Induction of Strong Magneto-Optical Effect and High Compatibility with Si of BiFeO3 Thin Film by Sr and Ti Co-Doping
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Crystalline Phase and Structure
3.2. Surface Morphology and Thickness
3.3. Valence State
3.4. Transmittance
3.5. Magnetism
3.6. Magneto-Optical Performance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, W.; Kong, X.; Fu, B.; Yang, Y.; Chen, R.; Zuo, C.; Liu, H.; Yu, Y.; Zeng, F.; Li, C. Optical properties of CeF3 crystal at high temperature or pressure by first principles and its application in isolators. Opt. Mater. 2024, 154, 115758. [Google Scholar] [CrossRef]
- Bera, S.; Kalimuddin, S.; Bera, A.; Roy, D.S.; Debnath, T.; Das, S.; Mondal, M. Nonlinear Optical Properties of 2D vdW Ferromagnetic Nanoflakes for Magneto-Optical Logic Applications. Adv. Opt. Mater. 2025, 13, 2402318. [Google Scholar] [CrossRef]
- Ji, B.; Jin, Z.; Wu, G.; Li, J.; Wan, C.; Han, X.; Zhang, Z.; Ma, G.; Peng, Y.; Zhu, Y. Ultrafast laser-induced magneto-optical response of CoFeB/MgO/CoFeB magnetic tunneling junction. Appl. Phys. Lett. 2023, 122, 111104. [Google Scholar] [CrossRef]
- Sukhorukov, Y.P.; Telegin, A.V.; Lobov, I.D.; Naumov, S.V.; Dubinin, S.S.; Merencova, K.A.; Artemyev, M.S.; Nosov, A.P. Magnetooptical gyrotropic effects in nanosized BiYIG films and diamagnetic YAG substrates. J. Appl. Phys. 2024, 136, 193905. [Google Scholar] [CrossRef]
- Fakhrul, T.; Khurana, B.; Lee, B.H.; Huang, S.; Nembach, H.T.; Beach, G.S.D.; Ross, C.A. Damping and Interfacial Dzyaloshinskii-Moriya Interaction in Thulium Iron Garnet/Bismuth-Substituted Yttrium Iron Garnet Bilayers. ACS Appl. Mater. Interfaces 2024, 16, 2489–2496. [Google Scholar] [CrossRef] [PubMed]
- Fakhrul, T.; Tazlaru, S.; Khurana, B.; Beran, L.; Bauer, J.; Vančík, M.; Marchese, A.; Tsotsos, E.; Kučera, M.; Zhang, Y.; et al. High figure of merit magneto-optical Ce- and Bi-substituted Terbium Iron garnet films integrated on Si. Adv. Opt. Mater. 2021, 9, 2100512. [Google Scholar] [CrossRef]
- Wahid, D.A.; Morioka, T.; Shimizu, H. Preparation of Bi2Gd1Fe5O12 magnetic garnet films showing Faraday rotation of 36.3 deg./µm on glass substrates by metal organic decomposition method. IEICE Electron. Express 2016, 13, 20161011. [Google Scholar] [CrossRef]
- Sun, X.Y.; Du, Q.; Goto, T.; Onbasli, M.C.; Kim, D.H.; Aimon, N.M.; Hu, J.; Ross, C.A. Single-step deposition of cerium-substituted yttrium iron garnet for monolithic on-chip optical isolation. ACS Photon. 2015, 2, 856–863. [Google Scholar] [CrossRef]
- Yang, Q.H.; Zhang, H.W.; Wen, Q.Y.; Liu, Y.L. Effects of off-stoichiometry and density on the magnetic and magneto-optical properties of yttrium iron garnet films by magnetron sputtering method. J. Appl. Phys. 2010, 108, 073901. [Google Scholar] [CrossRef]
- Meng, F.; Qin, L.; Gao, H.; Zhu, H.; Yuan, Z. Perovskite-structured LaFeO3 modified In2O3 gas sensor with high selectivity and ultra-low detection limit for 2-butanone. J. Alloys Compd. 2024, 970, 176424. [Google Scholar] [CrossRef]
- Cheng, Z.; Hong, F.; Wang, Y.; Ozawa, K.; Fujii, H.; Kimura, H.; Du, Y.; Wang, X.; Dou, S. Interface strain-induced multiferroicity in a SmFeO3 film. ACS Appl. Mater. Interfaces 2014, 6, 7356–7362. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Yang, X.; He, X.; Xue, H.; Wang, X.; Dong, H.; Zhu, J.; Mao, W.; Xu, X.; Li, X. Roles of oxygen vacancy and ferroelectric polarization in photovoltaic effects of BiFeO3 based devices. Solid State Commun. 2023, 360, 115042. [Google Scholar] [CrossRef]
- Chauhan, S.; Kumar, M.; Pal, P. Substitution driven structural and magnetic properties and evidence of spin phonon coupling in Sr-doped BiFeO3 nanoparticles. RSC Adv. 2016, 6, 68028. [Google Scholar] [CrossRef]
- Chen, M.; Ma, J.; Peng, R.; Zhang, Q.; Nan, C.W. Robust polarization switching in self-assembled BiFeO3 nanoislands with quad-domain structures. Acta Mater. 2019, 175, 324–330. [Google Scholar] [CrossRef]
- Wei, Y.; Liu, Z.; Xu, D.; Dong, L.; Li, G.; Wang, Y.; Fan, F.; Meng, X.; Song, J. Dielectric properties and ferroelectric resistive switching mechanism in the epitaxial (111) BiFeO3 films. Ferroelectrics 2023, 613, 97–103. [Google Scholar] [CrossRef]
- Kathirvel, A.; Maheswari, A.U.; Sivakumar, M. Enhanced responsivity of Zr-doped BiFeO3 based self-powered UV-visible heterojunction photodetector fabricated via spray pyrolysis technique. Appl. Surf. Sci. 2023, 618, 156640. [Google Scholar] [CrossRef]
- Eriksson, A.; Tran, T.; Saxin, S.; Svensson, G.; Svedlindh, P.; Eriksson, S.-G.; Knee, C. Effects of A-site substitution on the structure and magnetic properties of Bi0.15Sr0.85-yAeyCo1-xFexO3-δ perovskites. Solid State Sci. 2009, 11, 1945–1954. [Google Scholar] [CrossRef]
- Kuhn, J.N.; Matter, P.H.; Millet, J.M.M.; Watson, R.B.; Ozkan, U.S. Oxygen Exchange Kinetics over Sr- and Co-doped LaFeO3. J. Phys. Chem. C 2008, 112, 12468–12476. [Google Scholar] [CrossRef]
- Jabeen, F.; Shahid, R.; Khan, M.S.; Pandey, R. Effect of Mn doping on the structural, spectral, electrical, ferromagnetic and piezoelectric properties of 0.7BFO-0.3BTO lead-free ceramics. J. Alloys Compd. 2022, 917, 165303. [Google Scholar] [CrossRef]
- Kumar, P.; Kar, M. Effect of Structural Transition on Magnetic and Dielectric Properties of La and Mn co-substituted BiFeO3 Ceramics. Mater. Chem. Phys. 2014, 148, 968–977. [Google Scholar] [CrossRef]
- Lin, N.; Zhang, S.; Chen, H.; Chen, Y.; Chen, X.; Zhang, Y.; Hu, X.; Zhuang, N. Structural design of cubic Sr,V:CeFeO3 thin films with a strong magneto-optical effect and high compatibility with a Si substrate. Dalton Trans. 2020, 49, 7713. [Google Scholar] [CrossRef] [PubMed]
- Kersch, A.; Fischer, D. Phase stability and dielectric constant of ABO3 perovskites from first principles. J. Appl. Phys. 2009, 106, 014105. [Google Scholar] [CrossRef]
- Li, Z.; Yang, M.; Park, J.-S.; Wei, S.-H.; Berry, J.J.; Zhu, K. Stabilizing perovskite structures by tuning tolerance factor: Formation of formamidinium and Cesium Lead Iodide solid-state alloys. Chem. Mater. 2016, 28, 284–292. [Google Scholar] [CrossRef]
- Ali, S.; Sheeraz, M.; Ullah, A.; Yun, W.S.; Ullah, A.; Kim, I.W.; Ahn, C.W. Mapping the low tolerance factor Bi(Li1/3Zr2/3)O3 end member and MPB composition nexus in Bi1/2Na1/2TiO3-based ceramics. Chem. Eng. J. 2024, 485, 150087. [Google Scholar] [CrossRef]
- Sheeraz, M.; Tran, V.-D.; Jo, Y.J.; Kim, G.; Cho, S.; Sohn, C.; Kim, I.W.; Shin, Y.-H.; Ahn, C.W.; Kim, T.H. Defect Engineering of Ferroelectric Hysteresis in Lead-Free Bi1/2(Na,K)1/2TiO3 Thin Films. ACS Appl. Electron. Mater. 2024, 6, 8328–8338. [Google Scholar] [CrossRef]
- Yin, X. Application of Poisson Effect in Rock and Soil Mass. J. Phys. Conf. Ser. 2025, 3005, 012004. [Google Scholar] [CrossRef]
- Grosvenor, A.P.; Kobe, B.A.; Biesinger, M.C.; McIntyre, N.S. Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds. Surf. Interface Anal. 2004, 36, 1564–1574. [Google Scholar] [CrossRef]
- Omran, M.; Fabritius, T.; Elmahdy, A.M.; Abdel-Khalek, N. XPS and FTIR spectroscopic study on microwave treated high phosphorus iron ore. Appl. Surf. Sci. 2015, 345, 127–140. [Google Scholar] [CrossRef]
- Qi, K.; Liu, S.; Qiu, M. Photocatalytic performance of TiO2 nanocrystals with/without oxygen defects. Chin. J. Catal. 2018, 39, 867–875. [Google Scholar] [CrossRef]
- Ismail, M.; Chand, U.; Mahata, C.; Nebhen, J.; Kim, S. Demonstration of synaptic and resistive switching characteristics in W/TiO2/HfO2/TaN memristor crossbar array for bioinspired neuromorphic computing. J. Mater. Sci. Technol. 2022, 1, 94–102. [Google Scholar] [CrossRef]
- Arbuzov, V.I.; Voroshilova, M.V.; Gusev, P.E.; Fedorov, N.Y.K. Influence of the redox conditions of melting on the quantitative ratio of ions Fe2+/Fe3+ in aluminum potassium barium phosphate glass. Glass Phys. Chem. 2007, 33, 556–561. [Google Scholar] [CrossRef]
- Li, Y.P.; Wang, N.; Che, X.S.; Chen, H.B.; Liu, Z.T. Infrared transmissive and rain-erosion resistant performances of GeC/GaP double-layer thin films on ZnS substrates. Appl. Surf. Sci. 2013, 264, 538–544. [Google Scholar] [CrossRef]
- Gouveia, A.F.; Assis, M.; Ribeiro, L.K.; Lima, A.E.B.; Gomes, E.d.O.; Souza, D.; Galvão, Y.G.; Rosa, I.L.V.; da Luz, G.E.; Guillamón, E.; et al. Photoluminescence emissions of Ca1-xWO4:xEu3+:Bridging between experiment and DFT calculations. J. Rare Earths 2022, 10, 1527–1534. [Google Scholar] [CrossRef]
- Sen, S.; Parida, R.K.; Parida, B.N. The enhanced multifunctional behavior in G-type antiferromagnetic BiFeO3 due to the modification by MgTiO3. Phys. B 2023, 650, 414559. [Google Scholar] [CrossRef]
- Kotov, V.A.; Popkov, A.F.; Soloviev, S.V.; Vasiliev, M.; Alameh, K.; Nur-E-Alam, M.; Balabanov, D.E. Magnetic heterostructures with low coercivity for high-performance magneto-optic devices. J. Phys. D Appl. Phys. 2013, 46, 035001. [Google Scholar] [CrossRef]
- Nur-E-Alam, M.; Vasiliev, M.; Kotov, V.A.; Alameh, K. Highly bismuth-substituted, record-performance magneto-optic garnet materials with low coercivity for applications in integrated optics, photonic crystals, imaging and sensing. Opt. Mater. Express 2011, 1, 413–427. [Google Scholar] [CrossRef]
- Fu, Q.; Xu, Q.; Zhao, Z.; Liu, X.; Huang, Y.; Hu, X.; Zhuang, N.; Chen, J.; French, R.H. New magneto-optical film of Ce,Ga:GIG with high performance. J. Am. Ceram. Soc. 2016, 99, 234–240. [Google Scholar] [CrossRef]
- Wettling, W. Magneto-optics of ferrites. J. Magn. Magn. Mater. 1976, 3, 147–160. [Google Scholar] [CrossRef]
- Kucera, M.; Bok, J.; Nitsch, K. Faraday rotation and MCD in Ce doped yig. Solid State Commun. 1989, 69, 1117–1121. [Google Scholar] [CrossRef]
Catalog | Parameter |
---|---|
Target | Bi1−xSrxFe1−xTixO3 (x = 0, 0.2, and 0.5) |
Substrate | SiO2 quartz glass, Si(100) and STO(100) |
Substrate temperature | room temperature |
Substrate-target distance (cm) | 5.0 |
Background pressure (Pa) | 1 × 10−4 |
Sputter gas | Ar |
Sputter gas flow (Sccm) | 20 |
Sputter pressure (Pa) | 1.6 |
Radio frequency power (W) | 80 |
Deposition time (min) | 90 |
Chemical Formula | Atom | Wyckoff-Site | x | y | z | Occupancy |
---|---|---|---|---|---|---|
Bi0.8Sr0.2Fe0.8Ti0.2O3 | Bi1 | 1a | 0 | 0 | 0 | 0.8 |
Sr1 | 1a | 0 | 0 | 0 | 0.2 | |
Fe1 | 1b | 0.5 | 0.5 | 0.5 | 0.8 | |
Ti1 | 1b | 0.5 | 0.5 | 0.5 | 0.2 | |
O1 | 3c | 0 | 0.5 | 0.5 | 1 | |
Bi0.5Sr0.5Fe0.5Ti0.5O3 | Bi1 | 1a | 0 | 0 | 0 | 0.5 |
Sr1 | 1a | 0 | 0 | 0 | 0.5 | |
Fe1 | 1b | 0.5 | 0.5 | 0.5 | 0.5 | |
Ti1 | 1b | 0.5 | 0.5 | 0.5 | 0.5 | |
O1 | 3c | 0 | 0.5 | 0.5 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, N.; Zhang, H.; Shi, Y.; Xu, C.; Xie, Z.; Chen, Y. Induction of Strong Magneto-Optical Effect and High Compatibility with Si of BiFeO3 Thin Film by Sr and Ti Co-Doping. Materials 2025, 18, 2953. https://doi.org/10.3390/ma18132953
Lin N, Zhang H, Shi Y, Xu C, Xie Z, Chen Y. Induction of Strong Magneto-Optical Effect and High Compatibility with Si of BiFeO3 Thin Film by Sr and Ti Co-Doping. Materials. 2025; 18(13):2953. https://doi.org/10.3390/ma18132953
Chicago/Turabian StyleLin, Nanxi, Hong Zhang, Yunye Shi, Chenjun Xu, Zhuoqian Xie, and Yunjin Chen. 2025. "Induction of Strong Magneto-Optical Effect and High Compatibility with Si of BiFeO3 Thin Film by Sr and Ti Co-Doping" Materials 18, no. 13: 2953. https://doi.org/10.3390/ma18132953
APA StyleLin, N., Zhang, H., Shi, Y., Xu, C., Xie, Z., & Chen, Y. (2025). Induction of Strong Magneto-Optical Effect and High Compatibility with Si of BiFeO3 Thin Film by Sr and Ti Co-Doping. Materials, 18(13), 2953. https://doi.org/10.3390/ma18132953