Island-like Perovskite Photoelectric Synaptic Transistor with ZnO Channel Layer Deposited by Low-Temperature Atomic Layer Deposition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Precursor and Hybrid Transistor Fabrication
2.2. Characterization and Measurements
3. Results and Discussion
3.1. Fabrication of Island-like CsPbBr3/ZnO Hybrid Synaptic Transistors
3.2. Effect of ALD-Grown ZnO Process on the CsPbBr3/ZnO Hybrid Film
3.3. Optoelectronic Characterization of the CsPbBr3/ZnO Hybrid Film
3.4. Behavior of the CsPbBr3/ZnO Hybrid Photoelectric Synaptic Transistor
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Y.; Liu, S.; Zhang, H.; Cao, Y.; Mu, Z.; Yi, M.; Xie, L.; Ling, H. Adaptive optoelectronic transistor for intelligent vision system. J. Semicond. 2025, 46, 021404. [Google Scholar] [CrossRef]
- Chen, H.; Cai, Y.; Han, Y.; Huang, H. Towards Artificial Visual Sensory System: Organic Optoelectronic Synaptic Materials and Devices. Angew. Chem. Int. Ed. 2024, 63, e202313634. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Zhang, T.; Yang, Y.; Huang, R. A comprehensive review on emerging artificial neuromorphic devices. Appl. Phys. Rev. 2020, 7, 011312. [Google Scholar] [CrossRef]
- Peng, R.; Wu, Y.; Wang, B.; Shi, R.; Xu, L.; Pan, T.; Guo, J.; Zhao, B.; Song, C.; Fan, Z.; et al. Programmable graded doping for reconfigurable molybdenum ditelluride devices. Nat. Electron. 2023, 6, 852–861. [Google Scholar] [CrossRef]
- Guo, P.; Zhang, J.; Huang, J. Recent progress in organic optoelectronic synaptic transistor arrays: Fabrication strategies and innovative applications of system integration. J. Semicond. 2025, 46, 021405. [Google Scholar] [CrossRef]
- Ni, Y.; Wang, Y.; Xu, W. Recent Process of Flexible Transistor-Structured Memory. Small 2021, 17, 1905332. [Google Scholar] [CrossRef]
- Zhang, J.; Sun, T.; Zeng, S.; Hao, D.; Yang, B.; Dai, S.; Liu, D.; Xiong, L.; Zhao, C.; Huang, J. Tailoring Neuroplasticity in Flexible Perovskite QDs-Based Optoelectronic Synaptic Transistors by Dual Modes Modulation. Nano Energy 2022, 95, 106987. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, H.; Xie, D. Recent Advance in Synaptic Plasticity Modulation Techniques for Neuromorphic Applications. Nano Micro Lett. 2024, 16, 211. [Google Scholar] [CrossRef]
- Shao, H.; Li, Y.; Yang, W.; He, X.; Wang, L.; Fu, J.; Fu, M.; Ling, H.; Gkoupidenis, P.; Yan, F.; et al. A Reconfigurable Optoelectronic Synaptic Transistor with Stable Zr-CsPbI3 Nanocrystals for Visuomorphic Computing. Adv. Mater. 2023, 35, 2208497. [Google Scholar] [CrossRef]
- Rogalski, A.; Wang, F.; Wang, J.; Martyniuk, P.; Hu, W. The Perovskite Optoelectronic Devices—A Look at the Future. Small Methods 2025, 9, 2400709. [Google Scholar] [CrossRef]
- Guo, Z.; Zhang, J.; Liu, X.; Wang, L.; Xiong, L.; Huang, J. Optoelectronic Synapses and Photodetectors Based on Organic Semiconductor/Halide Perovskite Heterojunctions: Materials, Devices, and Applications. Adv. Funct. Mater. 2023, 33, 2305508. [Google Scholar] [CrossRef]
- Jia, S.; Li, Y.; Gao, C.; Liu, G.; Ren, Y.; He, C.; An, X.-T. Realization of p-type MA-based perovskite solar cells based on exposure of the (002) facet. Appl. Phys. Lett. 2025, 126, 023908. [Google Scholar] [CrossRef]
- Li, N.; Hu, X.; Tang, Y.; Lei, Y.; Suet Lau, Y.; Chen, Q.; Sui, X.; Zhu, F. Perovskite/organic tandem device to realize light detection and emission dual function. Chem. Eng. J. 2024, 490, 151573. [Google Scholar] [CrossRef]
- Song, S.; Kim, J.; Kwon, S.M.; Jo, J.-W.; Park, S.K.; Kim, Y.-H. Recent Progress of Optoelectronic and All-Optical Neuromorphic Devices: A Comprehensive Review of Device Structures, Materials, and Applications. Adv. Intell. Syst. 2021, 3, 2000119. [Google Scholar] [CrossRef]
- Duan, S.; Zhang, X.; Xi, Y.; Liu, D.; Zhang, X.; Li, C.; Jiang, L.; Li, L.; Chen, H.; Ren, X.; et al. Solution-Processed Ultralow Voltage Organic Transistors With Sharp Switching for Adaptive Visual Perception. Adv. Mater. 2024, 36, 2405030. [Google Scholar] [CrossRef]
- Feng, T.; Xu, H.; Yang, Y.; Hu, X.; Wang, T.; Zhu, H.; Sun, Q.; Zhang, D.W.; Meng, J.; Chen, L. Organic Synaptic Transistors Based on C8-BTBT/PMMA/PbS QDs for UV to NIR Face Recognition Systems. Nano Lett. 2025, 25, 3637–3645. [Google Scholar] [CrossRef]
- Gao, C.; Liu, D.; Xu, C.; Bai, J.; Li, E.; Zhang, X.; Zhu, X.; Hu, Y.; Lin, Z.; Guo, T.; et al. Feedforward Photoadaptive Organic Neuromorphic Transistor with Mixed-Weight Plasticity for Augmenting Perception. Adv. Funct. Mater. 2024, 34, 2313217. [Google Scholar] [CrossRef]
- Liu, J.; Yang, Z.; Gong, Z.; Shen, Z.; Ye, Y.; Yang, B.; Qiu, Y.; Ye, B.; Xu, L.; Guo, T.; et al. Weak Light-Stimulated Synaptic Hybrid Phototransistors Based on Islandlike Perovskite Films Prepared by Spin Coating. ACS Appl. Mater. Interfaces 2021, 13, 13362–13371. [Google Scholar] [CrossRef]
- Liu, K.; Zhang, T.; Dang, B.; Bao, L.; Xu, L.; Cheng, C.; Yang, Z.; Huang, R.; Yang, Y. An optoelectronic synapse based on α-In2Se3 with controllable temporal dynamics for multimode and multiscale reservoir computing. Nat. Electron. 2022, 5, 761–773. [Google Scholar] [CrossRef]
- Wang, M.; Ouyang, D.; Dai, Y.; Huo, D.; He, W.; Song, B.; Hu, W.; Wu, M.; Li, Y.; Zhai, T. 2D Piezo-Ferro-Opto-Electronic Artificial Synapse for Bio-Inspired Multimodal Sensory Integration. Adv. Mater. 2025, 2500049. [Google Scholar] [CrossRef]
- Xie, P.; Huang, Y.; Wang, W.; Meng, Y.; Lai, Z.; Wang, F.; Yip, S.; Bu, X.; Wang, W.; Li, D.; et al. Ferroelectric P(VDF-TrFE) wrapped InGaAs nanowires for ultralow-power artificial synapses. Nano Energy 2022, 91, 106654. [Google Scholar] [CrossRef]
- Wang, Q.; Zhao, Y.; Li, Y.; Li, G.; Cao, X.; Liu, X.; Cao, H.; Zhang, X.; Chen, F.; Liu, F.; et al. Photonic synapse based on CsPbBr3@ZnO composite material for neuromorphic functions. Vacuum 2025, 238, 114333. [Google Scholar] [CrossRef]
- Guo, Z.; Kan, H.; Zhang, J.; Li, Y. Neuromorphic Visual Computing with ZnMgO QDs-Based UV-Responsive Optoelectronic Synaptic Devices for Image Encryption and Recognition. Small 2025, 21, 2412531. [Google Scholar] [CrossRef]
- Xin, S.; Wang, T.; Dou, K.; Zheng, L.; Wu, L.; Chen, Q.; Ji, S.; Ding, G.; Seeram, R.; Zhou, Y.; et al. Negative Photoconductivity in Nanowires/QDs Heterojunction Network for Neuromorphic Visual Perception. Adv. Funct. Mater. 2025, 2504250. [Google Scholar] [CrossRef]
- Park, M.H.; Kim, Y.; Choi, M.J.; Kim, Y.B.; Yun, J.M.; Jeong, J.H.; Kim, S.; Park, S.; Kang, S.J. Enhanced In-Sensor Computing with Spike Number-Dependent Plasticity Characteristics in an InGaSnO Optical Neuromorphic Device for Accelerating Machine Vision. ACS Nano 2025, 19, 13107–13117. [Google Scholar] [CrossRef]
- Liu, Q.; Yin, L.; Zhao, C.; Wang, J.; Wu, Z.; Lei, H.; Liu, Y.; Tian, B.; Zhang, Z.; Zhao, Z.; et al. Hybrid mixed-dimensional perovskite/metal-oxide heterojunction for all-in-one opto-electric artificial synapse and retinal-neuromorphic system. Nano Energy 2022, 102, 107686. [Google Scholar] [CrossRef]
- Ge, S.; Huang, F.; He, J.; Xu, Z.; Sun, Z.; Han, X.; Wang, C.; Huang, L.-B.; Pan, C. Bidirectional Photoresponse in Perovskite-ZnO Heterostructure for Fully Optical-Controlled Artificial Synapse. Adv. Opt. Mater. 2022, 10, 2200409. [Google Scholar] [CrossRef]
- Xiao, Y.; Liang, Z.-C.; Jiang, B.-Q.; Kuang, X.-F.; Rao, Z.-Y.; Wang, Z.-J.; Lin, Y.-S.; Xu, Z. Enhanced perovskite solar cell performance via low-temperature ALD-Al2O3 interface modification. Rare Met. 2025, 44, 3060–3068. [Google Scholar] [CrossRef]
- Zhu, Z.; Yuan, S.; Mao, K.; Meng, H.; Cai, F.; Li, T.; Feng, X.; Guo, H.; Tang, L.; Xu, J. Low-Temperature Atomic Layer Deposition of Hole Transport Layers for Enhanced Performance and Scalability in Textured Perovskite/Silicon Tandem Solar Cells. Adv. Energy Mater. 2024, 14, 2402365. [Google Scholar] [CrossRef]
- Kind, H.; Yan, H.; Messer, B.; Law, M.; Yang, P. Nanowire Ultraviolet Photodetectors and Optical Switches. Adv. Mater. 2002, 14, 158–160. [Google Scholar] [CrossRef]
- Liu, F.; Deswal, S.; Christou, A.; Shojaei Baghini, M.; Chirila, R.; Shakthivel, D.; Chakraborty, M.; Dahiya, R. Printed synaptic transistor–based electronic skin for robots to feel and learn. Sci. Rob. 2022, 7, eabl7286. [Google Scholar] [CrossRef] [PubMed]
- Pei, K.; Chen, M.; Zhou, Z.; Li, H.; Chan, P.K.L. Overestimation of Carrier Mobility in Organic Thin Film Transistors Due to Unaccounted Fringe Currents. ACS Appl. Electron. Mater. 2019, 1, 379–388. [Google Scholar] [CrossRef]
- Han, X.; Tao, J.; Liang, Y.; Guo, F.; Xu, Z.; Wu, W.; Tong, J.; Chen, M.; Pan, C.; Hao, J. Ultraweak light-modulated heterostructure with bidirectional photoresponse for static and dynamic image perception. Nat. Commun. 2024, 15, 10430. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; Chen, G.; Huang, W.; Xu, C.; Liu, C.; Huang, Z.; Guo, T.; Chen, H. A high-linearity synaptic phototransistor based on CsPbBr3-attached MXene nanostructures for image classification and edge detection tasks. Sci. China Mater. 2024, 67, 2246–2255. [Google Scholar] [CrossRef]
- Zhu, L.; Li, S.; Lin, J.; Zhao, Y.; Wan, X.; Sun, H.; Yan, S.; Xu, Y.; Yu, Z.; Tan, C.L.; et al. Ultra-low power IGZO optoelectronic synaptic transistors for neuromorphic computing. Sci. China Inf. Sci. 2024, 67, 222401. [Google Scholar] [CrossRef]
- Guo, Z.; Zhang, J.; Wang, J.; Liu, X.; Guo, P.; Sun, T.; Li, L.; Gao, H.; Xiong, L.; Huang, J. Organic Synaptic Transistors with Environmentally Friendly Core/Shell Quantum Dots for Wavelength-Selective Memory and Neuromorphic Functions. Nano Lett. 2024, 24, 6139–6147. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Ye, Y.; Yang, Z. Island-like Perovskite Photoelectric Synaptic Transistor with ZnO Channel Layer Deposited by Low-Temperature Atomic Layer Deposition. Materials 2025, 18, 2879. https://doi.org/10.3390/ma18122879
Liu J, Ye Y, Yang Z. Island-like Perovskite Photoelectric Synaptic Transistor with ZnO Channel Layer Deposited by Low-Temperature Atomic Layer Deposition. Materials. 2025; 18(12):2879. https://doi.org/10.3390/ma18122879
Chicago/Turabian StyleLiu, Jiahui, Yuliang Ye, and Zunxian Yang. 2025. "Island-like Perovskite Photoelectric Synaptic Transistor with ZnO Channel Layer Deposited by Low-Temperature Atomic Layer Deposition" Materials 18, no. 12: 2879. https://doi.org/10.3390/ma18122879
APA StyleLiu, J., Ye, Y., & Yang, Z. (2025). Island-like Perovskite Photoelectric Synaptic Transistor with ZnO Channel Layer Deposited by Low-Temperature Atomic Layer Deposition. Materials, 18(12), 2879. https://doi.org/10.3390/ma18122879