Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (966)

Search Parameters:
Keywords = thin film devices and applications

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1717 KiB  
Article
High-Performance Hydrogen Gas Sensor Based on Pd-Doped MoS2/Si Heterojunction
by Enyu Ma, Zihao Xu, Ankai Sun, Shuo Yang and Jianyu Jiang
Sensors 2025, 25(15), 4753; https://doi.org/10.3390/s25154753 (registering DOI) - 1 Aug 2025
Abstract
High-performance hydrogen gas sensors have gained considerable interest for their crucial function in reducing H2 explosion risk. Although MoS2 has good potential for chemical sensing, its application in hydrogen detection at room temperature is limited by slow response and incomplete recovery. [...] Read more.
High-performance hydrogen gas sensors have gained considerable interest for their crucial function in reducing H2 explosion risk. Although MoS2 has good potential for chemical sensing, its application in hydrogen detection at room temperature is limited by slow response and incomplete recovery. In this work, Pd-doped MoS2 thin films are deposited on a Si substrate, forming Pd-doped MoS2/Si heterojunctions via magnetron co-sputtering. The incorporation of Pd nanoparticles significantly enhances the catalytic activity for hydrogen adsorption and facilitates more efficient electron transfer. Owing to its distinct structural characteristics and sharp interface properties, the fabricated Pd-doped MoS2/Si heterojunction device exhibits excellent H2 sensing performance under room temperature conditions. The gas sensor device achieves an impressive sensing response of ~6.4 × 103% under 10,000 ppm H2 concentration, representing a 110% improvement compared to pristine MoS2. Furthermore, the fabricated heterojunction device demonstrates rapid response and recovery times (24.6/12.2 s), excellent repeatability, strong humidity resistance, and a ppb-level detection limit. These results demonstrate the promising application prospects of Pd-doped MoS2/Si heterojunctions in the development of advanced gas sensing devices. Full article
(This article belongs to the Special Issue 2D Materials for Advanced Sensing Technology)
Show Figures

Figure 1

20 pages, 2093 KiB  
Review
A Practical Guide Paper on Bulk and PLD Thin-Film Metals Commonly Used as Photocathodes in RF and SRF Guns
by Alessio Perrone, Muhammad Rizwan Aziz, Francisco Gontad, Nikolaos A. Vainos and Anna Paola Caricato
Chemistry 2025, 7(4), 123; https://doi.org/10.3390/chemistry7040123 - 30 Jul 2025
Abstract
This paper serves as a comprehensive and practical resource to guide researchers in selecting suitable metals for use as photocathodes in radio-frequency (RF) and superconducting radio-frequency (SRF) electron guns. It offers an in-depth review of bulk and thin-film metals commonly employed in many [...] Read more.
This paper serves as a comprehensive and practical resource to guide researchers in selecting suitable metals for use as photocathodes in radio-frequency (RF) and superconducting radio-frequency (SRF) electron guns. It offers an in-depth review of bulk and thin-film metals commonly employed in many applications. The investigation includes the photoemission, optical, chemical, mechanical, and physical properties of metallic materials used in photocathodes, with a particular focus on key performance parameters such as quantum efficiency, operational lifetime, chemical inertness, thermal emittance, response time, dark current, and work function. In addition to these primary attributes, this study examines essential parameters such as surface roughness, morphology, injector compatibility, manufacturing techniques, and the impact of chemical environmental factors on overall performance. The aim is to provide researchers with detailed insights to make well-informed decisions on materials and device selection. The holistic approach of this work associates, in tabular format, all photo-emissive, optical, mechanical, physical, and chemical properties of bulk and thin-film metallic photocathodes with experimental data, aspiring to provide unique tools for maximizing the effectiveness of laser cleaning treatment. Full article
(This article belongs to the Section Electrochemistry and Photoredox Processes)
Show Figures

Figure 1

19 pages, 5970 KiB  
Article
Interface Material Modification to Enhance the Performance of a Thin-Film Piezoelectric-on-Silicon (TPoS) MEMS Resonator by Localized Annealing Through Joule Heating
by Adnan Zaman, Ugur Guneroglu, Abdulrahman Alsolami, Liguan Li and Jing Wang
Micromachines 2025, 16(8), 885; https://doi.org/10.3390/mi16080885 - 29 Jul 2025
Viewed by 135
Abstract
This paper presents a novel approach employing localized annealing through Joule heating to enhance the performance of Thin-Film Piezoelectric-on-Silicon (TPoS) MEMS resonators that are crucial for applications in sensing, energy harvesting, frequency filtering, and timing control. Despite recent advancements, piezoelectric MEMS resonators still [...] Read more.
This paper presents a novel approach employing localized annealing through Joule heating to enhance the performance of Thin-Film Piezoelectric-on-Silicon (TPoS) MEMS resonators that are crucial for applications in sensing, energy harvesting, frequency filtering, and timing control. Despite recent advancements, piezoelectric MEMS resonators still suffer from anchor-related energy losses and limited quality factors (Qs), posing significant challenges for high-performance applications. This study investigates interface modification to boost the quality factor (Q) and reduce the motional resistance, thus improving the electromechanical coupling coefficient and reducing insertion loss. To balance the trade-off between device miniaturization and performance, this work uniquely applies DC current-induced localized annealing to TPoS MEMS resonators, facilitating metal diffusion at the interface. This process results in the formation of platinum silicide, modifying the resonator’s stiffness and density, consequently enhancing the acoustic velocity and mitigating the side-supporting anchor-related energy dissipations. Experimental results demonstrate a Q-factor enhancement of over 300% (from 916 to 3632) and a reduction in insertion loss by more than 14 dB, underscoring the efficacy of this method for reducing anchor-related dissipations due to the highest annealing temperature at the anchors. The findings not only confirm the feasibility of Joule heating for interface modifications in MEMS resonators but also set a foundation for advancements of this post-fabrication thermal treatment technology. Full article
(This article belongs to the Special Issue MEMS Nano/Micro Fabrication, 2nd Edition)
Show Figures

Figure 1

50 pages, 4603 KiB  
Review
Polymeric Composite Thin Films Deposited by Laser Techniques for Antimicrobial Applications—A Short Overview
by Anita Ioana Visan and Irina Negut
Polymers 2025, 17(15), 2020; https://doi.org/10.3390/polym17152020 - 24 Jul 2025
Viewed by 345
Abstract
Polymeric composite thin films have emerged as promising antimicrobial materials, particularly in response to rising antibiotic resistance. This review highlights the development and application of such films produced by laser-based deposition techniques, notably pulsed laser deposition and matrix-assisted pulsed laser evaporation. These methods [...] Read more.
Polymeric composite thin films have emerged as promising antimicrobial materials, particularly in response to rising antibiotic resistance. This review highlights the development and application of such films produced by laser-based deposition techniques, notably pulsed laser deposition and matrix-assisted pulsed laser evaporation. These methods offer precise control over film composition, structure, and thickness, making them ideal for embedding antimicrobial agents such as metal nanoparticles, antibiotics, and natural compounds into polymeric matrices. The resulting composite coatings exhibit enhanced antimicrobial properties against a wide range of pathogens, including antibiotic-resistant strains, by leveraging mechanisms such as ion release, reactive oxygen species generation, and membrane disruption. The review also discusses critical parameters influencing antimicrobial efficacy, including film morphology, composition, and substrate interactions. Applications include biomedical devices, implants, wound dressings, and surfaces in the healthcare and food industries. Full article
(This article belongs to the Special Issue Polymer Thin Films and Their Applications)
Show Figures

Figure 1

14 pages, 3135 KiB  
Article
Selective Gelation Patterning of Solution-Processed Indium Zinc Oxide Films via Photochemical Treatments
by Seullee Lee, Taehui Kim, Ye-Won Lee, Sooyoung Bae, Seungbeen Kim, Min Woo Oh, Doojae Park, Youngjun Yun, Dongwook Kim, Jin-Hyuk Bae and Jaehoon Park
Nanomaterials 2025, 15(15), 1147; https://doi.org/10.3390/nano15151147 - 24 Jul 2025
Viewed by 221
Abstract
This study presents a photoresist-free patterning method for solution-processed indium zinc oxide (IZO) thin films using two photochemical exposure techniques, namely pulsed ultraviolet (UV) light and UV-ozone, and a plasma-based method using oxygen (O2) plasma. Pulsed UV light delivers short, high-intensity [...] Read more.
This study presents a photoresist-free patterning method for solution-processed indium zinc oxide (IZO) thin films using two photochemical exposure techniques, namely pulsed ultraviolet (UV) light and UV-ozone, and a plasma-based method using oxygen (O2) plasma. Pulsed UV light delivers short, high-intensity flashes of light that induce localised photochemical reactions with minimal thermal damage, whereas UV-ozone enables smooth and uniform surface oxidation through continuous low-pressure UV irradiation combined with in situ ozone generation. By contrast, O2 plasma generates ionised oxygen species via radio frequency (RF) discharge, allowing rapid surface activation, although surface damage may occur because of energetic ion bombardment. All three approaches enabled pattern formation without the use of conventional photolithography or chemical developers, and the UV-ozone method produced the most uniform and clearly defined patterns. The patterned IZO films were applied as active layers in bottom-gate top-contact thin-film transistors, all of which exhibited functional operation, with the UV-ozone-patterned devices exhibiting the most favourable electrical performance. This comparative study demonstrates the potential of photochemical and plasma-assisted approaches as eco-friendly and scalable strategies for next-generation IZO patterning in electronic device applications. Full article
Show Figures

Graphical abstract

22 pages, 10488 KiB  
Article
Morphological and Functional Evolution of Amorphous AlN Thin Films Deposited by RF-Magnetron Sputtering
by Maria-Iulia Zai, Ioana Lalau, Marina Manica, Lucia Chiriacescu, Vlad-Andrei Antohe, Cristina C. Gheorghiu, Sorina Iftimie, Ovidiu Toma, Mirela Petruta Suchea and Ștefan Antohe
Surfaces 2025, 8(3), 51; https://doi.org/10.3390/surfaces8030051 - 17 Jul 2025
Viewed by 290
Abstract
Aluminum nitride (AlN) thin films were deposited on SiO2 substrates by RF-magnetron sputtering at varying powers (110–140 W) and subsequently subjected to thermal annealing at 450 °C under nitrogen atmosphere. A comprehensive multi-technique investigation—including X-ray reflectometry (XRR), X-ray diffraction (XRD), scanning electron [...] Read more.
Aluminum nitride (AlN) thin films were deposited on SiO2 substrates by RF-magnetron sputtering at varying powers (110–140 W) and subsequently subjected to thermal annealing at 450 °C under nitrogen atmosphere. A comprehensive multi-technique investigation—including X-ray reflectometry (XRR), X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), optical profilometry, spectroscopic ellipsometry (SE), and electrical measurements—was performed to explore the physical structure, morphology, and optical and electrical properties of the films. The analysis of the film structure by XRR revealed that increasing sputtering power resulted in thicker, denser AlN layers, while thermal treatment promoted densification by reducing density gradients but also induced surface roughening and the formation of island-like morphologies. Optical studies confirmed excellent transparency (>80% transmittance in the near-infrared region) and demonstrated the tunability of the refractive index with sputtering power, critical for optoelectronic applications. The electrical characterization of Au/AlN/Al sandwich structures revealed a transition from Ohmic to trap-controlled space charge limited current (SCLC) behavior under forward bias—a transport mechanism frequently present in a material with very low mobility, such as AlN—while Schottky conduction dominated under reverse bias. The systematic correlation between deposition parameters, thermal treatment, and the resulting physical properties offers valuable pathways to engineer AlN thin films for next-generation optoelectronic and high-frequency device applications. Full article
(This article belongs to the Special Issue Surface Engineering of Thin Films)
Show Figures

Graphical abstract

13 pages, 4656 KiB  
Article
High-Speed and Hysteresis-Free Near-Infrared Optical Hydrogen Sensor Based on Ti/Pd Bilayer Thin Films
by Ashwin Thapa Magar, Tu Anh Ngo, Hoang Mai Luong, Thi Thu Trinh Phan, Minh Tuan Trinh, Yiping Zhao and Tho Duc Nguyen
Nanomaterials 2025, 15(14), 1105; https://doi.org/10.3390/nano15141105 - 16 Jul 2025
Viewed by 465
Abstract
Palladium (Pd) and titanium (Ti) exhibit opposite dielectric responses upon hydrogenation, with stronger effects observed in the near-infrared (NIR) region. Leveraging this contrast, we investigated Ti/Pd bilayer thin films as a platform for NIR hydrogen sensing—particularly at telecommunication-relevant wavelengths, where such devices have [...] Read more.
Palladium (Pd) and titanium (Ti) exhibit opposite dielectric responses upon hydrogenation, with stronger effects observed in the near-infrared (NIR) region. Leveraging this contrast, we investigated Ti/Pd bilayer thin films as a platform for NIR hydrogen sensing—particularly at telecommunication-relevant wavelengths, where such devices have remained largely unexplored. Ti/Pd bilayers coated with Teflon AF (TAF) and fabricated via sequential electron-beam and thermal evaporation were characterized using optical transmission measurements under repeated hydrogenation cycles. The Ti (5 nm)/Pd (x = 2.5 nm)/TAF (30 nm) architecture showed a 2.7-fold enhancement in the hydrogen-induced optical contrast at 1550 nm compared to Pd/TAF reference films, attributed to the hydrogen ion exchange between the Ti and Pd layers. The optimized structure, with a Pd thickness of x = 1.9 nm, exhibited hysteresis-free sensing behavior, a rapid response time (t90 < 0.35 s at 4% H2), and a detection limit below 10 ppm. It also demonstrated excellent selectivity with negligible cross-sensitivity to CO2, CH4, and CO, as well as high durability, showing less than 6% signal degradation over 135 hydrogenation cycles. These findings establish a scalable, room-temperature NIR hydrogen sensing platform with strong potential for deployment in automotive, environmental, and industrial applications. Full article
Show Figures

Figure 1

11 pages, 2689 KiB  
Article
Growth of Zn–N Co-Doped Ga2O3 Films by a New Scheme with Enhanced Optical Properties
by Daogui Liao, Yijun Zhang, Ruikang Wang, Tianyi Yan, Chao Li, He Tian, Hong Wang, Zuo-Guang Ye, Wei Ren and Gang Niu
Nanomaterials 2025, 15(13), 1020; https://doi.org/10.3390/nano15131020 - 1 Jul 2025
Viewed by 360
Abstract
Gallium oxide (Ga2O3), as a wide-bandgap semiconductor material, is highly expected to find extensive applications in optoelectronic devices, high-power electronics, gas sensors, etc. However, the photoelectric properties of Ga2O3 still need to be improved before its [...] Read more.
Gallium oxide (Ga2O3), as a wide-bandgap semiconductor material, is highly expected to find extensive applications in optoelectronic devices, high-power electronics, gas sensors, etc. However, the photoelectric properties of Ga2O3 still need to be improved before its devices become commercially viable. As is well known, doping is an effective method to modulate the various properties of semiconductor materials. In this study, Zn–N co-doped Ga2O3 films with various doping concentrations were grown in situ on sapphire substrates by atomic layer deposition (ALD) at 250 °C, followed by post-annealing at 900 °C. The post-annealed undoped Ga2O3 film showed a highly preferential orientation, whereas with the increase in Zn doping concentration, the preferential orientation of Ga2O3 films was deteriorated, turning it into an amorphous state. The surface roughness of the Ga2O3 thin films is largely affected by doping. As a result of post-annealing, the bandgaps of the Ga2O3 films can be modulated from 4.69 eV to 5.41 eV by controlling the Zn–N co-doping concentrations. When deposited under optimum conditions, high-quality Zn–N co-doped Ga2O3 films showed higher transmittance, a larger bandgap, and fewer defects compared with undoped ones. Full article
(This article belongs to the Special Issue Nanoscale Photonics and Optoelectronics)
Show Figures

Figure 1

15 pages, 7651 KiB  
Article
Induction of Strong Magneto-Optical Effect and High Compatibility with Si of BiFeO3 Thin Film by Sr and Ti Co-Doping
by Nanxi Lin, Hong Zhang, Yunye Shi, Chenjun Xu, Zhuoqian Xie and Yunjin Chen
Materials 2025, 18(13), 2953; https://doi.org/10.3390/ma18132953 - 22 Jun 2025
Viewed by 294
Abstract
The poor magnetic and magneto-optical properties of BiFeO3, along with its significant lattice mismatch with silicon, have limited its application in silicon-based integrated magneto-optical devices. In this study, co-doping with Sr2+ and Ti4+ ions effectively transformed the trigonal structure [...] Read more.
The poor magnetic and magneto-optical properties of BiFeO3, along with its significant lattice mismatch with silicon, have limited its application in silicon-based integrated magneto-optical devices. In this study, co-doping with Sr2+ and Ti4+ ions effectively transformed the trigonal structure of BiFeO3 into a cubic phase, thereby reducing the lattice mismatch with silicon to 2.8%. High-quality, highly oriented, silicon-based cubic Sr,Ti:BiFeO3 thin films were successfully fabricated using radio frequency magnetron sputtering. Due to the induced lattice distortion, the characteristic periodic spiral spin antiferromagnetic structure of BiFeO3 was suppressed, resulting in a significant enhancement of the saturation magnetization of cubic Bi0.5Sr0.5Fe0.5Ti0.5O3 (48.0 emu/cm3), compared to that of pristine BiFeO3 (5.0 emu/cm3). Furthermore, the incorporation of Sr2+ and Ti4+ ions eliminated the birefringence effect inherent in trigonal BiFeO3, thereby inducing a pronounced magneto-optical effect in the cubic Sr,Ti:BiFeO3 thin film. The magnetic circular dichroic ellipticity (ψF) of Bi0.5Sr0.5Fe0.5Ti0.5O3 reached an impressive 2300 degrees/cm. Full article
(This article belongs to the Section Optical and Photonic Materials)
Show Figures

Figure 1

14 pages, 1911 KiB  
Article
Dielectric and Interface Properties of Aluminum-Laminated Lanthanum Oxide on Silicon for Nanoscale Device Applications
by Hei Wong, Weidong Li, Jieqiong Zhang and Jun Liu
Nanomaterials 2025, 15(13), 963; https://doi.org/10.3390/nano15130963 - 21 Jun 2025
Viewed by 302
Abstract
By embedding an aluminum-laminated layer within La2O3 thin films and subjecting them to high-temperature rapid thermal annealing, a La2O3/LaAlxOy/La2O3 sandwich dielectric was formed. This structure enhances the interface properties [...] Read more.
By embedding an aluminum-laminated layer within La2O3 thin films and subjecting them to high-temperature rapid thermal annealing, a La2O3/LaAlxOy/La2O3 sandwich dielectric was formed. This structure enhances the interface properties with both the silicon substrate and the metal gate electrode, improving current conduction. Comprehensive analysis using X-ray Photoelectron Spectroscopy (XPS) revealed that this novel process not only facilitates the formation of a high-quality lanthanum aluminate layer, as indicated with Al 2p peak at 74.5 eV, but also effectively suppresses silicate layer growth, as supported by the weak Si-O signal from both the Si 2s (153.9 eV) and O 1s (533 eV) peaks at the dielectric/Si interface in the Al-laminated samples. Fourier Transform Infrared (FTIR) spectroscopy revealed a significant reduction in the OH absorption peak at 3608 cm−1 OH-related band centered at 3433 cm−1. These improvements are attributed to the aluminum-laminated layer, which blocks oxygen and hydroxyl diffusion, the LaAlxOy layer scavenging interface silicon oxide, and the consumption of oxygen during LaAlxOy formation under thermal annealing. Electrical measurements confirmed that the dielectric films exhibited significantly lower interface and oxide trap densities compared to native La2O3 samples. This approach provides a promising method for fabricating high-quality lanthanum-based gate dielectric films with controlled dielectric/substrate interactions, making it suitable for nano-CMOS and memristive device applications. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

16 pages, 3499 KiB  
Article
Physical and Electrical Properties of Silicon Nitride Thin Films with Different Nitrogen–Oxygen Ratios
by Wen-Jie Chen, Yang-Chao Liu, Zhen-Yu Wang, Lin Gu, Yi Shen and Hong-Ping Ma
Nanomaterials 2025, 15(13), 958; https://doi.org/10.3390/nano15130958 - 20 Jun 2025
Viewed by 488
Abstract
Silicon oxynitride (SiOxNy, hereafter denoted as SiON) thin films represent an intermediate phase between silicon dioxide (SiO2) and silicon nitride (Si3N4). Through systematic compositional ratio adjustments, the refractive index can be precisely tuned [...] Read more.
Silicon oxynitride (SiOxNy, hereafter denoted as SiON) thin films represent an intermediate phase between silicon dioxide (SiO2) and silicon nitride (Si3N4). Through systematic compositional ratio adjustments, the refractive index can be precisely tuned across a wide range from 1.45 to 2.3. However, the underlying mechanism governing the influence of elemental composition on film structural quality remains insufficiently understood. To address this knowledge gap, we systematically investigate the effects of key industrial plasma-enhanced chemical vapor deposition (PECVD) parameters—including precursor gas selection and flow rate ratios—on SiON film properties. Our experimental measurements reveal that stoichiometric SiOxNy (x = y) achieves a minimum surface roughness of 0.18 nm. As oxygen content decreases and nitrogen content increases, progressive replacement of Si-O bonds by Si-N bonds correlates with increased structural defect density within the film matrix. Capacitance–voltage (C-V) characterization demonstrates a corresponding enhancement in device capacitance following these compositional modifications. Recent studies confirm that controlled modulation of film stoichiometry enables precise tailoring of dielectric properties and capacitive behavior, as demonstrated in SiON-based power electronics, thereby advancing applications in related fields. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Figure 1

11 pages, 5145 KiB  
Article
Island-like Perovskite Photoelectric Synaptic Transistor with ZnO Channel Layer Deposited by Low-Temperature Atomic Layer Deposition
by Jiahui Liu, Yuliang Ye and Zunxian Yang
Materials 2025, 18(12), 2879; https://doi.org/10.3390/ma18122879 - 18 Jun 2025
Viewed by 342
Abstract
Artificial photoelectric synapses exhibit great potential for overcoming the Von Neumann bottleneck in computational systems. All-inorganic halide perovskites hold considerable promise in photoelectric synapses due to their superior photon-harvesting efficiency. In this study, a novel wavy-structured CsPbBr3/ZnO hybrid film was realized [...] Read more.
Artificial photoelectric synapses exhibit great potential for overcoming the Von Neumann bottleneck in computational systems. All-inorganic halide perovskites hold considerable promise in photoelectric synapses due to their superior photon-harvesting efficiency. In this study, a novel wavy-structured CsPbBr3/ZnO hybrid film was realized by depositing zinc oxide (ZnO) onto island-like CsPbBr3 film via atomic layer deposition (ALD) at 70 °C. Due to the capability of ALD to grow high-quality films over small surface areas, dense and thin ZnO film filled the gaps between the island-shaped CsPbBr3 grains, thereby enabling reduced light-absorption losses and efficient charge transport between the CsPbBr3 light absorber and the ZnO electron-transport layer. This ZnO/island-like CsPbBr3 hybrid synaptic transistor could operate at a drain-source voltage of 1.0 V and a gate-source voltage of 0 V triggered by green light (500 nm) pulses with low light intensities of 0.035 mW/cm2. The device exhibited a quiescent current of ~0.5 nA. Notably, after patterning, it achieved a significantly reduced off-state current of 10−11 A and decreased the quiescent current to 0.02 nA. In addition, this transistor was able to mimic fundamental synaptic behaviors, including excitatory postsynaptic currents (EPSCs), paired-pulse facilitation (PPF), short-term to long-term plasticity (STP to LTP) transitions, and learning-experience behaviors. This straightforward strategy demonstrates the possibility of utilizing neuromorphic synaptic device applications under low voltage and weak light conditions. Full article
(This article belongs to the Section Electronic Materials)
Show Figures

Graphical abstract

9 pages, 3564 KiB  
Communication
Pico-Dispensed Zinc Oxide Nanoparticles for Actuation of Microcantilevers: A Precise Deposition Approach
by Paweł Janus, Anna Katarzyna Piotrowska, Piotr Prokaryn, Andrzej Sierakowski, Jan Prokaryn and Rafał Dobrowolski
Sensors 2025, 25(12), 3689; https://doi.org/10.3390/s25123689 - 12 Jun 2025
Viewed by 2041
Abstract
This paper presents a cost-effective and versatile pico-dispensing technique as an efficient and straightforward approach for depositing zinc oxide nanoparticle (ZnO—NP) thin films on micromechanical devices (MEMS). Due to its piezoelectric properties, bulk ZnO is commonly used as a material for micro-/nanocantilever actuation. [...] Read more.
This paper presents a cost-effective and versatile pico-dispensing technique as an efficient and straightforward approach for depositing zinc oxide nanoparticle (ZnO—NP) thin films on micromechanical devices (MEMS). Due to its piezoelectric properties, bulk ZnO is commonly used as a material for micro-/nanocantilever actuation. The pico-dispensing process provides precise control over the deposition, allowing uniform and localized application of ZnO—NP on microcantilevers. Compared to traditional ZnO deposition techniques (e.g., sputtering or sol–gel), pico-dispensing of ZnO—NP offers advantages in simplicity, reduced material waste, and significantly lower costs. Furthermore, it is easy to tailor the composition and properties by incorporating nanoparticles of other materials. Experimental results demonstrate that ZnO—NP thin films deposited via pico-dispensing enable actuation with amplitudes of several nanometers and bandwidths up to 250 kHz, making them potentially suitable for actuation of micromechanical devices such as in dynamic AFM modes. Full article
Show Figures

Figure 1

13 pages, 3815 KiB  
Article
Optimizing Crystalline MoS2 Growth on Technologically Relevant Platinum Substrates Using Ionized Jet Deposition: Interface Interactions and Structural Insights
by Cristian Tomasi Cebotari, Christos Gatsios, Andrea Pedrielli, Lucia Nasi, Francesca Rossi, Andrea Chiappini, Riccardo Ceccato, Roberto Verucchi, Marco V. Nardi and Melanie Timpel
Surfaces 2025, 8(2), 38; https://doi.org/10.3390/surfaces8020038 - 6 Jun 2025
Viewed by 460
Abstract
Transition metal dichalcogenides, especially molybdenum disulfide (MoS2), exhibit exceptional properties that make them suitable for a wide range of applications. However, the interaction between MoS2 and technologically relevant substrates, such as platinum (Pt) electrodes, can significantly influence its properties. This [...] Read more.
Transition metal dichalcogenides, especially molybdenum disulfide (MoS2), exhibit exceptional properties that make them suitable for a wide range of applications. However, the interaction between MoS2 and technologically relevant substrates, such as platinum (Pt) electrodes, can significantly influence its properties. This study investigates the growth and properties of MoS2 thin films on Pt substrates using ionized jet deposition, a versatile, low-cost vacuum deposition technique. We explore the effects of the roughness of Pt substrates and self-heating during deposition on the chemical composition, structure, and strain of MoS2 films. By optimizing the deposition system to achieve crystalline MoS2 at room temperature, we compare as-deposited and annealed films. The results reveal that as-deposited MoS2 films are initially amorphous and conform to the Pt substrate roughness, but crystalline growth is reached when the sample holder is sufficiently heated by the plasma. Further post-annealing at 270 °C enhances crystallinity and reduces sulfur-related defects. We also identify a change in the MoS2–Pt interface properties, with a reduction in Pt–S interactions after annealing. Our findings contribute to the understanding of MoS2 growth on Pt and provide insights for optimizing MoS2-based devices in catalysis and electronics. Full article
Show Figures

Figure 1

20 pages, 5993 KiB  
Review
Nanostructured Bubble Thin Films—From Simple Fabrication to Scalable Applications: A Review
by Naif Ahmed Alshehri
Nanomaterials 2025, 15(11), 868; https://doi.org/10.3390/nano15110868 - 4 Jun 2025
Viewed by 559
Abstract
Several applications for nanotechnology necessitate the assembly of nanomaterials over large areas with precise orientation and density. Some techniques, such as Langmuir–Blodgett, contact printing, electric field directed assembly, and flow-assisted alignment, have been used to meet such a requirement. However, it remains uncertain [...] Read more.
Several applications for nanotechnology necessitate the assembly of nanomaterials over large areas with precise orientation and density. Some techniques, such as Langmuir–Blodgett, contact printing, electric field directed assembly, and flow-assisted alignment, have been used to meet such a requirement. However, it remains uncertain whether these techniques can be used for scaling up nanomaterial thin films onto large solid and flexible substrates. Accordingly, this review paper addresses such an issue by reviewing two recent flexible and scalable methods: blown bubble films (BBFs) and the bubble deposition method (BDM). It specifically offers a comprehensive account of these two bubble thin film methods along with their recent applications. It also discusses how nanomaterial thin films are made to fabricate devices. It finally provides some recommendations for further research and applications. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Figure 1

Back to TopTop