Strain-Hardening and Strain-Softening Phenomena Observed in Thin Nitride/Carbonitride Ceramic Coatings During the Nanoindentation Experiments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of the NTC Samples
2.2. Nanoindentation Hardness Testing Experiment
2.3. Tribological Tests of the NTC Samples
2.4. Electron Microscopy Examinations of the NTC Samples
2.5. Surface Roughness Evaluation Combining 2D Roughness Measurements and SEM Imaging
3. Results and Discussion
3.1. Preparation and Characterization of the NTC Film Samples
3.2. Scanning Electron Microscopy Examinations of the NTC Film Samples
3.3. Surface Roughness Assessment Combining SEM Imaging and Profilometric Measurements
3.4. Nanoindentation Response Analysis Using the Loading Segment P/h Curves Obtained at the Testing Peak Load of 100 µN
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, W.Y.; Ting, J.M. Growth and Characteristics of Metal-Containing Diamond-like Carbon Using a Self-Assembled Process. Carbon 2006, 44, 1210–1217. [Google Scholar] [CrossRef]
- Persson, K.; Gåhlin, R. Tribological Performance of a DLC Coating in Combination with Water-Based Lubricants. Tribol. Int. 2003, 36, 851–855. [Google Scholar] [CrossRef]
- Zhang, S.; Sun, D.; Fu, Y.; Du, H. Recent Advances of Superhard Nanocomposite Coatings: A Review. Surf. Coat. Technol. 2003, 167, 113–119. [Google Scholar] [CrossRef]
- Musil, J. Hard and Superhard Nanocomposite Coatings. Surf. Coat. Technol. 2000, 125, 322–330. [Google Scholar] [CrossRef]
- Musil, J.; Vlček, J. Magnetron Sputtering of Hard Nanocomposite Coatings and Their Properties. Surf. Coat. Technol. 2001, 142–144, 557–566. [Google Scholar] [CrossRef]
- Wang, Y.; Dong, Y.; Liu, J.; Tian, Y.; Chi, Y.; Yang, Y. Hardening Mechanism of Thick (Ti,Cr,V)N Composite Coatings with Multi-Layer Nano-Columnar Dendrites Microstructure. J. Eur. Ceram. Soc. 2023, 43, 2013–2025. [Google Scholar] [CrossRef]
- Pogrebnjak, A.; Smyrnova, K.; Bondar, O. Nanocomposite Multilayer Binary Nitride Coatings Based on Transition and Refractory Metals: Structure and Properties. Coatings 2019, 9, 155. [Google Scholar] [CrossRef]
- Gao, N.; Lu, D.H.; Zhao, Y.Y.; Liu, X.W.; Liu, G.H.; Wu, Y.; Liu, G.; Fan, Z.T.; Lu, Z.P.; George, E.P. Strengthening of a CrMnFeCoNi High-Entropy Alloy by Carbide Precipitation. J. Alloys Compd. 2019, 792, 046120. [Google Scholar] [CrossRef]
- Su, Y.L.; Kao, W.H.; Sung, K.H. Mechanical and Tribological Properties of NbAl, NbAlN, and NbAlN-CH Coatings Deposited Using Various Niobium Target Currents and Acetylene Flow Rates. J. Mater. Eng. Perform. 2022, 31, 3594–3610. [Google Scholar] [CrossRef]
- Leitans, A.; Jansons, E.; Lungevics, J.; Kundzins, K.; Boiko, I.; Kanders, U.; Kovalenko, V.; Linins, O. Tribological and Micromechanical Properties of the Nanostructured Carbonitride/Nitride Coatings of Transition Metals Alloyed by Hf and Nb. Coatings 2023, 13, 552. [Google Scholar] [CrossRef]
- PalDey, S.; Deevi, S.C. Single Layer and Multilayer Wear Resistant Coatings of (Ti,Al)N: A Review. Mater. Sci. Eng. A 2003, 342, 58–79. [Google Scholar] [CrossRef]
- Kolchev, S.; Kolaklieva, L.; Kovacheva, D.; Atanasova, G.; Cholakova, T.; Chitanov, V.; Zlatareva, E.; Kakanakov, R.; Pashinski, C. Mechanical and Tribological Behavior of TiAlSiN/AlSiN Coatings Depending on the High-Temperature Treatment. Coatings 2025, 15, 542. [Google Scholar] [CrossRef]
- Sriniva, R.G.; Palani, S.; Rajaravi, C.; Karthik, S. Comparative Analysis Over Tribology Characterization of TiAlN and TiAlSiN PVD Coating On Plasma Nitride Alloy 20. J. Inorg. Organomet. Polym. 2022, 32, 2082–2093. [Google Scholar] [CrossRef]
- Das, P.; Anwar, S.; Bajpai, S.; Anwar, S. Structural and Mechanical Evolution of TiAlSiN Nanocomposite Coating under Influence of Si3N4 Power. Surf. Coat. Technol. 2016, 307, 676–682. [Google Scholar] [CrossRef]
- Kenzhegulov, A.; Mamaeva, A.; Panichkin, A.; Alibekov, Z.; Kshibekova, B.; Bakhytuly, N.; Wieleba, W. Comparative Study of Tribological and Corrosion Characteristics of TiCN, TiCrCN, and TiZrCN Coatings. Coatings 2022, 12, 564. [Google Scholar] [CrossRef]
- Mohapatra, S.; Oh, M.S. Evaluating the Tribological Properties and Residual Stress of TiCrN Thin Films Deposited by Cathodic-Arc Physical Vapor Deposition Technique. Appl. Sci. 2025, 15, 2466. [Google Scholar] [CrossRef]
- Mayrhofer, P.H.; Clemens, H.; Fischer, F.D. Materials Science-Based Guidelines to Develop Robust Hard Thin Film Materials. Prog. Mater. Sci. 2024, 146, 101323. [Google Scholar] [CrossRef]
- Azadi, M.; Rouhaghdam, A.S.; Ahangarani, S.; Mofidi, H.H.; Valiei, M. Effect of Number of Layers on the Toughness of TiN/TiC Multilayer Coatings. Int. J. Microstruct. Mater. Prop. 2014, 9, 500–515. [Google Scholar] [CrossRef]
- Akkili, V.G.; Lee, H.G.; Kim, S.; Choi, J.; Chung, C.; Park, J.S.; Lee, J.; Ahn, B.; Kim, Y.-K.; Lee, S. Influence of Multilayer Structure on the Structural and Mechanical Properties of TiAlN/CrN Coatings for Advanced Machining Applications. Arch. Metall. Mater. 2024, 69, 479–484. [Google Scholar] [CrossRef]
- Espitia-Rico, M.J.; Casiano-Jiménez, G.; Ortega-López, C.; De la Espriella-Vélez, N.; Sánchez-Pacheco, L. A Comparative Study of TiC/TiN and TiN/CN Multilayers. DYNA 2014, 81, 188. [Google Scholar] [CrossRef]
- Münz, W.D.; Donohue, L.A.; Hovsepian, P.E. Properties of Various Large-Scale Fabricated TiAlN- and CrN-Based Superlattice Coatings Grown by Combined Cathodic Arc–Unbalanced Magnetron Sputter Deposition. Surf. Coat. Technol. 2000, 125, 269–277. [Google Scholar] [CrossRef]
- Bakhytuly, N.; Kenzhegulov, A.; Nurtanto, M.; Aliev, A.; Kuldeev, E. Microstructure and Tribological Study of TiAlCN and TiTaCN Coatings. Kompleks. Ispolz. Miner. Syra 2023, 327, 99–110. [Google Scholar] [CrossRef]
- Devarajan, D.K.; Rangasamy, B.; Amirtharaj Mosas, K.K. State-of-the-Art Developments in Advanced Hard Ceramic Coatings Using PVD Techniques for High-Temperature Tribological Applications. Ceramics 2023, 6, 301–329. [Google Scholar] [CrossRef]
- Oliver, W.C.; Pharr, G.M. Measurement of Hardness and Elastic Modulus by Instrumented Indentation: Advances in Understanding and Refinements to Methodology. J. Mater. Res. 2004, 19, 3–20. [Google Scholar] [CrossRef]
- Maiti, R.; Mills, R. Wear Properties of Diamond-like-Carbon Coatings with Silicon and Chromium as Adhesion Layer Using a High Frequency Reciprocating Rig. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2017, 231, 1605–1615. [Google Scholar] [CrossRef]
- Miletić, A.; Panjan, P.; Škorić, B.; Čekada, M.; Dražič, G.; Kovač, J. Microstructure and Mechanical Properties of Nanostructured Ti–Al–Si–N Coatings Deposited by Magnetron Sputtering. Surf. Coat. Technol. 2014, 241, 105–111. [Google Scholar] [CrossRef]
- Chang, Y.Y.; Lai, H.M. Wear Behavior and Cutting Performance of CrAlSiN and TiAlSiN Hard Coatings on Cemented Carbide Cutting Tools for Ti Alloys. Surf. Coat. Technol. 2014, 259, 152–158. [Google Scholar] [CrossRef]
- Vicen, M.; Bronček, J.; Nový, F. Investigation of Tribological Properties of CarbonX Coating Deposited on 100Cr6 Steel. Prod. Eng. Arch. 2019, 25, 52–55. [Google Scholar] [CrossRef]
- Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; et al. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nat. Methods 2020, 17, 261–272. [Google Scholar] [CrossRef]
- Yun, W.; Liew, H.; Lim, H.P.; Jet, G.; Melvin, H.; Dayou, J.; Jiang, Z.-T.; Liew, W.Y.H. Thermal Stability, Mechanical Properties, and Tribological Performance of TiAlXN Coatings: Understanding the Effects of Alloying Additions. J. Mater. Res. Technol. 2022, 17, 961–1012. [Google Scholar] [CrossRef]
- Spatschek, R.; Brener, E.A. Grinfeld Instability on Crack Surfaces. Phys. Rev. E 2001, 64, 046120. [Google Scholar] [CrossRef] [PubMed]
- Köhler, C.; Backofen, R.; Voigt, A. Relaxation of Curvature-Induced Elastic Stress by the Asaro-Tiller-Grinfeld Instability. EPL 2015, 111, 48006. [Google Scholar] [CrossRef]
- Alderighi, M.; Ierardi, V.; Fuso, F.; Allegrini, M.; Solaro, R. Size Effects in Nanoindentation of Hard and Soft Surfaces. Nanotechnology 2009, 20, 235703. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, S.; Shi, Q.; Ge, X.; Wang, W. Multilayer Coatings for Tribology: A Mini Review. Nanomaterials 2022, 12, 1388. [Google Scholar] [CrossRef]
- Sharifi Malvajerdi, S.; Sharifi Malvajerdi, A.; Ghanaatshoar, M.; Habibi, M.; Jahdi, H. TiCrN-TiAlN-TiAlSiN-TiAlSiCN Multi-Layers Utilized to Increase Tillage Tools Useful Lifetime. Sci. Rep. 2019, 9, 1023. [Google Scholar] [CrossRef] [PubMed]
- Carpick, R.W.; Sasaki, D.Y.; Burns, A.R. Large Friction Anisotropy of a Polydiacetylene Monolayer. Tribol. Lett. 1999, 7, 79–85. [Google Scholar] [CrossRef]
- Gao, Y.; Choudhury, N.R.; Dutta, N.K.; Morozov, I.A.; Reid, M. Tribological Properties of Polymer Nanocomposites. Tribol. Lett. 2016, 61, 27. [Google Scholar] [CrossRef]
- Choi, J.S.; Kim, J.-S.; Byun, I.-S.; Lee, D.H.; Lee, M.J.; Park, B.H.; Lee, C.; Yoon, D.; Cheong, H.; Lee, K.H.; et al. Friction Anisotropy-Driven Domain Imaging on Exfoliated Monolayer Graphene. Science 2011, 333, 607. [Google Scholar] [CrossRef]
- Sneddon, I.N. The Relation between Load and Penetration in the Axisymmetric Boussinesq Problem for a Punch of Arbitrary Profile. Int. J. Eng. Sci. 1965, 3, 47–57. [Google Scholar] [CrossRef]
- Fischer-Cripps, A. Nanoindentation; Springer: New York, NY, USA, 2004. [Google Scholar]
- Fleck, N.; Hutchinson, J. Strain Gradient Plasticity. Adv. Appl. Mech. 1997, 33, 295–362. [Google Scholar] [CrossRef]
- Johnson, K.L. Contact Mechanics; Cambridge University Press: Cambridge, UK, 1985. [Google Scholar]
- Attaf, M.T. Connection between the Loading Curve Models in Elastoplastic Indentation. Mater. Lett. 2004, 58, 3491–3498. [Google Scholar] [CrossRef]
- Kanders, U.; Kanders, K.; Maniks, J.; Mitin, V.; Kovalenko, V.; Nazarovs, P.; Erst, D. Nanoindentation Response Analysis of Cu-Rich Carbon–Copper Composite Films Deposited by PVD Technique. Surf. Coat. Technol. 2015, 280, 308–316. [Google Scholar] [CrossRef]
- Petrík, J.; Blaško, P.; Mihaliková, M.; Mikloš, V. The Relationship between the Deformation and the Indentation Size Effect (ISE). J. Appl. Res. Technol. 2018, 16, 267–275. [Google Scholar] [CrossRef]
- Broitman, E. Indentation Hardness Measurements at Macro-, Micro-, and Nanoscale: A Critical Overview. Tribol. Lett. 2017, 65, 23. [Google Scholar] [CrossRef]
Sample Label | Coating Thickness, t (nm) 1 | Substrate Temperature Ts, °C 2 | Nano- Hardness, H (GPa) 3 | Elastic-, Modulus, E (GPa) 3 | Steady-State Sliding Friction, CoF 4 | Wear Rate, Wr at Test Load of 3 N (mm3/Nm) 5 |
---|---|---|---|---|---|---|
NTC-1 | 5080 ± 230 | 250 | 43.33 | 480.96 | 0.27 ± 0.04 | 4.1 × 10−6 |
NTC-2 | 5170 ± 230 | 240 | 40.34 | 457.76 | 0.24 ± 0.04 | 4.6 × 10−6 |
NTC-3 | 6100 ± 295 | 240 | 39.56 | 440.43 | 0.18 ± 0.02 | 4.3 × 10−6 |
NTC-4 | 6200 ± 295 | 370 | 57.89 | 642.58 | 0.16 ± 0.02 | 4.6 × 10−6 |
NTC-5 | 5400 ± 260 | 390 | 59.45 | 659.89 | 0.23 ± 0.07 | 3.7 × 10−6 |
NTC-6 | 5250 ± 260 | 380 | 58.42 | 648.46 | 0.19 ± 0.07 | 3.6 × 10−6 |
Saqz | NTC-1 | NTC-2 | NTC-3 | NTC-4 | NTC-5 | NTC-6 |
---|---|---|---|---|---|---|
Sa | 10.18 | 16.27 | 27.99 | 10.18 | 7.27 | 8.73 |
Sq | 13.99 | 26.81 | 31.79 | 13.99 | 8.16 | 8.16 |
Sz | 18.09 | 33.53 | 39.04 | 16.46 | 13.53 | 15.72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kanders, U.; Kanders, K.; Jansons, E.; Boiko, I.; Kromanis, A.; Lungevics, J.; Leitans, A. Strain-Hardening and Strain-Softening Phenomena Observed in Thin Nitride/Carbonitride Ceramic Coatings During the Nanoindentation Experiments. Coatings 2025, 15, 674. https://doi.org/10.3390/coatings15060674
Kanders U, Kanders K, Jansons E, Boiko I, Kromanis A, Lungevics J, Leitans A. Strain-Hardening and Strain-Softening Phenomena Observed in Thin Nitride/Carbonitride Ceramic Coatings During the Nanoindentation Experiments. Coatings. 2025; 15(6):674. https://doi.org/10.3390/coatings15060674
Chicago/Turabian StyleKanders, Uldis, Karlis Kanders, Ernests Jansons, Irina Boiko, Artis Kromanis, Janis Lungevics, and Armands Leitans. 2025. "Strain-Hardening and Strain-Softening Phenomena Observed in Thin Nitride/Carbonitride Ceramic Coatings During the Nanoindentation Experiments" Coatings 15, no. 6: 674. https://doi.org/10.3390/coatings15060674
APA StyleKanders, U., Kanders, K., Jansons, E., Boiko, I., Kromanis, A., Lungevics, J., & Leitans, A. (2025). Strain-Hardening and Strain-Softening Phenomena Observed in Thin Nitride/Carbonitride Ceramic Coatings During the Nanoindentation Experiments. Coatings, 15(6), 674. https://doi.org/10.3390/coatings15060674