, Co, and Fe) revealed significant spatial heterogeneity. The results showed that Cr, Cu, Pb, Bi, Ni, As, Se, Cd, Sb, Mn, Zn, and Fe exhibited high variability (CV > 0.20), whereas V, Tl, and Co demonstrated stable concentrations (CV < 0.20). Concentrations were found to exceed background values of the upper continental crust of eastern China (UCC), Yangtze River sediments (YZ), and Dongting Lake sediments (DT), particularly at the Xiangjiang estuary (XE) and in the northeastern regions. Speciation analysis revealed that V, Cr, Cu, Ni, and As were predominantly found in the residual fraction (F4), while Pb and Co were concentrated in the oxidizable fraction (F3), Mn and Zn appeared primarily in the exchangeable fractions (F1 and F2), and Cd was notably dominant in the exchangeable fraction (F1), suggesting a high potential for mobility. Additionally, DGT results confirmed a significant potential for the release of Pb, Zn, and Cd. Contamination assessment using the Pollution Load Index (PLI) and Geoaccumulation Index (Igeo) identified Pb, Bi, Ni, As, Se, Cd, and Sb as major pollutants. Among these, Bi and Cd were found to pose the highest risks. Furthermore, the Risk Assessment Code (RAC) and the Potential Ecological Risk Index (PERI) highlighted Cd as the primary ecological risk contributor, especially in the XE. The study identified sediment grain size, pH, electrical conductivity, and nutrient levels as the primary influencing factors. The PMF modeling revealed HM sources as mixed smelting/natural inputs, agricultural activities, natural weathering, and mining/smelting operations, suggesting that remediation should prioritize Cd control in the XE with emphasis on external inputs. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

25 pages, 3459 KiB  
Article
Phase Composition, Structure, and Microwave Absorption of Magnetron-Sputtered Co–C–Cr Multilayer Films
by Nadezhda Prokhorenkova, Almira Zhilkashinova, Madi Abilev, Leszek Łatka, Igor Ocheredko and Assel Zhilkashinova
Compounds 2025, 5(3), 27; https://doi.org/10.3390/compounds5030027 - 20 Jul 2025
Viewed by 239
Abstract
Multilayer thin films composed of cobalt (Co), carbon (C), and chromium (Cr) possess promising electromagnetic properties, yet the combined Co–C–Cr system remains underexplored, particularly regarding its performance as a microwave absorber. Existing research has primarily focused on binary Co–C or Co–Cr compositions, leaving [...] Read more.
Multilayer thin films composed of cobalt (Co), carbon (C), and chromium (Cr) possess promising electromagnetic properties, yet the combined Co–C–Cr system remains underexplored, particularly regarding its performance as a microwave absorber. Existing research has primarily focused on binary Co–C or Co–Cr compositions, leaving a critical knowledge gap in understanding how ternary multilayer architectures influence electromagnetic behavior. This study addresses this gap by investigating the structure, phase composition, and microwave absorption performance of Co–C–Cr multilayer coatings fabricated via magnetron sputtering onto porous silicon substrates. This study compares four-layer and eight-layer configurations to assess how multilayer architecture affects impedance matching, reflection coefficients, and absorption characteristics within the 8.2–12.4 GHz frequency range. Structural analyses using X-ray diffraction and transmission electron microscopy confirm the coexistence of amorphous and nanocrystalline phases, which enhance absorption through dielectric and magnetic loss mechanisms. Both experimental and simulated results show that increasing the number of layers improves impedance gradients and broadens the operational bandwidth. The eight-layer coatings demonstrate a more uniform absorption response, while four-layer structures exhibit sharper resonant minima. These findings advance the understanding of ternary multilayer systems and contribute to the development of frequency-selective surfaces and broadband microwave shielding materials. Full article
Show Figures

Figure 1

22 pages, 10488 KiB  
Article
Morphological and Functional Evolution of Amorphous AlN Thin Films Deposited by RF-Magnetron Sputtering
by Maria-Iulia Zai, Ioana Lalau, Marina Manica, Lucia Chiriacescu, Vlad-Andrei Antohe, Cristina C. Gheorghiu, Sorina Iftimie, Ovidiu Toma, Mirela Petruta Suchea and Ștefan Antohe
Surfaces 2025, 8(3), 51; https://doi.org/10.3390/surfaces8030051 - 17 Jul 2025
Viewed by 332
Abstract
Aluminum nitride (AlN) thin films were deposited on SiO2 substrates by RF-magnetron sputtering at varying powers (110–140 W) and subsequently subjected to thermal annealing at 450 °C under nitrogen atmosphere. A comprehensive multi-technique investigation—including X-ray reflectometry (XRR), X-ray diffraction (XRD), scanning electron [...] Read more.
Aluminum nitride (AlN) thin films were deposited on SiO2 substrates by RF-magnetron sputtering at varying powers (110–140 W) and subsequently subjected to thermal annealing at 450 °C under nitrogen atmosphere. A comprehensive multi-technique investigation—including X-ray reflectometry (XRR), X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), optical profilometry, spectroscopic ellipsometry (SE), and electrical measurements—was performed to explore the physical structure, morphology, and optical and electrical properties of the films. The analysis of the film structure by XRR revealed that increasing sputtering power resulted in thicker, denser AlN layers, while thermal treatment promoted densification by reducing density gradients but also induced surface roughening and the formation of island-like morphologies. Optical studies confirmed excellent transparency (>80% transmittance in the near-infrared region) and demonstrated the tunability of the refractive index with sputtering power, critical for optoelectronic applications. The electrical characterization of Au/AlN/Al sandwich structures revealed a transition from Ohmic to trap-controlled space charge limited current (SCLC) behavior under forward bias—a transport mechanism frequently present in a material with very low mobility, such as AlN—while Schottky conduction dominated under reverse bias. The systematic correlation between deposition parameters, thermal treatment, and the resulting physical properties offers valuable pathways to engineer AlN thin films for next-generation optoelectronic and high-frequency device applications. Full article
(This article belongs to the Special Issue Surface Engineering of Thin Films)
Show Figures

Graphical abstract

24 pages, 8373 KiB  
Article
Simple Strain Gradient–Divergence Method for Analysis of the Nanoindentation Load–Displacement Curves Measured on Nanostructured Nitride/Carbonitride Coatings
by Uldis Kanders, Karlis Kanders, Artis Kromanis, Irina Boiko, Ernests Jansons and Janis Lungevics
Coatings 2025, 15(7), 824; https://doi.org/10.3390/coatings15070824 - 15 Jul 2025
Viewed by 611
Abstract
This study investigates the fabrication, nanomechanical behavior, and tribological performance of nanostructured superlattice coatings (NSCs) composed of alternating TiAlSiNb-N/TiCr-CN bilayers. Deposited via High-Power Ion-Plasma Magnetron Sputtering (HiPIPMS) onto 100Cr6 steel substrates, the coatings achieved nanohardness values of ~25 GPa and elastic moduli up [...] Read more.
This study investigates the fabrication, nanomechanical behavior, and tribological performance of nanostructured superlattice coatings (NSCs) composed of alternating TiAlSiNb-N/TiCr-CN bilayers. Deposited via High-Power Ion-Plasma Magnetron Sputtering (HiPIPMS) onto 100Cr6 steel substrates, the coatings achieved nanohardness values of ~25 GPa and elastic moduli up to ~415 GPa. A novel empirical method was applied to extract stress–strain field (SSF) gradient and divergence profiles from nanoindentation load–displacement data. These profiles revealed complex, depth-dependent oscillations attributed to alternating strain-hardening and strain-softening mechanisms. Fourier analysis identified dominant spatial wavelengths, DWL, ranging from 4.3 to 42.7 nm. Characteristic wavelengths WL1 and WL2, representing fine and coarse oscillatory modes, were 8.2–9.2 nm and 16.8–22.1 nm, respectively, aligning with the superlattice period and grain-scale features. The hyperfine structure exhibited non-stationary behavior, with dominant wavelengths decreasing from ~5 nm to ~1.5 nm as the indentation depth increased. We attribute the SSF gradient and divergence spatial oscillations to alternating strain-hardening and strain-softening deformation mechanisms within the near-surface layer during progressive loading. This cyclic hardening–softening behavior was consistently observed across all NSC samples, suggesting it represents a general phenomenon in thin film/substrate systems under incremental nanoindentation loading. The proposed SSF gradient–divergence framework enhances nanoindentation analytical capabilities, offering a tool for characterizing thin-film coatings and guiding advanced tribological material design. Full article
(This article belongs to the Section Ceramic Coatings and Engineering Technology)
Show Figures

Graphical abstract

18 pages, 12019 KiB  
Article
Influence of Temperature on the Optical Properties of Ternary Organic Thin Films for Photovoltaics
by Gabriela Lewinska, Jerzy Sanetra, Konstanty W. Marszalek, Alexander Quandt and Bouchta Sahraoui
Materials 2025, 18(14), 3319; https://doi.org/10.3390/ma18143319 - 15 Jul 2025
Viewed by 314
Abstract
This study investigates the influence of temperature on the linear and nonlinear optical properties of ternary organic thin films for solar cell applications. Three-component organic thin films (poly({4,8-bis[(2-ethylhexyl)oxy]benzo [1,2-b:4,5-b′]dithiophene-2,6-diyl}{3-fluoro-2-[(2-ethylhexyl)carbonyl] thieno[3,4-b]thiophenediyl}) and (poly([2,6′-4,8-di(5-ethylhexylthienyl)benzo[1,2-b;3,3-b]dithiophene]{3-fluoro-2[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl}), marked PTB7 and PTB7th- donors, PCBM, phenyl-C61-butyric acid methyl ester acceptor, [...] Read more.
This study investigates the influence of temperature on the linear and nonlinear optical properties of ternary organic thin films for solar cell applications. Three-component organic thin films (poly({4,8-bis[(2-ethylhexyl)oxy]benzo [1,2-b:4,5-b′]dithiophene-2,6-diyl}{3-fluoro-2-[(2-ethylhexyl)carbonyl] thieno[3,4-b]thiophenediyl}) and (poly([2,6′-4,8-di(5-ethylhexylthienyl)benzo[1,2-b;3,3-b]dithiophene]{3-fluoro-2[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl}), marked PTB7 and PTB7th- donors, PCBM, phenyl-C61-butyric acid methyl ester acceptor, and Y5: 2,2′-((2Z,2′Z)-((12,13-bis(2-ethylhexyl)-3,9-diundecyl-12,13-dihydro[1,2,5]thiadiazolo[3,4e]thieno[2′,3′:4′,5′] thieno[2′,3′:4,5]pyrrolo[3,2-g] thieno[2′,3′:4,5]thieno[3,2-b]indole-2,10-diyl)bis(methanylylidene))bis(3-oxo-2,3-dihydro1H-indene-2,1-diylidene))dimalononitrile) and Y6 non-fullerene acceptors: (2,2′-((2Z,2′Z)-((12,13-bis(2-ethylhexyl)-3,9-diundecyl-12,13- dihydro-[1,2,5]thiadiazolo[3,4- e] thieno [2,″3″:4′,5′]thieno [2′,3′:4,5]), non-fullerene acceptors, were analyzed using spectroscopic ellipsometry and third-harmonic generation techniques across a temperature range of 30 °C to 120 °C. The absorption spectra of the ternary layers remained largely stable with temperature, but ellipsometry revealed temperature-dependent changes in layer thickness (a few percent increase during heating) and variations in refractive index and extinction coefficients, suggesting modest structural alterations. Analysis using a gradient model indicated that film composition varies with thickness. Third-harmonic generation measurements showed a decrease in χ(3) after annealing, with the most significant change observed in the PTB7th:Y5:PCBM layer. Full article
Show Figures

Figure 1

33 pages, 3876 KiB  
Article
pH Gradient-Driven Loading of Doxorubicin into Niosomes: A Comparative Study Using Bromocresol Green as a Visual Indicator
by Mohammed Altaee, Ahmed Mostafa Faheem and Amal Ali Elkordy
Pharmaceutics 2025, 17(7), 862; https://doi.org/10.3390/pharmaceutics17070862 - 30 Jun 2025
Viewed by 410
Abstract
Background: The active (remote) loading of drugs into nanoparticulate systems via the pH gradient technique has been proven highly successful in liposomes, as numerous formulations have reached the market. However, this is not the case for niosomes, as the full potential of [...] Read more.
Background: The active (remote) loading of drugs into nanoparticulate systems via the pH gradient technique has been proven highly successful in liposomes, as numerous formulations have reached the market. However, this is not the case for niosomes, as the full potential of this area remains largely undiscovered. The purpose of this research is to study the effect of different co-surfactants (Cremophor RH 40, Cremophor ELP and Solutol HS-15) on stabilising the niosomal membrane to enable the creation of a pH gradient. Methods: For visualisation of pH gradients, pH indicator bromocresol green (BCG) was used as a novel encapsulated model molecule to visually investigate the ability of niosomes to entrap drugs through active loading. Thereafter, the optimised BCG niosomal formulation was applied to encapsulate a therapeutic drug molecule, doxorubicin, via pH gradient active loading. Niosomes were formulated via thin-film hydration using Span 60, cholesterol, with or without co-surfactants. Thin films were hydrated with either Trizma buffer or HEPES buffer for BCG, or ammonium sulfate for doxorubicin. The niosomes’ outer membrane pH was adjusted via either the addition of HCl or citric acid in the case of BCG, or by passing the niosomes through a Sephadex G50 gel column, pre-equilibrated with PBS or Trizma buffer, in the case of doxorubicin. Results: Niosomes formulated with Span 60 and cholesterol could not be formed at acidic pH and thus could not create a pH gradient. All three co-surfactants, when added to Span 60 and cholesterol, stabilised the niosomes and enabled them to form a pH gradient. Niosomes (after size reduction) containing Solutol HS-15 showed significantly higher entrapment efficiency of BCG when compared to Cremophor RH 40 and Cremophor ELP (67.86% vs. 15.57% vs. 17.81%, respectively, with sizes of 159.6 nm, 177.9 nm and 219.1 nm, respectively). The use of HEPES buffer resulted in a higher EE of BCG compared to Trizma buffer (72.85% vs. 67.86%) and achieved a size of 283.4 nm. The Solutol HS-15 containing formulation has exhibited 68.28% EE of doxorubicin with ammonium sulfate as the inner buffer, while the external buffer was Trizma with a size of 241.1 nm after extrusion. Conclusions: Niosomal formulations containing Solutol HS-15 are highly promising for remote drug loading. The novel use of BCG for studying pH gradient and drug loading into niosomes has proved beneficial and successful. Full article
(This article belongs to the Special Issue Advanced Liposomes for Drug Delivery, 2nd Edition)
Show Figures

Figure 1

14 pages, 9430 KiB  
Article
Strain-Driven Dewetting and Interdiffusion in SiGe Thin Films on SOI for CMOS-Compatible Nanostructures
by Sonia Freddi, Michele Gherardi, Andrea Chiappini, Adam Arette-Hourquet, Isabelle Berbezier, Alexey Fedorov, Daniel Chrastina and Monica Bollani
Nanomaterials 2025, 15(13), 965; https://doi.org/10.3390/nano15130965 - 21 Jun 2025
Viewed by 429
Abstract
This study provides new insight into the mechanisms governing solid state dewetting (SSD) in SiGe alloys and underscores the potential of this bottom-up technique for fabricating self-organized defect-free nanostructures for CMOS-compatible photonic and nanoimprint applications. In particular, we investigate the SSD of Si [...] Read more.
This study provides new insight into the mechanisms governing solid state dewetting (SSD) in SiGe alloys and underscores the potential of this bottom-up technique for fabricating self-organized defect-free nanostructures for CMOS-compatible photonic and nanoimprint applications. In particular, we investigate the SSD of Si1−xGex thin films grown by molecular beam epitaxy on silicon-on-insulator (SOI) substrates, focusing on and clarifying the interplay of dewetting dynamics, strain elastic relaxation, and SiGe/SOI interdiffusion. Samples were annealed at 820 °C, and their morphological and compositional evolution was tracked using atomic force microscopy (AFM), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and Raman spectroscopy, considering different annealing time steps. A sequential process typical of the SiGe alloy has been identified, involving void nucleation, short finger formation, and ruptures of the fingers to form nanoislands. XRD and Raman data reveal strain relaxation and significant Si-Ge interdiffusion over time, with the Ge content decreasing from 29% to 20% due to mixing with the underlying SOI layer. EDX mapping confirms a Ge concentration gradient within the islands, with higher Ge content near the top. Full article
(This article belongs to the Special Issue Controlled Growth and Properties of Semiconductor Nanomaterials)
Show Figures

Figure 1

11 pages, 1391 KiB  
Article
Influence of Thickness on the Structure and Properties of TiAl(Si)N Gradient Coatings
by Alexey Kassymbaev, Alexandr Myakinin, Gulzhas Uazyrkhanova, Farida Belisarova, Amangeldi Sagidugumar and Ruslan Kimossov
Coatings 2025, 15(6), 710; https://doi.org/10.3390/coatings15060710 - 13 Jun 2025
Viewed by 523
Abstract
Enhanced hard coatings with exceptional mechanical and thermal qualities have prompted substantial study into multicomponent nitride systems. TiAl(Si)N coatings have emerged as viable possibilities owing to their remarkable hardness, thermal stability, and oxidation resistance. This work involved the fabrication of thickness-varied TiAl(Si)N gradient [...] Read more.
Enhanced hard coatings with exceptional mechanical and thermal qualities have prompted substantial study into multicomponent nitride systems. TiAl(Si)N coatings have emerged as viable possibilities owing to their remarkable hardness, thermal stability, and oxidation resistance. This work involved the fabrication of thickness-varied TiAl(Si)N gradient coatings using reactive magnetron sputtering, employing a controlled modulation of aluminum and silicon content across the film thickness. Three samples, with thicknesses of ~400 nm, ~600 nm, and ~800 nm, were deposited under uniform Ar/N2 gas flow ratios, and their microstructural, mechanical, and tribological characteristics were rigorously examined. SEM investigation demonstrated a significant change across thicknesses. XRD results validated the emergence of a predominant cubic TiAl(Si)N phase alongside a secondary hexagonal AlN phase, signifying partial phase segregation. The nanoindentation results indicated that Sample 2 exhibited the maximum hardness (~38 GPa) and Young’s modulus (~550 GPa) due to an optimized equilibrium between solid solution strengthening and nanocomposite production. Tribological testing revealed that Sample 1 displayed the lowest and most consistent friction coefficient, corresponding to its superior H/E and H3/E2 ratios, which signify improved elasticity and resistance to plastic deformation. The findings emphasize that the implementation of a compositional gradient, especially in the distribution of Si and Al, markedly affects the microstructure and performance of TiAl(Si)N coatings. Gradient structures enhance the microstructure, optimize hardness, and increase the friction coefficient. Ongoing refinement of gradient profiles and deposition parameters may further improve the characteristics of TiAl(Si)N coatings, facilitating their wider industrial use. Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
Show Figures

Figure 1

26 pages, 3646 KiB  
Article
Application of Chelex-100 and SPR-IDA Resin in Combination with the Optimized Beam Deflection Spectrometry for High-Sensitivity Determination of Iron Species in Sediment Porewater
by Hanna Budasheva, Mohanachandran Nair Sindhu Swapna, Arne Bratkič and Dorota Korte
Sensors 2025, 25(12), 3643; https://doi.org/10.3390/s25123643 - 10 Jun 2025
Viewed by 435
Abstract
In this work, photothermal beam deflection spectrometry (BDS), combined with a passive sampling technique of diffusive gradients in thin film (DGT), is optimized to improve the method’s sensitivity. The limit of detection (LOD) is then reduced by a factor of 2 (to the [...] Read more.
In this work, photothermal beam deflection spectrometry (BDS), combined with a passive sampling technique of diffusive gradients in thin film (DGT), is optimized to improve the method’s sensitivity. The limit of detection (LOD) is then reduced by a factor of 2 (to the value of 20 nM). The functionality of the technique is compared for Chelex-100 (Ch-100) and suspended particulate reagent–iminodiacetate resin (SPR-IDA), used as binding resins in passive samplers. The absorption capacity of SPR-IDA resin is found to be less than 1 μM and far below that one of Chelex-100 resin (around 6 μM). The BDS technique is applied for determination of iron redox species concentration in sediment porewater. It is found that Fe in sediment porewater occurs both in Fe2+ (0.073 μM) and Fe3+ (0.095 μM) forms. The validation of the presented method reveals that the BDS technique ensures good repeatability, reproducibility, and reliability. Full article
Show Figures

Figure 1

18 pages, 2426 KiB  
Article
Strain-Hardening and Strain-Softening Phenomena Observed in Thin Nitride/Carbonitride Ceramic Coatings During the Nanoindentation Experiments
by Uldis Kanders, Karlis Kanders, Ernests Jansons, Irina Boiko, Artis Kromanis, Janis Lungevics and Armands Leitans
Coatings 2025, 15(6), 674; https://doi.org/10.3390/coatings15060674 - 1 Jun 2025
Cited by 1 | Viewed by 553
Abstract
This study investigates the nanomechanical and tribological behavior of multilayered nitride/carbonitride nanostructured superlattice type coatings (NTCs) composed of alternating TiAlSiNb-N and TiCr-CN sublayers, deposited via high-power ion-plasma magnetron sputtering (HiPIPMS) technique. Reinforced with refractory elements Cr and Nb, the NTC samples exhibit high [...] Read more.
This study investigates the nanomechanical and tribological behavior of multilayered nitride/carbonitride nanostructured superlattice type coatings (NTCs) composed of alternating TiAlSiNb-N and TiCr-CN sublayers, deposited via high-power ion-plasma magnetron sputtering (HiPIPMS) technique. Reinforced with refractory elements Cr and Nb, the NTC samples exhibit high nanohardness (39–59 GPa), low friction, and excellent wear resistance. A novel analytical approach was introduced to extract stress–strain field (SSF) gradients and divergences from nanoindentation data, revealing alternating strain-hardening and strain-softening cycles beneath the incrementally loaded indenter. The discovered oscillatory behavior, consistent across all samples under the investigation, suggests a general deformation mechanism in thin films under incremental loading. Fourier analysis of the SSF gradient oscillatory pattern revealed a variety of characteristic dominant wavelengths within the length-scale interval (0.84–8.10) nm, indicating multi-scale nanomechanical responses. Additionally, the NTC samples display an anisotropic coating morphology exhibited as unidirectional undulating surface roughness waves, potentially attributed to atomic shadowing, strain-induced instabilities, and limited adatom diffusion. These findings deepen our understanding of nanoscale deformation in advanced PVD coatings and underscore the utility of SSF analysis for probing thin-film mechanics. Full article
(This article belongs to the Section Ceramic Coatings and Engineering Technology)
Show Figures

Figure 1

15 pages, 4134 KiB  
Article
Characterization of Cd and Pb Bioavailability in Agricultural Soils Using DGT Technique and DIFS Model
by Shujuan Cheng, Jing Liao, Fangyan Jia and Yubo Wen
Minerals 2025, 15(4), 386; https://doi.org/10.3390/min15040386 - 5 Apr 2025
Viewed by 356
Abstract
Elevated levels of cadmium (Cd) and lead (Pb) in the edible parts of rice (Oryza sativa L.) grown in agricultural soils may enter the human body through the food chain, posing significant health risks. In this study, rice and paired rhizosphere soil [...] Read more.
Elevated levels of cadmium (Cd) and lead (Pb) in the edible parts of rice (Oryza sativa L.) grown in agricultural soils may enter the human body through the food chain, posing significant health risks. In this study, rice and paired rhizosphere soil samples were collected from 194 locations in Jiangsu Province, China, with 60 samples selected for diffusive gradients in thin films (DGT) extraction analysis. The findings indicate that total soil concentrations of Cd and Pb are inadequate for assessing cadmium bioavailability, implying that current soil quality standards may not accurately reflect the bioaccessible fractions of these metals. Both DGT and soil solution measurements effectively predicted crop Cd levels, with the effective concentration (CE) derived from the DGT-induced soil flux (DIFS) model showing the strongest correlation with rice Cd content. Pearson correlation analysis and a random forest (RF) model further identified critical factors influencing rice uptake of Cd and Pb, including soil iron (Fe) content, cation exchange capacity (CEC), pH, and the levels of zinc (Zn) and selenium (Se), which antagonize Cd uptake. Full article
Show Figures

Figure 1

16 pages, 4393 KiB  
Article
Seasonal Distribution of Nutrient Salts and Microbial Communities in the Pearl River Delta
by Zhiwei Huang, Jie Wang, Weijie Li, Aixiu Yang, Yupeng Mao, Yangliang Gu, Luping Zeng, Hongwei Du, Lei Shi and Huaiyang Fang
Water 2025, 17(6), 798; https://doi.org/10.3390/w17060798 - 10 Mar 2025
Viewed by 734
Abstract
The transformations of iron (Fe), phosphorus (P), and sulfide (S) have been previously investigated in many areas, but quantifying the effects of the seasons on nutrient transformations and bacterial community distributions is a major issue that requires urgent attention in areas with serious [...] Read more.
The transformations of iron (Fe), phosphorus (P), and sulfide (S) have been previously investigated in many areas, but quantifying the effects of the seasons on nutrient transformations and bacterial community distributions is a major issue that requires urgent attention in areas with serious anthropogenic disturbance. The authors used the diffusive gradients in thin films (DGTs) technique and 16S rRNA gene sequencing to determine the spatial heterogeneity in the nutrient distribution and bacterial community structure in the overlying water and sediment in the Pearl River Delta (PRD). Sampling campaigns were conducted in summer and winter. The results show that the nutrient salts exhibited greater differences in time than in space and there were higher water pollution levels in winter than in summer. During summer, the abundant non-point source pollution from the rainfall input provided a rich substrate for the bacteria in the water, leading to a strong competitiveness of the PAOs and nitrifying bacteria. Meanwhile, a high temperature was favorable for the exchange of elements at the SWI, with a greater release of P, Fe, and N, while, with the low temperatures and high DO and nutrient salts seen in winter, the SOB and denitrifying bacteria were active, which correctly indicated the high concentration of SO42− and NH4+-N in the water. The microbial diversity and abundance were also affected by the season, with a higher richness and diversity of the microbial communities in summer than in winter, and the high salinity and nutrient salt concentration had a significant inhibitory effect on the microorganisms. A Mantel test revealed that the spatiotemporal distribution patterns of the dominant bacteria were closely related to the TOC and DO levels and played an important role in the P, Fe, S, and N cycle. These observations are important for understanding the nutrient salt transformation and diffusion in the Pearl River Delta. Full article
Show Figures

Figure 1

31 pages, 10573 KiB  
Article
Assessing Cu3BiS3 for Thin-Film Photovoltaics: A Systematic DFT Study Comparing LCAO and PAW Across Multiple Functionals
by Carlos O. Amorim, Sivabalan M. Sivasankar and António F. da Cunha
Materials 2025, 18(6), 1213; https://doi.org/10.3390/ma18061213 - 8 Mar 2025
Viewed by 1354
Abstract
Cu3BiS3 (CBS) has emerged as a promising earth-abundant absorber for thin-film photovoltaics, offering a sustainable alternative to conventional technologies. However, ab initio studies on its optoelectronic properties remain scarce and often yield contradictory results. This study systematically examines the influence [...] Read more.
Cu3BiS3 (CBS) has emerged as a promising earth-abundant absorber for thin-film photovoltaics, offering a sustainable alternative to conventional technologies. However, ab initio studies on its optoelectronic properties remain scarce and often yield contradictory results. This study systematically examines the influence of two density functional theory (DFT) methodologies, linear combination of atomic orbitals (LCAO) and projector augmented wave (PAW), on the structural and electronic properties of CBS, aiming to establish a reliable computational framework for future research. With this in mind, we also assessed the impact of a wide range of exchange-correlation (XC) functionals within both methods, including 6 from the local density approximation (LDA) family (HL, PW, PZ, RPA, Wigner, XA), 10 from the generalized gradient approximation (GGA) family (BLYP, BP86, BPW91, GAM, KT2, PBE, PBEsol, PW91, RPBE, XLYP), 2 meta-GGA functionals (SCAN, R2SCAN), and the hybrid HSE06 functional. Both LCAO and PAW consistently predict an indirect bandgap for CBS across all XC functionals, aligning with most previous DFT studies but contradicting experimental reports of a direct transition. The LDA and meta-GGA functionals systematically underestimated the CBS bandgap (<1 eV), with further reductions upon structural relaxation. GGA functionals performed better, with BLYP and XLYP yielding the most experimentally consistent results. The hybrid HSE06 functional substantially overestimated the bandgap (1.9 eV), with minimal changes after relaxation. The calculated hole and electron effective masses reveal strong anisotropy along the X, Y, and Z crystallographic directions. Additionally, CBS exhibits an intrinsic p-type nature, as the Fermi level consistently lies closer to the valence band maximum across all methods and functionals. However, the PAW method generally predicted more accurate lattice parameters than LCAO; the best agreement with experimental values was achieved using the PW91 (1.2% deviation) and HSE06 (0.9% deviation) functionals within LCAO. Based on these findings, we recommend the PW91 functional with LCAO for structural optimizations in large supercell studies of CBS dopants and/or defects and BLYP/XLYP for electronic properties. Full article
Show Figures

Figure 1

25 pages, 5384 KiB  
Article
Three Complementary Sampling Approaches Provide Comprehensive Characterization of Pesticide Contamination in Urban Stormwater
by Gab Izma, Melanie Raby, Justin B. Renaud, Mark Sumarah, Paul Helm, Daniel McIsaac, Ryan Prosser and Rebecca Rooney
Urban Sci. 2025, 9(2), 43; https://doi.org/10.3390/urbansci9020043 - 12 Feb 2025
Cited by 2 | Viewed by 947
Abstract
Urban areas are expanding rapidly and experience diverse and complex contamination of their surface waters. Addressing these issues requires different tools to describe exposures and predict toxicological risk to exposed biota. We surveyed 21 stormwater management ponds in Brampton, Ontario using three types [...] Read more.
Urban areas are expanding rapidly and experience diverse and complex contamination of their surface waters. Addressing these issues requires different tools to describe exposures and predict toxicological risk to exposed biota. We surveyed 21 stormwater management ponds in Brampton, Ontario using three types of sampling methods deployed concurrently: time-integrated water sampling, biofilms cultured on artificial substrates, and organic-diffusive gradients in thin films (o-DGT) passive samplers. Our objective was to compare pesticide occurrences and concentrations to inform monitoring in stormwater ponds, which reflect pesticide pollution in urban areas. We detected 82 pesticides across the three sampling matrices, with most detections occurring in o-DGT samplers. The in situ accumulation of pesticides in o-DGTs during deployment and the high analytical sensitivity achieved establishes o-DGTs as excellent tools for capturing the mixtures of pesticides present. Water and biofilm sampling demonstrated that pesticide concentrations available for uptake are relatively low, with most below toxicological thresholds. Yet our results demonstrate that urban areas are subject to a wide range of pesticides, including herbicides, insecticides, and fungicides, and underscores the urgency of research to quantify the risks of chronic exposure to this chemical mixture. Full article
Show Figures

Figure 1

10 pages, 3589 KiB  
Article
Periodically Ordered Wrinkles in Gradient Patterned Polymer Stripes
by Myunghwan Byun
Materials 2024, 17(24), 6035; https://doi.org/10.3390/ma17246035 - 10 Dec 2024
Viewed by 672
Abstract
We demonstrated a versatile and robust strategy to create spatially defined periodic wrinkles in gradient striped polymer films through the coupled process of controlled evaporative self-assembly (CESA) and mechanically driven surface wrinkling. The mechanical properties of patterned-gradient polymer thin films were investigated by [...] Read more.
We demonstrated a versatile and robust strategy to create spatially defined periodic wrinkles in gradient striped polymer films through the coupled process of controlled evaporative self-assembly (CESA) and mechanically driven surface wrinkling. The mechanical properties of patterned-gradient polymer thin films were investigated by wrinkling methodology in a fast and simple manner. Understanding of the complex wrinkles can provide insights into the growth mechanism of most biological species that can be explained by competition between bending and stretching energies, e.g., leaves with gradient thickness range from the central area to edges. Furthermore, it also benefits a wide range of micro-to-nanotechnologies that strongly depend on the mechanical stability and performance of thin polymer membranes for semiconductor applications. Full article
Show Figures

Figure 1

Back to TopTop