Characterization of Cd and Pb Bioavailability in Agricultural Soils Using DGT Technique and DIFS Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection and Pretreatment
2.3. Chemical Analysis
2.4. Bioconcentration of Cd and Pb
2.5. DGT Measurements and the DIFS Model
2.6. Statistical Analysis
3. Results and Discussion
3.1. Descriptive Statistics of Physio-Chemical Parameters in Soils
3.2. Characteristics of Cd and Pb in Soil and Rice Grains
3.3. Charaterizaion of Cd and Pb Bioavailability
3.4. Factors Controlling Cd and Pb Uptake by Rice
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, P.; Chen, H.; Kopittke, P.M.; Zhao, F.-J. Cadmium contamination in agricultural soils of China and the impact on food safety. Environ. Pollut. 2019, 249, 1038–1048. [Google Scholar] [PubMed]
- Zhao, F.-J.; Ma, Y.; Zhu, Y.-G.; Tang, Z.; McGrath, S.P. Soil Contamination in China: Current Status and Mitigation Strategies. Environ. Sci. Technol. 2015, 49, 750–759. [Google Scholar] [PubMed]
- Mao, C.; Song, Y.; Chen, L.; Ji, J.; Li, J.; Yuan, X.; Yang, Z.; Ayoko, G.A.; Frost, R.L.; Theiss, F. Human health risks of heavy metals in paddy rice based on transfer characteristics of heavy metals from soil to rice. Catena 2018, 175, 339–348. [Google Scholar] [CrossRef]
- Natasha; Shahid, M.; Niazi, N.K.; Khalid, S.; Murtaza, B.; Bibi, I.; Rashid, M.I. A critical review of selenium biogeochemical behavior in soil-plant system with an inference to human health. Environ. Pollut. 2018, 234, 915–934. [Google Scholar]
- Bouida, L.; Rafatullah, M.; Kerrouche, A.; Qutob, M.; Alosaimi, A.M.; Alorfi, H.S.; Hussein, M.A. A review on cadmium and lead contamination: Sources, fate, mechanism, health effects and remediation methods. Water 2022, 14, 3432. [Google Scholar] [CrossRef]
- Yao, C.; Yang, Y.; Li, C.; Shen, Z.; Li, J.; Mei, N.; Wang, D. Heavy metal pollution in agricultural soils from surrounding industries with low emissions: Assessing contamination levels and sources. Sci. Total Environ. 2024, 917, 170610. [Google Scholar] [PubMed]
- Xu, D.; Shen, Z.; Dou, C.; Dou, Z.; Li, Y.; Gao, Y.; Sun, Q. Effects of soil properties on heavy metal bioavailability and accumulation in crop grains under different farmland use patterns. Sci. Rep. 2022, 12, 9211. [Google Scholar] [CrossRef]
- Kicińska, A.; Pomykała, R.; Izquierdo-Diaz, M. Changes in soil pH and mobility of heavy metals in contaminated soils. Eur. J. Soil Sci. 2022, 73, e13203. [Google Scholar]
- Businelli, D.; Onofri, A.; Massaccesi, L. Factors involved in uptake of lead by some edible crops grown in agricultural soils of Central Italy. Soil Sci. 2011, 176, 472–478. [Google Scholar] [CrossRef]
- Kumar, S.; Prasad, S.; Yadav, K.K.; Shrivastava, M.; Gupta, N.; Nagar, S.; Malav, L.C. Hazardous heavy metals contamination of vegetables and food chain: Role of sustainable remediation approaches—A review. Environ. Res. 2019, 179, 108792. [Google Scholar] [CrossRef]
- Navas-Acien, A.; Guallar, E.; Silbergeld, E.K.; Rothenberg, S.J. Lead exposure and cardiovascular disease—A systematic review. Environ. Health Perspect 2007, 115, 472–482. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Tan, H.; Zhou, S.; Dong, K.F.; Xiao, G. Regional characteristics of dietary lead intake in the Chinese population. Sci. Total Environ. 2019, 691, 393–400. [Google Scholar] [PubMed]
- Hettiarachchi, G.M.; Pierzynski, G.M. Soil lead bioavailability and in situ remediation of lead-contaminated soils: A review. Environ. Prog. 2004, 23, 78–93. [Google Scholar]
- Khaliq, M.A.; James, B.; Chen, Y.H.; Saqib, H.S.A.; Li, H.H.; Jayasuriya, P.; Guo, W. Uptake, translocation, and accumulation of Cd and its interaction with mineral nutrients (Fe, Zn, Ni, Ca, Mg) in upland rice. Chemosphere 2019, 215, 916–924. [Google Scholar]
- Wang, C.; Ji, J.; Yang, Z.; Chen, L.; Browne, P.; Yu, R. Effects of Soil Properties on the Transfer of Cadmium from Soil to Wheat in the Yangtze River Delta Region, China—A Typical Industry–Agriculture Transition Area. Biol. Trace Element Res. 2012, 148, 264–274. [Google Scholar]
- Wu, L.; Zhou, J.; Zhou, T.; Li, Z.; Jiang, J.; Zhu, D.; Hou, J.; Wang, Z.; Luo, Y.; Christie, P. Estimating cadmium availability to the hyperaccumulator Sedum plumbizincicola in a wide range of soil types using a piecewise function. Sci. Total. Environ. 2018, 637–638, 1342–1350. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar]
- Zhang, H.; Yin, A.; Yang, X.; Wu, P.; Fan, M.; Wu, J.; Zhang, M.; Gao, C. Changes in surface soil organic/inorganic carbon concentrations and their driving forces in reclaimed coastal tidal flats. Geoderma 2019, 352, 150–159. [Google Scholar] [CrossRef]
- Wen, Y.; Wang, Y.; Ji, W.; Wei, N.; Liao, Q.; Huang, D.; Meng, X.; Song, Y. Influencing Factors of Elevated Levels of Potentially Toxic Elements in Agricultural Soils from Typical Karst Regions of China. Agronomy 2023, 13, 2230. [Google Scholar] [CrossRef]
- Luo, J.; Zhang, H.; Zhao, F.-J.; Davison, W. Distinguishing Diffusional and Plant Control of Cd and Ni Uptake by Hyperaccumulator and Nonhyperaccumulator Plants. Environ. Sci. Technol. 2010, 44, 6636–6641. [Google Scholar]
- Wen, Y.; Li, W.; Yang, Z.; Zhuo, X.; Guan, D.-X.; Song, Y.; Guo, C.; Ji, J. Evaluation of various approaches to predict cadmium bioavailability to rice grown in soils with high geochemical background in the karst region, Southwestern China. Environ. Pollut. 2019, 258, 113645. [Google Scholar] [PubMed]
- Williams, P.N.; Zhang, H.; Davison, W.; Zhao, S.; Lu, Y.; Dong, F.; Zhang, L.; Pan, Q. Evaluation of in Situ DGT Measurements for Predicting the Concentration of Cd in Chinese Field-Cultivated Rice: Impact of Soil Cd:Zn Ratios. Environ. Sci. Technol. 2012, 46, 8009–8016. [Google Scholar] [PubMed]
- Almås, R.; Lombnæs, P.; Sogn, T.A.; Mulder, J. Speciation of Cd and Zn in contaminated soils assessed by DGT-DIFS, and WHAM/Model VI in relation to uptake by spinach and ryegrass. Chemosphere 2006, 62, 1647–1655. [Google Scholar]
- Guan, D.-X.; Zheng, J.-L.; Luo, J.; Zhang, H.; Davison, W.; Ma, L.Q. A diffusive gradient in thin-films technique for the assessment of bisphenols desorption from soils. J. Hazard. Mater. 2017, 331, 321–328. [Google Scholar] [PubMed]
- FAO. Food and Agriculture Organization of the United Nations, World reference base for soil resources. In International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; FAO: Rome, Italy, 2015. [Google Scholar]
- Liao, Q.; Evans, L.J.; Gu, X.; Fan, D.; Jin, Y.; Wang, H. A regional geochemical survey of soils in Jiangsu Province, China: Preliminary assessment of soil fertility and soil contamination. Geoderma 2007, 142, 18–28. [Google Scholar]
- Callesen, I.; Keck, H.; Andersen, T.J. Particle size distribution in soils and marine sediments by laser diffraction using Malvern Mastersizer 2000—Method uncertainty including the effect of hydrogen peroxide pretreatment. J. Soils Sediments 2018, 18, 2500–2510. [Google Scholar]
- Tian, Y.; Wang, X.; Luo, J.; Yu, H.; Zhang, H. Evaluation of Holistic Approaches to Predicting the Concentrations of Metals in Field-Cultivated Rice. Environ. Sci. Technol. 2008, 42, 7649–7654. [Google Scholar]
- Gu, T.; Bu, W.; Yan, W.; Shi, C.; Yan, M. New Series of Soil Geochemical Reference Materials (GSS 10-16) from the Main Overburden Region in China. Geostandard. Newslett. 2003, 27, 197–202. [Google Scholar]
- Chopra, A.K.; Pathak, C. Accumulation of heavy metals in the vegetables grown in wastewater irrigated areas of Dehradun, India with reference to human health risk. Environ. Monit. Assess. 2015, 187, 445. [Google Scholar]
- Luo, J.; Cheng, H.; Ren, J.; Davison, W.; Zhang, H. Mechanistic Insights from DGT and Soil Solution Measurements on the Uptake of Ni and Cd by Radish. Environ. Sci. Technol. 2014, 48, 7305–7313. [Google Scholar]
- Wen, Y.; Wang, Y.; Tao, C.; Ji, W.; Huang, S.; Zhou, M.; Meng, X. Bioavailability of Cd in Agricultural Soils Evaluated by DGT Measurements and the DIFS Model in Relation to Uptake by Rice and Tea Plants. Agronomy 2023, 13, 2378. [Google Scholar] [CrossRef]
- Tian, K.; Xing, Z.; Liu, G.; Wang, H.; Jia, M.; Hu, W.; Huang, B. Cadmium phytoavailability under greenhouse vegetable production system measured by diffusive gradients in thin films (DGT) and its implications for the soil threshold. Environ. Pollut. 2018, 241, 412–421. [Google Scholar]
- Sochaczewski, Ł.; Tych, W.; Davison, B.; Zhang, H. 2D DGT induced fluxes in sediments and soils (2D DIFS). Environ. Model. Softw. 2007, 22, 14–23. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013; ISBN 3-900051-07-0. Available online: http://www.R-project.org/ (accessed on 1 November 2024).
- Liu, Z.; Zhang, X.; Wang, Y.; Wen, Y. Distributions and Influencing Factors of Heavy Metals in Soils from Zhenjiang and Yangzhou, China. Minerals 2025, 15, 171. [Google Scholar] [CrossRef]
- GB-15618-2018; Soil Environmental Quality Risk Control Standard for Soil Contamination of Agricultural Land. Ministry of Ecology and Environment of China (MEE): Beijing, China, 2018.
- GB2762-2022; National Standards for Food Safety and Limits of Contaminants for Food. NHFPC and NMPA, National Health and Family Planning Commission and National Medical Products Administration of the People’s Republic of China: Beijing, China, 2022.
- Li, H.; Luo, N.; Li, Y.W.; Cai, Q.Y.; Mo, C.H.; Wong, M.H. Cadmium in rice: Transport mechanisms, influencing factors, and minimizing measures. Environ. Pollut. 2017, 224, 622–630. [Google Scholar]
- Liu, W.X.; Shen, L.F.; Liu, J.W.; Wang, Y.W.; Li, S.R. Uptake of toxic heavy metals by rice (Oryza sativa L.) cul-tivated in the agricultural soil near Zhengzhou City, People’s Republic of China. Bull. Environ. Contam. Toxicol. 2007, 79, 209–213. [Google Scholar]
- Loganathan, P.; Vigneswaran, S.; Kandasamy, J.; Naidu, R. Cadmium Sorption and Desorption in Soils: A Review. Crit. Rev. Environ. Sci. Technol. 2012, 42, 489–533. [Google Scholar]
- Tahervand, S.; Jalali, M. Sorption, desorption, and speciation of Cd, Ni, and Fe by four calcareous soils as affected by pH. Environ. Monit. Assess. 2016, 188, 322. [Google Scholar]
- Lin, L.; Zhou, W.; Dai, H.; Cao, F.; Zhang, G.; Wu, F. Selenium reduces cadmium uptake and mitigates cadmium toxicity in rice. J. Hazard. Mater. 2012, 235–236, 343–351. [Google Scholar]
- Li, T.; Chang, Q.; Yuan, X.; Li, J.; Ayoko, G.A.; Frost, R.L.; Chen, H.; Zhang, X.; Song, Y.; Song, W. Cadmium transfer from contaminated soils to the human body through rice consumption in southern Jiangsu Province, China. Environ. Sci. Process. Impacts 2017, 19, 843–850. [Google Scholar]
- Zhu, D.; Niu, Y.; Fan, K.; Zhang, F.; Wang, Y.; Wang, G.; Zheng, S. Selenium-oxidizing Agrobacterium sp. T3F4 steadily colonizes in soil promoting selenium uptake by pak choi (Brassica campestris). Sci. Total. Environ. 2021, 791, 148294. [Google Scholar] [PubMed]
- Wang, F.; Adams, C.A.; Shi, Z.; Sun, Y. Combined effects of ZnO NPs and Cd on sweet sorghum as influenced by an arbuscular mycorrhizal fungus. Chemosphere 2018, 209, 421–429. [Google Scholar] [PubMed]
- He, P.P.; Lv, X.Z.; Wang, G.Y. Effects of Se and Zn supplementation on the antagonism against Pb and Cd in veg-etables. Environ. Int. 2004, 30, 167–172. [Google Scholar] [PubMed]
Unit | Minimum | Maximum | Mean | SD | CV (%) | |
---|---|---|---|---|---|---|
Cd | mg kg−1 | 0.07 | 5.05 | 0.34 | 0.51 | 149.1 |
Pb | mg kg−1 | 20.80 | 351.0 | 43.04 | 21.06 | 48.94 |
Si | % | 21.22 | 36.29 | 28.89 | 3.45 | 11.93 |
Al | % | 4.89 | 9.81 | 7.41 | 0.88 | 11.90 |
Fe | % | 2.06 | 6.04 | 3.93 | 0.86 | 21.98 |
Mn | mg kg−1 | 205.0 | 3947 | 707.4 | 459.5 | 64.95 |
N | mg kg−1 | 354.0 | 5257 | 2200 | 756.3 | 34.38 |
K | % | 1.20 | 2.71 | 1.89 | 0.41 | 21.75 |
Mg | % | 0.26 | 2.33 | 1.04 | 0.52 | 50.40 |
Ca | % | 0.28 | 6.00 | 1.79 | 1.83 | 102.3 |
Na | % | 0.30 | 1.41 | 0.73 | 0.16 | 21.59 |
CEC | cmol kg−1 | 92.80 | 359.0 | 217.3 | 54.17 | 24.93 |
pH | 4.33 | 8.34 | 6.84 | 0.99 | 14.42 |
Measurements | Cd | Pb |
---|---|---|
DGT and DIFS (CE) | 0.89 b | 0.92 b |
Soil solution (Css) | 0.63 b | 0.67 b |
DGT (CDGT) | 0.71 b | 0.76 b |
Concentration in soils | 0.38 a | 0.42 a |
Soil Parameters | BCF-Cd | BCF-Pb | Soil Parameters | BCF-Cd | BCF-Pb |
---|---|---|---|---|---|
pH | −0.46 b | −0.14 NS | Zn | −0.39 a | −0.41 a |
Si | −0.09 NS | −0.15 NS | Fe | −0.47 a | −0.59 b |
CEC | −0.48 b | −0.36 a | Mn | 0.05 NS | −0.08 NS |
Se | −0.41 a | −0.56 b | Al | 0.33 a | 0.31 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, S.; Liao, J.; Jia, F.; Wen, Y. Characterization of Cd and Pb Bioavailability in Agricultural Soils Using DGT Technique and DIFS Model. Minerals 2025, 15, 386. https://doi.org/10.3390/min15040386
Cheng S, Liao J, Jia F, Wen Y. Characterization of Cd and Pb Bioavailability in Agricultural Soils Using DGT Technique and DIFS Model. Minerals. 2025; 15(4):386. https://doi.org/10.3390/min15040386
Chicago/Turabian StyleCheng, Shujuan, Jing Liao, Fangyan Jia, and Yubo Wen. 2025. "Characterization of Cd and Pb Bioavailability in Agricultural Soils Using DGT Technique and DIFS Model" Minerals 15, no. 4: 386. https://doi.org/10.3390/min15040386
APA StyleCheng, S., Liao, J., Jia, F., & Wen, Y. (2025). Characterization of Cd and Pb Bioavailability in Agricultural Soils Using DGT Technique and DIFS Model. Minerals, 15(4), 386. https://doi.org/10.3390/min15040386