Strain-Driven Dewetting and Interdiffusion in SiGe Thin Films on SOI for CMOS-Compatible Nanostructures
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Thompson, C.V. Solid-State Dewetting of Thin Films. Annu. Rev. Mater. Res. 2012, 42, 399. [Google Scholar] [CrossRef]
- Shin, Y.A.; Thompson, C.V. Templated fingering during solid state dewetting. Acta Mater. 2021, 207, 116669. [Google Scholar] [CrossRef]
- Leroy, F.; Cheynis, F.; Almadori, Y.; Curiotto, S.; Trautmann, M.; Barbé, J.C.; Müller, P. How to control solid state dewetting: A short review. Surf. Sci. Rep. 2016, 71, 391–409. [Google Scholar] [CrossRef]
- Bhatt, B.; Gupta, S.; Sumathi, V.; Chandran, S.; Khare, K. Electric Field Driven Reversible Spinodal Dewetting of Thin Liquid Films on Slippery Surfaces. Adv. Mater. Interfaces 2023, 10, 2202063. [Google Scholar] [CrossRef]
- Lu, L.-X.; Wang, Y.-M.; Srinivasan, B.M.; Asbahi, M.; Yang, J.K.W.; Zhang, Y.-W. Nanostructure Formation by controlled dewetting on patterned substrates: A combined theoretical, modeling and experimental study. Sci. Rep. 2016, 6, 32398. [Google Scholar] [CrossRef]
- Freddi, S.; Sfuncia, G.; Gherardi, M.; Nicotra, G.; Barri, C.; Fagiani, L.; Bouabdellaoui, M.; Fedorov, A.; Chatain, D.; Sanguinetti, S.; et al. Morphological evolution and structural study of annealed amorphous-Ge films: Interplay between crystallization and dewetting. Mater. Sci. Semicond. Process. 2024, 174, 108228. [Google Scholar] [CrossRef]
- Shklyaev, A.A.; Latyshev, A.V. Dewetting behavior of Ge layers on SiO2 under annealing. Sci. Rep. 2020, 10, 13759. [Google Scholar] [CrossRef]
- Abbarchi, M.; Naffouti, M.; Lodari, M.; Salvalaglio, M.; Backofen, R.; Bottein, T.; Voigt, A.; David, T.; Claude, J.B.; Bouabdellaoui, M.; et al. Solid-state dewetting of single-crystal silicon on insulator: Effect of annealing temperature and patch size. Microelectron. Eng. 2018, 190, 1–6. [Google Scholar] [CrossRef]
- Cheynis, F.; Leroy, F.; Müller, P. Dynamics and instability of solid-state dewetting. Comptes Rendus. Physique 2013, 14, 578–589. [Google Scholar] [CrossRef]
- Curiotto, S.; Müller, P.; Cheynis, F.; Ozerov, I.; Leroy, F. Rim nucleation and step-train orientation effects in SOI (111) dewetting. Surf. Interfaces 2024, 45, 103912. [Google Scholar] [CrossRef]
- Legrand, B.; Agache, V.; Nys, J.P.; Senez, V.; Stievenant, D. Formation of silicon islands on a silicon on insulator substrate upon thermal annealing. Appl. Phys. Lett 2000, 76, 3271. [Google Scholar] [CrossRef]
- Zhang, S.-L.; Ostling, M. Metal silicides in CMOS technology: Past, present, and future trends. Crit. Rev. Solid State Mater. Sci. 2003, 28, 1–129. [Google Scholar] [CrossRef]
- Aladim, A.K.; Aouassa, M.; Amdouni, S.; Bouabdellaoui, M.; Pessoa, W.B.; Ibrahim, M.; Saron, K.M.A.; Berbezier, I. Photocurrent and electrical properties of SiGe nanocrystals grown on insulator via solid-state dewetting of Ge/SOI for Photodetection and solar cells applications. Vacuum 2025, 232, 113892. [Google Scholar] [CrossRef]
- Stavarache, I.; Logofatu, C.; Sultan, M.T.; Manolescu, A.; Svavarsson, H.G.; Teodorescu, V.S.; Ciurea, M.L. SiGe nanocrystals in SiO2 with high photosensitivity from visible to short-wave infrared. Sci. Rep. 2020, 10, 3252. [Google Scholar] [CrossRef]
- Gentili, D.; Foschi, G.; Valle, F.; Cavallini, M.; Biscarini, F. Applications of dewetting in micro and nanotechnology. Chem. Soc. Rev. 2012, 41, 4430–4443. [Google Scholar] [CrossRef]
- Altomare, M.; Nguyen, N.T.; Schmuki, P. Templated dewetting: Designing entirely self-organized platforms for photocatalysis. Chem. Sci. 2016, 7, 6865–6886. [Google Scholar] [CrossRef]
- Granchi, N.; Fagiani, L.; Salvalaglio, M.; Barri, C.; Ristori, A.; Montanari, M.; Gurioli, M.; Abbarchi, M.; Voigt, A.; Vincenti, M.A.; et al. Engineering and detection of light scattering directionalities in dewetted nanoresonators through dark-field scanning microscopy. Opt. Express 2023, 31, 9007–9017. [Google Scholar] [CrossRef]
- Fagiani, L.; Granchi, N.; Zilli, A.; Barri, C.; Rusconi, F.; Montanari, M.; Mafakheri, E.; Celebrano, M.; Bouabdellaoui, M.; Abbarchi, M.; et al. Linear and nonlinear optical properties of dewetted SiGe islands. Opt. Mater. X 2022, 13, 100116. [Google Scholar] [CrossRef]
- Scheidweiler, D.; Bordoloi, A.D.; Jiao, W.; Sentchilo, V.; Bollani, M.; Chhun, A.; Engel, P.; De Anna, P. Spatial structure, chemotaxis and quorum sensing shape bacterial biomass accumulation in complex porous media. Nat. Commun. 2024, 15, 191. [Google Scholar] [CrossRef]
- Bordoloi, A.D.; Scheidweiler, D.; Dentz, M.; Bouabdellaoui, M.; Abbarchi, M.; De Anna, P. Structure induced laminar vortices control anomalous dispersion in porous media. Nat. Commun. 2022, 13, 3820. [Google Scholar] [CrossRef]
- Mitsai, E.; Naffouti, M.; David, T.; Abbarchi, M.; Hassayoun, L.; Storozhenko, D.; Mironenko, A.; Bratskaya, S.; Juodkazis, S.; Makarov, S.; et al. Si1−x Gex nanoantennas with a tailored raman response and light-to-heat conversion for advanced sensing applications. Nanoscale 2019, 11, 11634–11641. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.J.; Chen, I.C.; Lin, H.K.; Lin, Y.C.; Huang, C.J. Preparation of uniform Ag nanoparticles with enhanced plasmon resonance intensity and antibacterial efficiency via two-step dewetting process. Opt. Laser Technol. 2024, 168, 109886. [Google Scholar] [CrossRef]
- Hincheeranan, W.; Chananonnawathorn, C.; Duangkanya, K.; Waiwijit, U.; Wongpanya, K.; Amarit, R.; Sathukarn, A.; Bamrungsap, S.; Lertvanithphol, T.; Horprathum, M. A study of multiple solid-state dewetting of sputtered Au ultra-thin films for chip-based LSPR sensor applications. Opt. Mater. 2024, 157, 116137. [Google Scholar] [CrossRef]
- Chehadi, Z.; Bouabdellaoui, M.; Modaresialam, M.; Bottein, T.; Salvalaglio, M.; Bollani, M.; Grosso, D.; Abbarchi, M. Scalable disordered hyperuniform architectures via nanoimprint lithography of metal oxides. ACS Appl. Mater. Interfaces 2021, 13, 37761–37774. [Google Scholar] [CrossRef]
- Cho, J.S.; Jang, W.; Park, K.H.; Wang, D.H. A gold nanodot array imprinting process based on solid-state dewetting for efficient oxide-free photovoltaic devices. Appl. Phys. Lett. 2020, 117, 171601. [Google Scholar] [CrossRef]
- Bollani, M.; Salvalaglio, M.; Benali, A.; Bouabdellaoui, M.; Naffouti, M.; Lodari, M.; Di Corato, S.; Fedorov, A.; Voigt, A.; Fraj, I.; et al. Templated dewetting of single-crystal sub-millimeter-long nanowires and on-chip silicon circuits. Nat. Commun. 2019, 10, 5632. [Google Scholar] [CrossRef]
- Boccardo, F.; Rovaris, F.; Tripathi, A.; Montalenti, F.; Pierre-Louis, O. Stress-induced acceleration and ordering in solid-state dewetting. Phys. Rev. Lett. 2022, 128, 026101. [Google Scholar] [CrossRef] [PubMed]
- Trautmann, M.; Cheynis, F.; Leroy, F.; Curiotto, S.; Müller, P. Interplay between deoxidation and dewetting for ultrathin SOI films. Appl. Phys. Lett. 2017, 110, 161601. [Google Scholar] [CrossRef]
- Toliopoulos, D.; Khoury, M.; Bouabdellaoui, M.; Granchi, N.; Claude, J.B.; Benali, A.; Berbezier, I.; Hannani, D.; Ronda, A.; Wenger, J.; et al. Fabrication of spectrally sharp Si-based dielectric resonators: Combining etaloning with Mie resonances. Opt. Express 2020, 28, 37734–37742. [Google Scholar] [CrossRef]
- Marris-Morini, D.; Vakarin, V.; Ramirez, J.M.; Liu, Q.; Ballabio, A.; Frigerio, J.; Montesinos, M.; Alonso-Ramos, C.; Le Roux, X.; Serna, S.; et al. Germanium-based integrated photonics from near-to mid-infrared applications. Nanophotonics 2018, 7, 1781–1793. [Google Scholar] [CrossRef]
- Sood, A.K.; Zeller, J.W.; Richwine, R.A.; Puri, Y.R.; Efstathiadis, H.; Haldar, P.; Dhar, N.K.; Polla, D.L. SiGe based visible-NIR photodetector technology for optoelectronic applications, advances in optical fiber technology. Fundam. Opt. Phenom. Appl. 2015. [Google Scholar] [CrossRef]
- de Azevedo, A.M.; Lopes, T.J.; Cardoso, D.D.O.; Monterio, S.N.; Silveira, P.C.R.; da Silva Figueiredo, A.B.H. SiGe semiconductor electronic component: A review on fundamentals and applications. Obs. Econ. Latinoam. 2024, 22, e8370. [Google Scholar] [CrossRef]
- Izhaky, N.; Morse, M.T.; Koehl, S.; Cohen, O.; Rubin, D.; Barkai, A.; Sarid, G.; Cohen, R.; Paniccia, M.J. Development of CMOS-compatible integrated silicon photonics devices. IEEE J. Sel. Top. Quantum Electron. 2006, 12, 1688–1698. [Google Scholar] [CrossRef]
- Bouabdellaoui, M.; Bollani, M.; Salvalaglio, M.; Assaf, E.; Favre, L.; Abel, M.; Ronda, A.; Gourhant, O.; Deprat, F.; Duluard, C.; et al. Engineering epitaxy and condensation: Fabrication of Ge nanolayers, mechanism and applications. Appl. Surf. Sci. 2023, 630, 157226. [Google Scholar] [CrossRef]
- McJunkin, T.; Harpt, B.; Feng, Y.; Losert, M.P.; Rahman, R.; Dodson, J.P.; Wolfe, M.A.; Savage, D.E.; Lagally, M.G.; Coppersmith, S.N.; et al. SiGe quantum wells with oscillating Ge concentrations for quantum dot qubits. Nat. Commun. 2022, 13, 7777. [Google Scholar] [CrossRef]
- Du Preez, J.; Sinha, S.; Sengupta, K. SiGe and CMOS technology for state-of-the-art millimeter-wave transceivers. IEEE Access 2023, 11, 55596–55617. [Google Scholar] [CrossRef]
- Wakayama, Y.; Tagami, T.; Tanaka, S.I. Three-dimensional islands of Si and Ge formed on SiO2 through crystallization and agglomeration from amorphous thin films. Thin Solid Film. 1999, 350, 300–307. [Google Scholar] [CrossRef]
- Pan, Y.; Xu, K. Recent progress in nano-electronic devices based on EBL and IBL. Curr. Nanosci. 2020, 16, 157–169. [Google Scholar] [CrossRef]
- Chen, Y. Nanofabrication by electron beam lithography and its applications: A review. Microelectron. Eng. 2015, 135, 57–72. [Google Scholar] [CrossRef]
- Bruinink, C.M.; Burresi, M.; de Boer, M.J.; Segerink, F.B.; Jansen, H.V.; Berenschot, E.; Reinhoudt, D.N.; Huskens, J.; Kuipers, L. Nanoimprint lithography for nanophotonics in silicon. Nano Lett. 2008, 8, 2872–2877. [Google Scholar] [CrossRef]
- Karmous, A.; Berbezier, I.; Ronda, A.; Hull, R.; Graham, J. Ordering of Ge nanocrystals using FIB nanolithography. Surf. Sci. 2007, 601, 2769–2773. [Google Scholar] [CrossRef]
- Zschech, D.; Kim, D.H.; Milenin, A.P.; Scholz, R.; Hillebrand, R.; Hawker, C.J.; Russell, T.P.; Steinhart, M.; Gösele, U. Ordered arrays of <100>-oriented silicon nanorods by CMOS-compatible block copolymer lithography. Nano Lett. 2007, 7, 1516–1520. [Google Scholar]
- Tallegas, S.; Baron, T.; Gay, G.; Aggrafeil, C.; Salhi, B.; Chevolleau, T.; Cunge, G.; Bsiesy, A.; Tiron, R.; Chevalier, X.; et al. Block copolymer technology applied to nanoelectronics. Phys. Status Solidi (C) 2013, 10, 1195–1206. [Google Scholar] [CrossRef]
- Singh, S.; John, J.W.; Sarkar, A.; Dhyani, V.; Das, S.; Ray, S.K. Room-temperature infrared photoluminescence and broadband photodetection characteristics of Ge/GeSi islands on silicon-on-insulator. Nanotechnology 2024, 36, 045204. [Google Scholar] [CrossRef] [PubMed]
- Williams, R.S.; Medeiros-Ribeiro, G.; Kamins, T.I.; Ohlberg, D.A. Thermodynamics of the size and shape of nanocrystals: Epitaxial Ge on Si (001). Annu. Rev. Phys. Chem. 2000, 51, 527–551. [Google Scholar] [CrossRef]
- Xu, X.; Usami, N.; Maruizumi, T.; Shiraki, Y. Enhancement of light emission from Ge quantum dots by photonic crystal nanocavities at room-temperature. J. Cryst. Growth 2013, 378, 636–639. [Google Scholar] [CrossRef]
- Das, S.; Singha, R.K.; Das, K.; Dhar, A.; Ray, S.K. Silicon dioxide embedded germanium nanocrystals grown using molecular beam epitaxy for floating gate memory devices. J. Nanosci. Nanotechnol. 2009, 9, 5484–5488. [Google Scholar]
- Chame, A.; Saito, Y.; Pierre-Louis, O. Orientation and morphology of solid-state dewetting holes. Phys. Rev. Mater. 2000, 4, 094006. [Google Scholar] [CrossRef]
- Naffouti, M.; David, T.; Benkouider, A.; Favre, L.; Delobbe, A.; Ronda, A.; Berbezier, I.; Abbarchi, M. Templated solid-state dewetting of thin silicon films. Small 2016, 12, 6115–6123. [Google Scholar] [CrossRef]
- Almadori, Y.; Borowik, Ł.; Chevalier, N.; Hourani, W.; Glowacki, F.; Barbe, J.C. From Solid-State Dewetting of Ultrathin, Compressively Strained Silicon–Germanium-on-Insulator Films to Mastering the Stoichiometry of Si1–x Gex Nanocrystals. J. Phys. Chem. C 2016, 120, 7412–7420. [Google Scholar] [CrossRef]
- Poborchii, V.; Bouabdellaoui, M.; Uchida, N.; Ronda, A.; Berbezier, I.; David, T.; Ruiz, C.M.; Zazoui, M.; Sena, R.P.; Abbarchi, M.; et al. Raman microscopy and infrared optical properties of SiGe Mie resonators formed on SiO2 via Ge condensation and solid state dewetting. Nanotechnology 2020, 31, 195602. [Google Scholar] [CrossRef]
- Bauer, G.; Li, J.H.; Holy, V. High resolution X-ray reciprocal space mapping. Acta Phys. Pol. A 1996, 89, 115–127. [Google Scholar] [CrossRef]
- Smith, T.R.; McDermott, S.; Patel, V.; Anthony, R.; Hegde, M.; Bierer, S.E.; Wang, S.; Knights, A.P.; Lewis, R.B. Ultra-Thin Strain-Relieving Si1−xGex Layers Enabling III-V Epitaxy on Si. Adv. Mater. Interfaces 2025, 12, 2400580. [Google Scholar] [CrossRef]
- Kriegner, D.; Wintersberger, E.; Stangl, J. Xrayutilities: A versatile tool for reciprocal space conversion of scattering data recorded with linear and area detectors. J. Appl. Crystallogr. 2013, 46, 1162–1170. [Google Scholar] [CrossRef] [PubMed]
- Aouassa, M.; Bouabdellaoui, M.; Pessoa, W.B.; Berbezier, I.; Kallel, T.; Ettaghzouti, T.; Yahyaoui, M.; Saron, K.; Aladim, A.; Ibrahim, M.; et al. Germanium impact on dewetting behavior of silicon-on-insulator. Vacuum 2024, 225, 113168. [Google Scholar] [CrossRef]
- Capellini, G.; Ciasca, G.; De Seta, M.; Notargiacomo, A.; Evangelisti, F.; Nardone, M. Agglomeration process in thin silicon, strained silicon-, and silicon germanium-on-insulator substrates. J. Appl. Phys. 2009, 105, 093525. [Google Scholar] [CrossRef]
- Zhang, P.P.; Yang, B.; Rugheimer, P.P.; Roberts, M.M.; Savage, D.E.; Liu, F.; Lagally, M.G. Influence of germanium on thermal dewetting and agglomeration of the silicon template layer in thin silicon-on-insulator. J. Phys. D Appl. Phys. 2009, 42, 175309. [Google Scholar] [CrossRef]
- Pezzoli, F.; Bonera, E.; Grilli, E.; Guzzi, M.; Sanguinetti, S.; Chrastina, D.; Isella, G.; von Känel, H.; Wintersberger, E.; Stangl, J.; et al. Raman spectroscopy determination of composition and strain in Si1−xGex/Si heterostructures. Mater. Sci. Semicond. Process. 2008, 11, 279–284. [Google Scholar] [CrossRef]
Sample | XRD Results | Raman Results |
---|---|---|
As-grown | ||
A 10 min | ||
B 15 min | ||
C 20 min | ||
D 30 min | ||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Freddi, S.; Gherardi, M.; Chiappini, A.; Arette-Hourquet, A.; Berbezier, I.; Fedorov, A.; Chrastina, D.; Bollani, M. Strain-Driven Dewetting and Interdiffusion in SiGe Thin Films on SOI for CMOS-Compatible Nanostructures. Nanomaterials 2025, 15, 965. https://doi.org/10.3390/nano15130965
Freddi S, Gherardi M, Chiappini A, Arette-Hourquet A, Berbezier I, Fedorov A, Chrastina D, Bollani M. Strain-Driven Dewetting and Interdiffusion in SiGe Thin Films on SOI for CMOS-Compatible Nanostructures. Nanomaterials. 2025; 15(13):965. https://doi.org/10.3390/nano15130965
Chicago/Turabian StyleFreddi, Sonia, Michele Gherardi, Andrea Chiappini, Adam Arette-Hourquet, Isabelle Berbezier, Alexey Fedorov, Daniel Chrastina, and Monica Bollani. 2025. "Strain-Driven Dewetting and Interdiffusion in SiGe Thin Films on SOI for CMOS-Compatible Nanostructures" Nanomaterials 15, no. 13: 965. https://doi.org/10.3390/nano15130965
APA StyleFreddi, S., Gherardi, M., Chiappini, A., Arette-Hourquet, A., Berbezier, I., Fedorov, A., Chrastina, D., & Bollani, M. (2025). Strain-Driven Dewetting and Interdiffusion in SiGe Thin Films on SOI for CMOS-Compatible Nanostructures. Nanomaterials, 15(13), 965. https://doi.org/10.3390/nano15130965